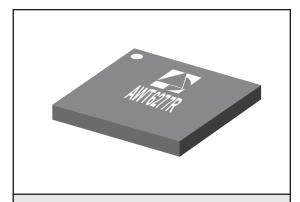


AWT6277R


HELP™ IMT/WCDMA 3.4 V/28.5 dBm Linear Power Amplifier Module Data Sheet - Rev 2.1

FEATURES

- InGaP HBT Technology
- High Efficiency:
 - 44% @ Pout = +28.5 dBm
 - 21% @ Pout = +16 dBm
 - 16% @ Роит = +7 dВm
- Low Quiescent Current: 15 mA
- Low Leakage Current in Shutdown Mode: <1 μA
- V_{REF} = +2.85 V (+2.75 V min over temp)
- Optimized for a 50 Ω System
- Low Profile Miniature Surface Mount Package
- RoHS Compliant Package Option, 250 °C MSL-3
- HSPA Compliant (no backoff)

APPLICATIONS

 WCDMA/HSPA IMT-Band Wireless Handsets and Data Devices

M20 Package
10 Pin 4 mm x 4 mm x 1 mm
Surface Mount Module

PRODUCT DESCRIPTION

The AWT6277 meets the increasing demands for higher output power in UMTS handsets. The PA module is optimized for V_{REF} = +2.85 V, a requirement for compatibility with the Qualcomm® 6250 chipset. The device is manufactured on an advanced InGaP HBT MMIC technology offering state-of-the-art reliability, temperature stability, and ruggedness. Selectable bias modes that optimize efficiency for

different output power levels, and a shutdown mode with low leakage current, increase handset talk and standby time. The self-contained 4 mm x 4 mm x 1 mm surface mount package incorporates matching networks optimized for output power, efficiency, and linearity in a 50 Ω system.

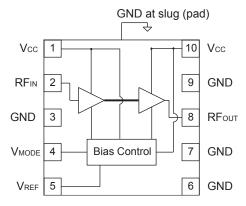


Figure 1: Block Diagram

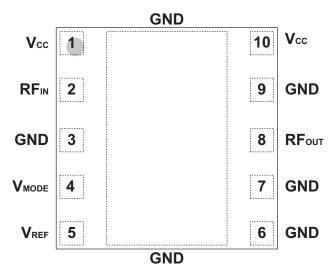


Figure 2: Pinout (X-ray Top View)

Table 1: Pin Description

PIN	NAME	DESCRIPTION
1	Vcc	Supply Voltage
2	RFℕ	RF Input
3	GND	Ground
4	V _{MODE}	Mode Control Voltage
5	V_{REF}	Reference Voltage
6	GND	Ground
7	GND	Ground
8	RFout	RF Output
9	GND	Ground
10	Vcc	Supply Voltage

ELECTRICAL CHARACTERISTICS

Table 2: Absolute Minimum and Maximum Ratings

PARAMETER	MIN	MAX	UNIT
Supply Voltage (Vcc)	0	+5	V
Mode Control Voltage (V _{MODE})	0	+3.5	V
Reference Voltage (VREF)	0	+3.5	V
RF Input Power (Pℕ)	ı	+10	dBm
Storage Temperature (Tstg)	-40	+150	°C

Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability.

Table 3: Operating Ranges

ruble of Operating Runges						
PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS	
Operating Frequency (f)	1920	-	1980	MHz		
Supply Voltage (Vcc)	+3.2	+3.4 +1.5	+4.2	>	Pουτ ≤ +28.5 dBm Pουτ ≤ 7 dBm	
Reference Voltage (VREF)	+2.75 0	+2.85	+2.95 +0.5	V	PA "on" PA "shut down"	
Mode Control Voltage (VMODE)	+2.3 0	+2.85	+3.1 +0.5	٧	Low Bias Mode High Bias Mode	
RF Output Power (Pout) R99 WCDMA, HPM HSPA (MPR=0), HPM R99 WCDMA, LPM HSPA (MPR=0), LPM	28 ⁽¹⁾ 27 ⁽¹⁾ 15.5 ⁽¹⁾ 14.5 ⁽¹⁾	28.5 27.5 16 15	28.5 27.5 16 15	dBm	3GPP TS 34.121-1, Rel 7 Table C.11.1.3	
Case Temperature (Tc)	-20	-	+90	°C		

The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications.

Notes:

(1) For operation at Vcc = +3.2 V, Pout is derated by 0.5 dB.

Table 4: Electrical Specifications (Tc = +25 °C, Vcc = +3.4 V, V_{REF} = +2.85 V, 50 Ω system)

(10 - 120 0, 400 - 10.4 4, 400 - 12.00 4, 50 22 3y3tom)						
PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS	
Gain	24.5 13.5 12	26.0 15.5 14.5	28 17.5 16	dB	P _{OUT} = +28.5 dBm, V _{MODE} = 0 V P _{OUT} = +16 dBm, V _{MODE} = +2.85 V P _{OUT} = +7 dBm, V _{CC} = 1.5 V, V _{MODE} = +2.85 V	
ACLR1 at 5 MHz offset (1)	1 1 1	-40 -43 -41	-38 -38 -38	dBc	P _{OUT} = +28.5 dBm, V _{MODE} = 0 V P _{OUT} = +16 dBm, V _{MODE} = +2.85 V P _{OUT} = +7 dBm, V _{CC} = 1.5 V, V _{MODE} = +2.85 V	
ACLR2 at 10 MHz offset	1 1 1	-56 -52 -58	-48 -48 -48	dBc	P _{OUT} = +28.5 dBm, V _{MODE} = 0 V P _{OUT} = +16 dBm, V _{MODE} = +2.85 V P _{OUT} = +7 dBm, V _{CC} = 1.5 V, V _{MODE} = +2.85 V	
Power-Added Efficiency (1)	40 18 12	44 21 15.5	1 1 1	%	P _{OUT} = +28.5 dBm, V _{MODE} = 0 V P _{OUT} = +16 dBm, V _{MODE} = +2.85 V P _{OUT} = +7 dBm, V _{CC} = 1.5 V, V _{MODE} = +2.85 V	
Quiescent Current (lcq)	-	15	22	mA	$V_{MODE} = +2.85 \text{ V}, V_{CC} = 3.4 \text{ V}$	
Reference Current	-	5	7	mA	through V _{REF} pin	
Mode Control Current	-	0.3	1	mA	through V _{MODE} pin, V _{MODE} = +2.85 V	
Leakage Current	1	<1	5	μA	V_{CC} = +4.2 V, V_{REF} = 0 V, V_{MODE} = 0 V	
Noise in Receive Band	-	-141	-138	dBm/Hz	2110 MHz to 2170 MHz	
Harmonics 2fo 3fo, 4fo	-	-45 -50	-40 -45	dBc	Ро∪т <u><</u> +28.5 dBm	
Input Impedance	-	-	2:1	VSWR		
Spurious Output Level (all spurious outputs)	-	-	-70	dBc	Pout ≤ +28.5 dBm In-band load VSWR < 5:1 Out-of-band load VSWR < 10:1 Applies over all operating conditions	
Load mismatch stress with no permanent degradation or failure	10:1		-	VSWR	Applies over full operating range	

Notes:

(1) ACLR and Efficiency measured at 1950 MHz.

APPLICATION INFORMATION

To ensure proper performance, refer to all related Application Notes on the ANADIGICS web site: http://www.anadigics.com

Shutdown Mode

The power amplifier may be placed in a shutdown mode by applying logic low levels (see Operating Ranges table) to both the V_{REF} and V_{MODE} voltages.

Bias Modes

The power amplifier may be placed in either a Low Bias mode or a High Bias mode by applying the appropriate

logic level (see Operating Ranges table) to the V_{MODE} voltage. The Bias Control table lists the recommended modes of operation for various applications.

Three operating modes are recommended to optimize current consumption. High Bias/High Vcc operating mode is for Pout levels \geq 16 dBm. At ~16dBm - 7 dBm, the PA should be "Mode Switched" to Low Bias Mode. For Pout levels \leq ~7 dBm, the Vcc can be switched to 1.5 V (Low Bias Mode is also used for this Pout range).

Table 5: Bias Control

APPLICATION	Pout LEVELS	BIAS MODE	V REF	V _{MODE}	Vcc
WCDMA - low power	Low	+2.85 V	+2.85 V	+1.5	
WCDMA - med power	7 <u><</u> Ро∪т <u><</u> +16 dВm	Low	+2.85 V	+2.85 V	+3.4
WCDMA - high power	>+16 dBm	High	+2.85 V	0 V	+3.4
Shutdown	-	Shutdown	0 V	0 V	=

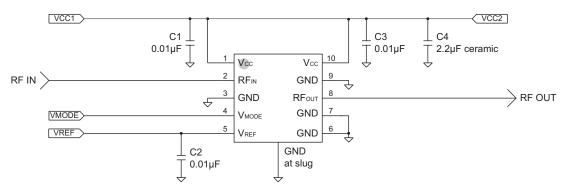
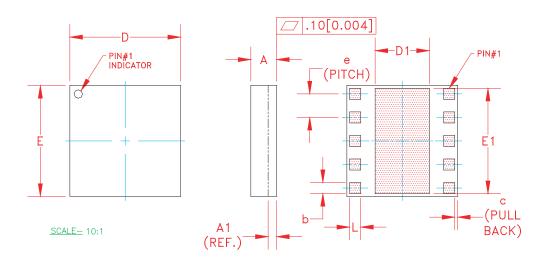



Figure 3: Application Circuit Schematic

PACKAGE OUTLINE

-							
S _{YM} B _{OL}	MILLIMETERS			NOTE			
O_	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
A	0.88	0.98	1.08	0.034	0.038	0.042	_
A1	0.32 (REF.)			0.0	0.0125 (REF.)		
b	0.35	-	0.60	0.013	-	0.024	3
С	-	0.10	-	-	0.004	-	-
D	3.88	4.00	4.12	0.152	0.157	0.162	-
D1	1.90	-	::2.25	0.075	-	0.088	_
Ε	3.88	4.00	4.12	0.152	0.157	0.162	_
E1	3.75	-	3.85	0.148	-	0.152	-
е		0.85			0.033		3
L	0.35	-	0.60	0.013	-	0.024	3

NOTES:

- 1. CONTROLLING DIMENSIONS: MILLIMETERS
 2. UNLESS SPECIFIED TOLERANCE=±0.076[0.003].
 3. PADS (INCLUDING CENTER) SHOWN UNIFORM SIZE FOR REFERENCE ONLY.
 ACTUAL PAD SIZE AND LOCATION WILL VARY WITHIN MIN. DAX. DIMENSIONS ACCORDING TO SPECIFIC LAMINATE DESIGN.

Figure 4: M20 Package Outline - 10 Pin 4 mm x 4 mm x 1 mm Surface Mount Module

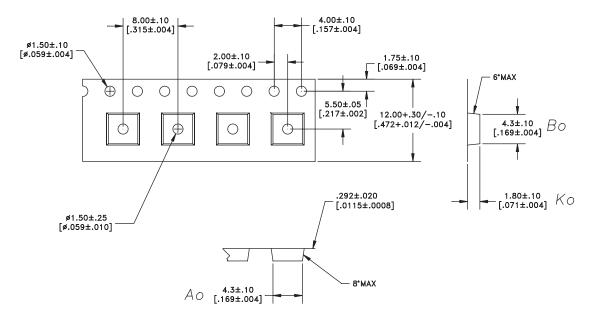
NOTES:

1. ANADIGICS LOGO SIZE: X=0.040±0.010 Y=0.048±0.010

2. PART # AWT6277R

3. YEAR AND WORK WEEK: YYWW: YY = YEAR, WW = WORK WEEK

LLLLL - SS = WAFER/LOT I.D.4. LOT - WAFER I.D.: 5. PIN 1 INDICATOR: MOLD NOTCH -or- INK DOT


6. BOM # BBB

7. COUNTRY CODE: CCCCCC

8. TYPE : SIZE : ELITE AS LARGE AS POSSIBLE LASER MARKED

Figure 5: Branding Specification

COMPONENT PACKAGING

DIMENSIONS ARE IN MILLIMETERS [INCHES]
STANDARD TOLERANCES

Figure 7: Tape & Reel Packaging

Table 6: Tape & Reel Dimensions

PACKAGE TYPE	TAPE WIDTH	POCKET PITCH	REEL CAPACITY	MAX REEL DIA
4 mm x 4 mm x 1 mm	12 mm	8 mm	2500	13"

AWT6277R

ORDERING INFORMATION

ORDER NUMBER TEMPERATURE RANGE		PACKAGE DESCRIPTION	COMPONENT PACKAGING	
AWT6277RM20P8	-20 °C to +90 °C	RoHS Compliant 10 Pin 4 mm x 4 mm x 1 mm Surface Mount Module	Tape and Reel, 2500 pieces per Reel	
AWT6277RM20P9	-20 °C to +90 °C	RoHS Compliant 10 Pin 4 mm x 4 mm x 1 mm Surface Mount Module	Partial Tape and Reel	

ANADIGICS, Inc.

141 Mount Bethel Road Warren, New Jersey 07059, U.S.A.

Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132

URL: http://www.anadigics.com E-mail: Mktg@anadigics.com

IMPORTANT NOTICE

ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders.

WARNING

ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.

