rev 1.1

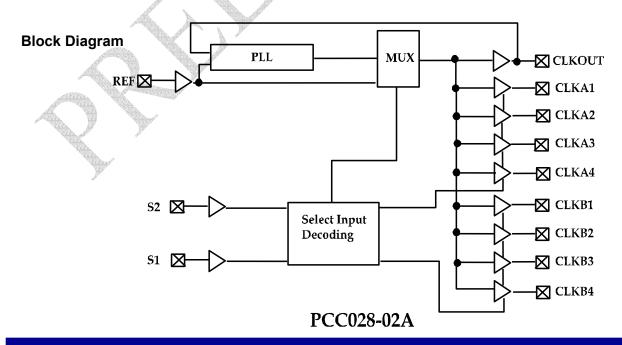
3.3V Zero Delay Buffer

General Features

- 20 MHz to 70MHz operating range, compatible with CPU and PCI bus frequencies.
- · Zero input output propagation delay
- · Multiple low-skew outputs
 - •Output-output skew less than 250 ps
 - •Device-device skew less than 700 ps
 - •One input drives 9 outputs, grouped as 4 + 4 + 1
- Less than 200 ps cycle-to-cycle jitter is compatible with Pentium[®] based systems
- Test Mode to bypass PLL
- Available in 16-pin, 150-mil SOIC, 4.4 mm TSSOP and 150-mil SSOP packages
- 3.3V operation, advanced 0.35µ CMOS technology
- 'SpreadTrak'.

Functional Description

The PCC028-02A is a low-cost 3.3V zero delay buffer designed to distribute high-speed clocks and is available in a 16-pin SOIC package. All parts have on-chip PLLs that lock to an input clock on the REF pin.


The PLL feedback is on-chip and is obtained from the CLKOUT pad.

The PCC028-02A has two banks of four outputs each, which can be controlled by the Select inputs as shown in the Select Input Decoding Table. If all the output clocks are not required, Bank B can be three-stated. The select input also allows the input clock to be directly applied to the outputs for chip and system testing purposes.

The PCC028-02A PLL shuts down in one case, as shown in the Select Input Decoding Table.

Multiple PCC028-02A devices can accept the same input clock and distribute it. In this case the skew between the outputs of the two devices is guaranteed to be less than 700ps.

All outputs have less than 200 ps of cycle-to-cycle jitter. The input to output propagation delay is guaranteed to be less than 350 ps, and the output to output skew is guaranteed to be less than 250ps.

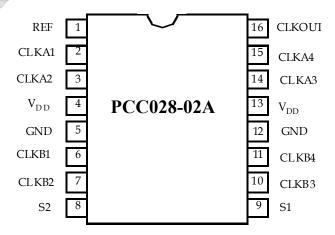
Select Input Decoding for PCC028-02A

\$2	S1	Clock A1 - A4	Clock B1 - B4	CLKOUT 1	Output Source	PLL Shut-Down
0	0	Three-state	Three-state	Driven	PLL	N
0	1	Driven	Three-state	Driven	PLL	N
1	0	Driven	Driven	Driven	Reference	Y
1	1	Driven	Driven	Driven	PLL	N

Notes

Zero Delay and Skew Control

All outputs should be uniformly loaded to achieve Zero Delay between the input and output. Since the CLKOUT pin is the internal feedback to the PLL, its relative loading can adjust the input-output delay.


For applications requiring zero input-output delay, all outputs, including CLKOUT, must be equally loaded. Even if CLKOUT is not used, it must have a capacitive load equal to that on other outputs, for obtaining zero-input-output delay.

'SpreadTrak'

Many systems being designed now utilize a technology called Spread Spectrum Frequency Timing Generation.

PCC028-02A is designed so as not to filter off the Spread Spectrum feature of the Reference input, assuming it exists. When a zero delay buffer is not designed to pass the Spread Spectrum feature through, the result is a significant amount of tracking skew which may cause problems in the systems requiring synchronization.

Pin Configuration

3.3V Zero-Delay Buffer

2 of 13

^{1.} This output is driven and has an internal feedback for the PLL. The load on this output can be adjusted to change the skew between the reference and the output

rev 1.1

Pin Description

Pin#	Pin Name	Description
1	REF	Input reference frequency, 5V-tolerant input
2	CLKA1	Buffered clock output, bank A
3	CLKA2	Buffered clock output, bank A
4	V_{DD}	3.3V supply
5	GND	Ground
6	CLKB1	Buffered clock output, bank B
7	CLKB2	Buffered clock output, bank B
8	S2 ²	Select input, bit 2
9	S1 ²	Select input, bit 1
10	CLKB3	Buffered clock output, bank B
11	CLKB4	Buffered clock output, bank B
12	GND	Ground
13	V _{DD}	3.3V supply
14	CLKA3	Buffered clock output, bank A
15	CLKA4	Buffered clock output, bank A
16	CLKOUT	Buffered output, internal feedback on this pin

Notes

Weak pull-up on these inputs

Absolute Maximum Ratings

Parameter	Min	Max	Unit
Supply Voltage to Ground Potential	-0.5	+7.0	V
DC Input Voltage (Except REF)	-0.5	V _{DD} + 0.5	V
DC Input Voltage (REF)	-0.5	7	V
Storage Temperature	-65	+150	°C
Max. Soldering Temperature (10 sec)	Sec.	260	°C
Junction Temperature		150	°C
Static Discharge Voltage (per MIL-STD-883, Method 3015)		2000	V

Note: These are stress ratings only and are not implied for functional operation. Exposure to absolute maximum ratings for prolonged time can affect device reliability.

Operating Conditions for PCC028-02ASC-XX Commercial Temperature Devices

Parameter	Description	Min	Max	Unit
V_{DD}	Supply Voltage	3.0	3.6	V
T _A	Operating Temperature (Ambient Temperature)	0	70	°C
CL	Load Capacitance, below 100 MHz		TBD	pF
Cin	Input Capacitance		TBD	pF

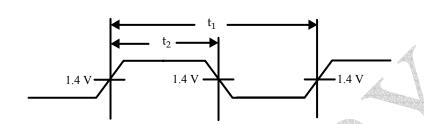
Electrical Characteristics for PCC028-02ASC-XX Commercial Temperature Devices

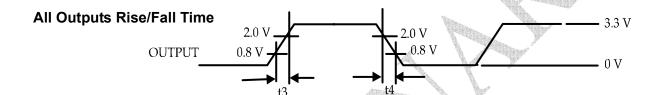
Parameter	Description	Test Conditions	Min	Max	Unit
V_{IL}	Input LOW Voltage ³			0.8	V
V _{IH}	Input HIGH Voltage ³		2.0		V
I _{IL}	Input LOW Current	V _{IN} = 0V		50.0	μΑ
I _{IH}	Input HIGH Current	$V_{IN} = V_{DD}$		100.0	μA
V_{OL}	Output LOW Voltage ⁴	I _{OL} = 8mA		0.4	V
V _{OH}	Output HIGH Voltage 4	I _{OL} = -8mA	2.4		V
I _{DD}	Supply Current	Unloaded outputs at 66.67 MHz, SEL inputs at V _{DD}		32.0	mA

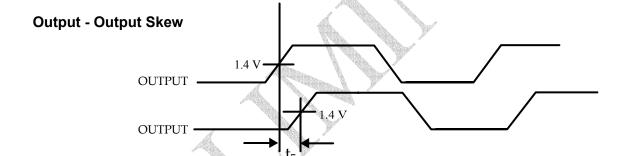
Switching Characteristics for PCC028-02ASC-1 Commercial Temperature Devices ⁵

Parameter	Description Test Conditions		Min	Тур	Max	Unit
1/t ₁	Output Frequency	30-pF load	20		70	MHz
	Duty Cycle ⁴ = (t ₂ / t ₁) * 100	Measured at 1.4V, F _{OUT} = 66.67 MHz	40.0	50.0	60.0	%
t ₃	Rise Time ⁴	Measured between 0.8V and 2.0V			2.50	ns
t ₄	Fall Time 4	Measured between 2.0V and 0.8V			2.50	ns
t ₅	Output-to-output skew 4	All outputs equally loaded			250	ps
t ₆	Delay, REF Rising Edge to CLKOUT Rising Edge ⁴	Measured at V _{DD} /2		0	±350	ps
t ₇	Device-to-Device Skew ⁴	Measured at $V_{\text{DD}}/2$ on the CLKOUT pins of the device		0	700	ps
t ₈	Output Slew Rate ⁵	Measured between 0.8V and 2.0V using Test Circuit #2	1			V/ns
tJ	Cycle-to-cycle jitter ⁴	Measured at 66.67 MHz, loaded outputs			200	ps
t _{LOCK}	PLL Lock Time ⁴	Stable power supply, valid clock presented on REF pin			1.0	ms

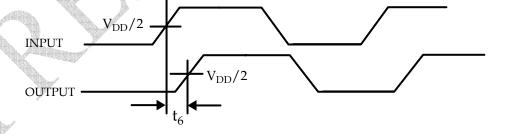
Switching Characteristics for PCC028-02ASC-1 Industrial Temperature Devices ⁵

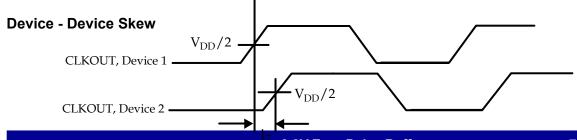

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
1/t ₁	Output Frequency	30-pF load	20		70	MHz
	Duty Cycle ⁴ = (t ₂ / t ₁) * 100	Measured at 1.4V, F _{OUT} = 66.67 MHz	40.0	50.0	60.0	%
	Duty Cycle ⁴ = (t ₂ / t ₁) * 100	Measured at 1.4V, F _{OUT} < 50.0 MHz	45.0	50.0	55.0	%
t ₃	Rise Time ⁴	Measured between 0.8V and 2.0V			1.50	ns
t ₄	Fall Time ⁴	Measured between 2.0V and 0.8V			1.50	ns
t ₅	Output-to-output skew 4	All outputs equally loaded			250	ps
t ₆	Delay, REF Rising Edge to CLKOUT Rising Edge ⁴	Measured at V _{DD} /2		0	±350	ps
t ₇	Device-to-Device Skew ⁴	Measured at $V_{DD}/2$ on the CLKOUT pins of the device		0	700	ps
t ₈	Output Slew Rate ⁵	Measured between 0.8V and 2.0V using Test Circuit #2	1			V/ns
t,	Cycle-to-cycle jitter ⁴	Measured at 66.67 MHz, loaded outputs			200	ps
t _{LOCK}	PLL Lock Time ⁴	Stable power supply, valid clock presented on REF pin			1.0	ms


Notes:

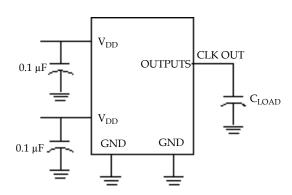

- 3. REF input has a threshold voltage of $V_{\text{DD}}/2$
- 4. Parameter is guaranteed by design and characterization. Not 100% tested in production
- 5. All parameters specified with loaded outputs.

Switching Waveforms

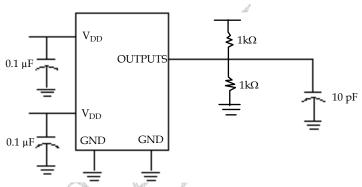

Duty Cycle Timing



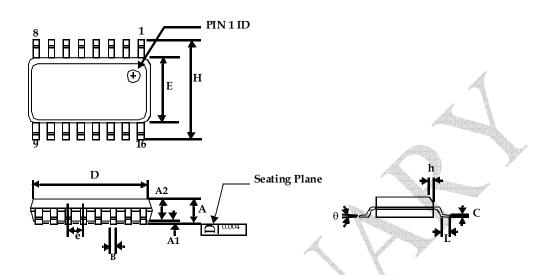
Input - Output Propagation



rev 1.1

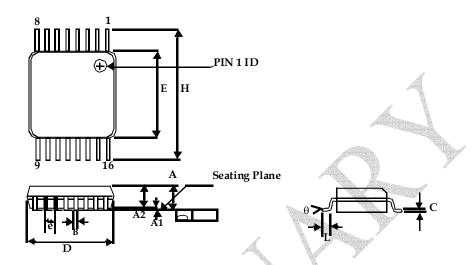

Test Circuits

Test Circuit #1


Test Circuit #2

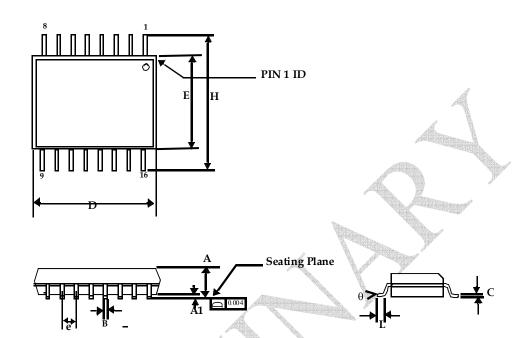
For parameter t₈ (output slew rate)

rev 1.1


Package Information: 16-lead (150 Mil) Molded SOIC S16

	Dimension	s in inches	Dimensions i	in millimeters		
	MIN	MAX	MIN	MAX		
Α	0.061	0.068	1.55	1.73		
A1	0.004	0.0098	0.102	0.249		
A2	0.055	0.061	1.40	1.55		
В	0.013	0.019	0.33	0.49		
С	0.0075	0.0098	0.191	0.249		
D	0.386	0.393	9.80	9.98		
E	0.150	0.157	3.81	3.99		
е	0.050 BSC		1.27 BSC			
Н	0.230	0.244	5.84	6.20		
h	0.010	0.016	0.25	0.41		
L	0.016	0.035	0.41	0.89		
θ	0°	8°	0°	8°		

rev 1.1


Package Information: 16-lead Thin Shrunk Small Outline Package (4.40-MM Body)

	Dimension	s in inches	Dimensions i	n millimeters
	MIN	MAX	MIN	MAX
А		0.043		1.10
A1	0.002	0.006	0.05	0.15
A2	0.003	0.37	0.85	0.95
В	0.007	0.012	0.19	0.30
С	0.004	0.008	0.09	0.20
D	0.193	2.008	4.90	5.10
E	0.169	0.177	4.30	4.50
е	0.026 BSC		0.65	BSC
Н	0.246	0.256	6.25	6.50
L	0.020	0.028	0.50	0.70
θ	0°	8°	0°	8°

rev 1.1

Package Information: 16-lead (150-mil) SSOP

Symbol	Dimension	s in inches	Dimensions in millimeters		
	MIN	MAX	MIN	MAX	
А	0.049	0.065	1.245	1.651	
A1	0.004	0.010	0.102	0.254	
В	0.008	0.012	0.203	0.305	
С	0.007	0.010	0.178	0.254	
D	0.189	0.197	4.801	5.004	
E	0.150	0.157	3.81	3.988	
е	0.025	BSC	0.635 BSC		
Н	0.228	0.244	5.791	6.198	
L	0.016	0.050	0.406	1.27	
θ	0°	8°	0°	8°	

Ordering Codes

Ordering Code	Package Name	Package Type	Operating Range
PCC028-02A SC-1	S16	16-pin 150 - mil SOIC	Commercial
PCC028-02A SI-1	S16	16-pin 150 - mil SOIC	Industrial
PCC028-02A ZC-1	Z16	16-pin 4.4mm TSSOP	Commercial
PCC028-02A ZI-1	Z16	16-pin 4.4mm TSSOP	Industrial
PCC028-02A OC-1	O16	16-pin 150 - mil SSOP	Commercial
PCC028-02A OI-1	O16	16-pin 150 - mil SSOP	Industrial

Licensed under US patent #5,488,627, #6,646,463 and #5,631,920.

rev 1.1

Alliance Semiconductor Corporation 2575, Augustine Drive, Santa Clara, CA 95054 Tel# 408-855-4900

Fax: 408-855-4999 www.alsc.com Copyright © Alliance Semiconductor All Rights Reserved Preliminary Information Part Number: PCC028-02A Document Version: v1.1

Note: This product utilizes US Patent # 6,646,463 Impedance Emulator Patent issued to Dan Hariton / Alliance Semiconductor, dated 11-11-2003

© Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems