

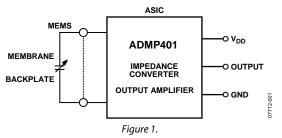
Omnidirectional Microphone with Bottom Port and Analog Output

ADMP401

FEATURES

4.72 mm \times 3.76 mm \times 1.0 mm surface-mount package High SNR of 62 dBA Sensitivity of -42 dBV Flat frequency response from 100 Hz to 15 kHz Low current consumption of <250 μ A Single-ended analog output High PSRR of 70 dB Compatible with Sn/Pb and Pb-free solder processes RoHS/WEEE compliant

APPLICATIONS


Smartphones and feature phones Teleconferencing systems Digital video cameras Bluetooth headsets Video phones Tablets

GENERAL DESCRIPTION

The ADMP401 is a high quality, high performance, low power, analog output, bottom-ported omnidirectional MEMS microphone. The ADMP401 consists of a MEMS microphone element, an impedance converter, and an output amplifier. The ADMP401 sensitivity specification makes it an excellent choice for both near field and far field applications. The ADMP401 has a high SNR and flat wideband frequency response, resulting in natural sound with high intelligibility. Low current consumption enables long battery life for portable applications. A built-in particle filter provides for high reliability. The ADMP401 complies with the TIA-920 standard, *Telecommunications Telephone Terminal Equipment Transmission Requirements for Wideband Digital Wireline Telephones*.

The ADMP401 is available in a thin, 4.72 mm \times 3.76 mm \times 1.0 mm surface-mount package. It is reflow solder compatible with no sensitivity degradation. The ADMP401 is halide free.

FUNCTIONAL BLOCK DIAGRAM

TABLE OF CONTENTS

4/10—Revision 0: Initial Version

Features
Applications1
General Description
Functional Block Diagram
Revision History
Specifications
Absolute Maximum Ratings
ESD Caution4
Pin Configuration and Function Descriptions5
Printed Circuit Board (PCB) Land Pattern Layout6
Typical Performance Characteristics
REVISION HISTORY
12/10—Rev. A to Rev. B
Changes to Applications and General Description Sections 1
Changes to Table 1
8/10—Rev. 0 to Rev. A
Changes to Frequency Response Parameter, Table 1 3
Changes to Supply Voltage Parameter, Table 24
Changes to Applications Information Section, Figure 9, and
Figure 10
Updated Outline Dimensions

Applications Information	8
Connecting the ADMP401 to a Codec	
Connecting the ADMP401 to an Op Amp Gain Stage	8
Handling Instructions	9
Pick-and-Place Equipment	9
Reflow Solder	9
Board Wash	9
Reliability Specifications	10
Outline Dimensions	11
Ordering Guide	11

SPECIFICATIONS

 $T_A = 25$ °C, $V_{DD} = 1.8$ V, unless otherwise noted. All minimum and maximum specifications are guaranteed. Typical specifications are not guaranteed.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
PERFORMANCE						
Directionality				Omni		
Sensitivity		1 kHz, 94 dB SPL	-45	-42	-39	dBV
Signal-to-Noise Ratio	SNR			62		dBA
Equivalent Input Noise	EIN			32		dBA SPL
Dynamic Range		Derived from EIN and maximum acoustic input		88		dB
Frequency Response ¹		Low frequency, –3 dB point		100		Hz
		High frequency, −3 dB point		15		kHz
		Deviation limits from flat response within pass band		-3/+2		dB
Total Harmonic Distortion	THD	105 dB SPL			3	%
Power Supply Rejection Ratio	PSRR	217 Hz, 100 mV p-p square wave superimposed on $V_{DD} = 1.8 \text{ V}$		70		dB
Maximum Acoustic Input		Peak		120		dB SPL
POWER SUPPLY						
Supply Voltage	V_{DD}		1.5		3.3	V
Supply Current	Is				250	μΑ
OUTPUT CHARACTERISTICS						
Output Impedance	Z _{OUT}			200		Ω
Output DC Offset				8.0		V
Output Current Limit				90		μΑ

¹ See Figure 6 and Figure 7.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	-0.3 V to +3.6 V
Sound Pressure Level (SPL)	160 dB
Mechanical Shock	10,000 <i>g</i>
Vibration	Per MIL-STD-883 Method 2007, Test Condition B
Temperature Range	−40°C to +70°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

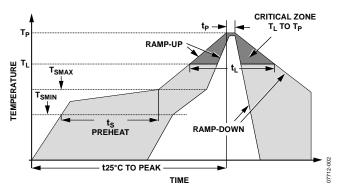


Figure 2. Recommended Soldering Profile Limits

Table 3. Recommended Soldering Profile Limits

Profile Feature	Sn63/Pb37	Pb-Free
Average Ramp Rate (T _L to T _P)	3°C/sec maximum	3°C/sec maximum
Preheat		
Minimum Temperature (T _{SMIN})	100°C	150°C
Maximum Temperature (T _{SMAX})	150°C	200°C
Time (T_{SMIN} to T_{SMAX}), t_S	60 sec to 120 sec	60 sec to 120 sec
Ramp-Up Rate (T _{SMAX} to T _L)	3°C/sec maximum	3°C/sec maximum
Time Maintained Above Liquidous (t _L)	60 sec to 150 sec	60 sec to 150 sec
Liquidous Temperature (T _L)	183°C	217°C
Peak Temperature (T _P)	240°C + 0°C/-5°C	260°C + 0°C/-5°C
Time Within 5°C of Actual Peak Temperature (t₁)	10 sec to 30 sec	20 sec to 40 sec
Ramp-Down Rate	6°C/sec maximum	6°C/sec maximum
Time 25°C to Peak Temperature	6 minute maximum	8 minute maximum

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

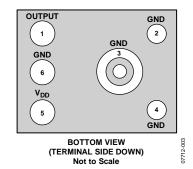


Figure 3. Pin Configuration (Bottom View)

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	OUTPUT	Analog Output Signal
2	GND	Ground
3	GND	Ground
4	GND	Ground
5	V_{DD}	Power Supply
6	GND	Ground

PRINTED CIRCUIT BOARD (PCB) LAND PATTERN LAYOUT

The recommended PCB land pattern for the ADMP401 should have a 1:1 ratio to the solder pads on the microphone package, as shown in Figure 4. Care should be taken to avoid applying solder paste to the sound hole in the PCB.

A suggested solder paste stencil pattern layout is shown in Figure 5. The diameter of the sound hole in the PCB should be larger than the diameter of the sound port of the microphone. A minimum diameter of 0.5 mm is recommended.

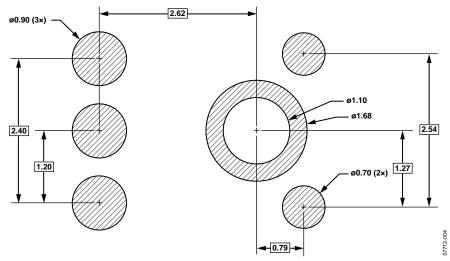


Figure 4. PCB Land Pattern Layout (Dimensions Shown in mm)

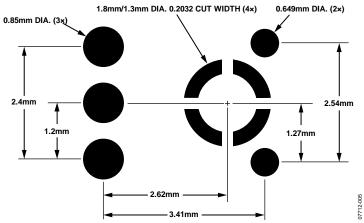


Figure 5. Suggested Solder Paste Stencil Pattern Layout

TYPICAL PERFORMANCE CHARACTERISTICS

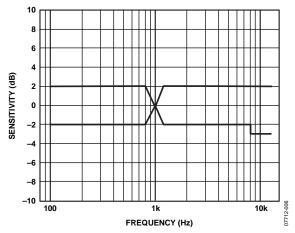
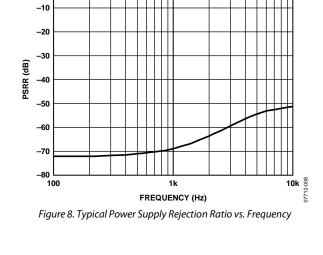



Figure 6. Frequency Response Mask

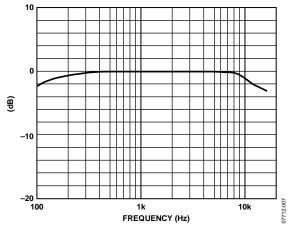


Figure 7. Typical Frequency Response (Measured)

APPLICATIONS INFORMATION

The ADMP401 output can be connected to a dedicated codec microphone input (see Figure 9) or to a high input impedance gain stage (see Figure 10). A 0.1 μF ceramic capacitor placed close to the ADMP401 supply pin is used for testing and is recommended to adequately decouple the microphone from noise on the power supply. A dc-blocking capacitor is required at the output of the microphone.

CONNECTING THE ADMP401 TO A CODEC

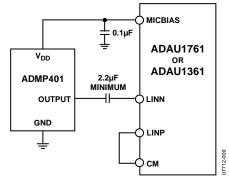


Figure 9. ADMP401 Connected to the Analog Devices ADAU1761 or ADAU1361 Codec

CONNECTING THE ADMP401 TO AN OP AMP GAIN STAGE

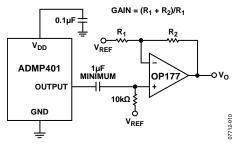


Figure 10. ADMP401 Connected to the OP177 Op Amp

HANDLING INSTRUCTIONS

PICK-AND-PLACE EQUIPMENT

The MEMS microphone can be handled using standard pickand-place and chip shooting equipment. Care should be taken to avoid damage to the MEMS microphone structure as follows:

- Use a standard pickup tool to handle the microphone.
 Because the microphone hole is on the bottom of the package, the pickup tool can make contact with any part of the lid surface.
- Use care during pick-and-place to ensure that no high shock events above 20 kg are experienced because such events may cause damage to the microphone.
- Do not pick up the microphone with a vacuum tool that makes contact with the bottom side of the microphone.
- Do not pull air out or blow air into the microphone port.
- Do not use excessive force to place the microphone on the PCB.

REFLOW SOLDER

For best results, the soldering profile should be in accordance with the recommendations of the manufacturer of the solder paste that is used to attach the MEMS microphone to the PCB. It is recommended that the solder reflow profile not exceed the limit conditions specified in Figure 2 and Table 3.

BOARD WASH

When washing the PCB, ensure that water does not make contact with the microphone port. Blow-off procedures and ultrasonic cleaning must not be used.

RELIABILITY SPECIFICATIONS

The microphone sensitivity after stress must deviate by no more than ± 3 dB from the initial value.

Table 5.

Stress Test	Description
Low Temperature Operating Life	−40°C, 500 hours, powered
High Temperature Operating Life	+125°C, 500 hours, powered
THB	+65°C/85% relative humidity, 500 hours, powered
Temperature Cycle	-40°C/+125°C, one cycle per hour, 100 cycles
High Temperature Storage	+150°C, 500 hours
Low Temperature Storage	−40°C, 500 hours
Component CDM ESD	All pins, 0.5 kV
Component HBM ESD	All pins, 1.5 kV
Component MM ESD	All pins, 0.2 kV

OUTLINE DIMENSIONS

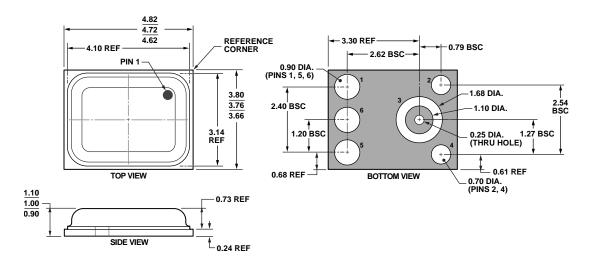


Figure 11. 6-Terminal Chip Array Small Outline No Lead Cavity [LGA_CAV] 4.72 mm × 3.76 mm Body (CE-6-1) Dimensions shown in millimeters

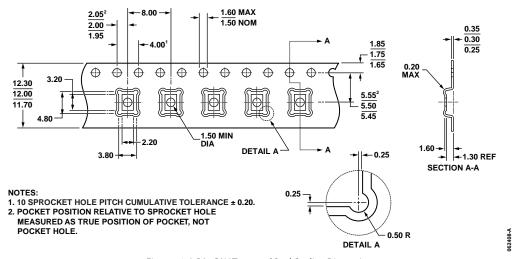


Figure 12. LGA_CAV Tape and Reel Outline Dimensions Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option ²	Ordering Quantity
ADMP401ACEZ-RL	-40°C to +70°C	6-Terminal LGA_CAV, 13"Tape and Reel	CE-6-1	5,000
ADMP401ACEZ-RL7	−40°C to +70°C	6-Terminal LGA_CAV, 7" Tape and Reel	CE-6-1	1,000
EVAL-ADMP401Z		Evaluation Board		

¹ Z = RoHS Compliant Part.

² The CE-6-1 package option is halide free.

ADMP401

NOTES