

DATA SHEET

GENERAL PURPOSE CHIP RESISTORS RC0805

5%, 1% RoHS compliant

Chip Resistor Surface Mount | RC | SERIES | 0805 (RoHS Compliant)

2

<u>SCOPE</u>

This specification describes RC0805 series chip resistors with lead-free terminations made by thick film process.

APPLICATIONS

• All general purpose application

FEATURES

- Halogen Free Epoxy
- RoHS compliant
 - Products with lead free terminations meet RoHS requirements
 - Pb-glass contained in electrodes, resistor element and glass are exempted by RoHS
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Saving of PCB space
- None forbidden-materials used in products/production

ORDERING INFORMATION - GLOBAL PART NUMBER & 12NC

Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

RC0805	<u>X</u>	<u>R</u>	=	<u>XX</u>	<u>XXXX</u>	L	
	(I)	(2)	(3)	(4)	(5)	(6)	

(I) TOLERANCE

 $F = \pm 1\%$

 $J = \pm 5\%$ (for Jumper ordering, use code of J)

(2) PACKAGING TYPE

R = Paper taping reel

(3) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

(4) TAPING REEL

- 07 = 7 inch dia. Reel
- 10 = 10 inch dia. Reel
- 13 = 13 inch dia. Reel

(5) RESISTANCE VALUE

There are $2\sim4$ digits indicated the resistor value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. IK2, not IK20.

Detailed resistance rules show in table of "Resistance rule of global part number".

(6) DEFAULT CODE

Letter L is system default code for order only ^(Note)

Resistance rule of global part number				
Resistance code ru	le Example			
OR	0R = Jumper			
XRXX (1 to 9.76 Ω)	IR = ΙΩ IR5 = Ι.5 Ω 9R76 = 9.76 Ω			
XXRX (10 to 97.6 Ω)	$10R = 10 \Omega$ 97R6 = 97.6 Ω			
XXXR (100 to 976 Ω)	100R = 100 Ω			
XKXX (1 to 9.76 KΩ)	IK = 1,000 Ω 9K76 = 9760 Ω			
XMXX (I to 9.76 MΩ)	IM = 1,000,000 Ω 9M76= 9,760,000 Ω			

ORDERING EXAMPLE

The ordering code of a RC0805 chip resistor, value 56 Ω with ±1% tolerance, supplied in 7-inch tape reel is: RC0805FR-0756RL.

NOTE

- All our RSMD products meet RoHS compliant and Halogen Free. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- 2. On customized label, "LFP" or specific symbol can be printed

Phicomp YAGEO

Chip Resistor Surface Mount RC SERIES 0805 (RoHS Compliant) З 9

6

0200 or 200

3007 or 307

1008 or 108

3303 or 333

1006 or 106

10 to 97.6 MΩ

Example:

0.02 Ω =

=

_

=

=

0.3 Ω

ΙΩ

33 KΩ

10 MΩ

PHYCOMP BRAND ordering codes

Both GLOBAL PART NUMBER (preferred) and I2NC (traditional) codes are acceptable to order Phycomp brand products.

GLOBAL PART NUMBER (PREFERRED)

For detailed information of GLOBAL PART NUMBER and ordering example, please refer to page 2.

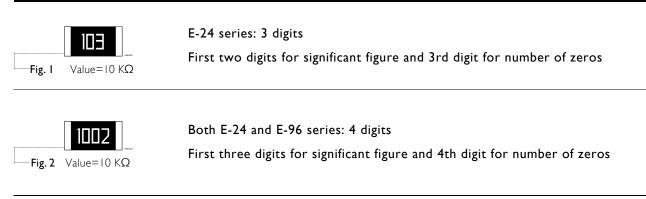
12NC CODE

2322 (I	/ 2350	<u>XXX</u>	(2) (3) (4)				Last digit of 12NC Resistance decade ⁽³⁾	Last digi
TYPE/	START	TOL.	RESISTANCE	PAPER	/ PE TAPE ON REE	L (units) ⁽²⁾	0.01 to 0.0976 Ω	(
0805	IN ⁽¹⁾	(%)	RANGE	5,000	10,000/not preferred	20,000	0.1 to 0.976 Ω	7
RCII	2322	±5%	l to 10 MΩ	730 61xxx	730 71xxx	730 81xxx	l to 9.76 Ω	8
RC12	2322	±1%	l to 10 MΩ	734 6xxxx	734 7xxxx	734 8xxxx	10 to 97.6 Ω	9
HRCII	2350	±5%	II to 22 MΩ	521 10xxx	-	-	100 to 976 Ω	I
umper	2322	-	0 Ω	730 91002	730 91003	730 92002	l to 9.76 KΩ	2
<u> </u>							10 to 97.6 KΩ	3
(I) Th	e resist	ors ha	ve a 12-digit o	rdering coo	le starting with 23	322 / 2350.	100 to 976 KΩ	4
(2) Th	e subse	quent	4 or 5 digits ir	dicate the	resistor tolerance	e and	l to 9.76 MΩ	5

- (2) The subsequent 4 or 5 digits indicate the resistor tolerance and packaging.
- (3) The remaining 4 or 3 digits represent the resistance value with the last digit indicating the multiplier as shown in the table of "Last digit of I2NC".
- (4) Letter L is system default code for order only (Note)

ORDERING EXAMPLE

The ordering code of a RC12 resistor, value 56 Ω with ±1% tolerance, supplied in tape of 5,000 units per reel is: 232273465609L or RC0805FR-0756RL.


ΝΟΤΕ

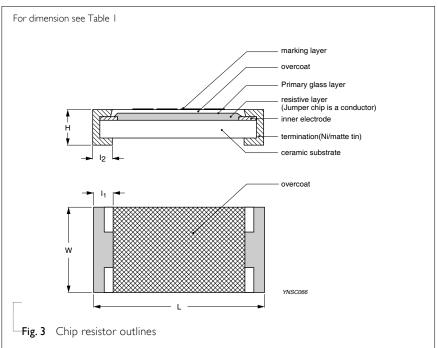
- I. All our RSMD products meet RoHS compliant and Halogen Free. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- 2. On customized label, "LFP" or specific symbol can be printed

Chip Resistor Surface Mount RC SERIES 0805 (RoHS Compliant)

MARKING

RC0805

For further marking information, please see special data sheet "Chip resistors marking"


CONSTRUCTION

The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal imbedded into a glass and covered by a second glass to prevent environment influences. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy coat, finally the two external terminations (matte tin on Nibarrier) are added. See fig.3

DIMENSIONS

Table I	
ТҮРЕ	RC0805
L (mm)	2.00 ±0.10
W (mm)	1.25 ±0.10
H (mm)	0.50 ±0.10
l _l (mm)	0.35 ±0.20
l ₂ (mm)	0.35 ±0.20

OUTLINES

Chip Resistor Surface Mount RC SERIES 0805 (RoHS Compliant)

ELECTRICAL CHARACTERISTICS

Table 2		
CHARACTERISTICS		RC0805 1/8 W
Operating Temperature Range	-55	°C to +155 °C
Maximum Working Voltage		150 V
Maximum Overload Voltage		300 V
Dielectric Withstanding Voltage		300 V
	5% (E24)	$\mid \Omega$ to 22 M Ω
Resistance Range	1% (E24/E96)	$\mid \Omega$ to $\mid 0 \; \text{M}\Omega$
	Zero Ohm Ju	umper < 0.05 Ω
	$ \Omega \le R \le 0 \Omega $	±200 ppm/°C
Temperature Coefficient	$10 \text{ M}\Omega < \text{R} \le 22 \text{ M}\Omega$	±200 ppm/°C
	$10 \Omega < R \le 10 M\Omega$	±100 ppm/°C
lumpor Critoria	Rated Current	2 A
Jumper Criteria	Maximum Current	5 A

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PRODUCT TYPE	PACKING STYLE	REEL DIMENSION	QUANTITY PER REEL
RC0805	Paper Taping Reel (R)	7" (178 mm)	5,000 units
		10" (254 mm)	10,000 units
		13" (330 mm)	20,000 units

NOTE

1. For paper tape and reel specification/dimensions, please see the special data sheet "Chip resistors packing"

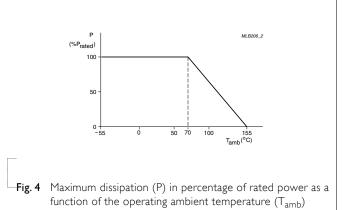
FUNCTIONAL DESCRIPTION

POWER RATING

RC0805 rated power at 70° C is 1/8 W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:


 $V=\sqrt{(P \times R)}$ or max. working voltage whichever is less

Where

V=Continuous rated DC or AC (rms) working voltage (V)

P=Rated power (W)

R=Resistance value (Ω)

FOOTPRINT AND SOLDERING

<u>PROFILES</u>

For recommended footprint and soldering profiles, please see the special data sheet "Chip resistors mounting".

Chip Resistor Surface Mount RC SERIES 0805 (RoHS Compliant)

6 9

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

	TEST METHOD	PROCEDURE	REQUIREMENTS
Temperature Coefficient of	IEC 60115-1 4.8	At +25/–55 °C and +25/+125 °C	Refer to table 2
Resistance (T.C.R.)		Formula:	
(1.C.R.)		T.C.R= $\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/°C)}$	
		Where t_1 =+25 °C or specified room temperature	
		t_2 =–55 °C or +125 °C test temperature	
		R_1 =resistance at reference temperature in ohms	
		R_2 =resistance at test temperature in ohms	
Life/Endurance	IEC 60115-1 4.25.1	At 70±5 °C for 1,000 hours, RCWV applied for 1.5 hours on, 0.5 hour off, still air required	\pm (1.0%+0.05 Ω) for 1% tol. \pm (3.0%+0.05 Ω) for 5% tol. <100 mΩ for Jumper
High Temperature Exposure/ Endurance at Upper Category Temperature	IEC 60068-2-2	I,000 hours at 155±5 °C, unpowered	±(1.0%+0.05 Ω) for 1% tol. ±(2.0%+0.05 Ω) for 5% tol. <50 mΩ for Jumper
Moisture Resistance	MIL-STD-202G Method-106G	Each temperature / humidity cycle is defined at 8 hours, 3 cycles / 24 hours for 10d. with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	±(0.5%+0.05 Ω) for 1% tol. ±(2.0%+0.05 Ω) for 5% tol. <100 mΩ for Jumper
		Parts mounted on test-boards, without condensation on parts	
		Measurement at 24±2 hours after test conclusion	
Thermal Shock	MIL-STD-202G Method-107G	-55/+125 °C	±(0.5%+0.05 Ω) for 1% tol.
		Number of cycles required is 300. Devices unmounted	\pm (1%+0.05 Ω) for 5% tol. <50 mΩ for Jumper
		Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	
Short Time	IEC60115-14.13	2.5 times of rated voltage or maximum overload	±(1.0%+0.05 Ω) for 1% tol.
		voltage whichever is less for 5 sec at room temperature	
Short Time Overload		temperature	\pm (2.0%+0.05 Ω) for 5% tol. <50 mΩ for Jumper

Chip Resistor Surface Mount RC SERIES 0805 (RoHS Compliant)

Product specification

/	
9	

TEST METHOD	PROCEDURE	REQUIREMENTS	
IEC 60068-2-21	Chips mounted on a 90mm glass epoxy resin	±(1.0%+0.05 Ω) for 1%	ś, 5% tol.
		$<\!$ 50 m Ω for Jumper	
	-	No visible damage	
	Bending time: 60±5 seconds		
IEC 60068-2-1	The resistor shall be subjected to a DC rated	±(0.5%+0.05 Ω) for 1%	
		,	á tol.
	However the applied voltage shall not exceed the maximum operating voltage	No visible damage	
IEC 60115-1 4.6	Rated continuous overload voltage (RCOV)	≥10 GΩ	
	Voltage (DC)		
IEC 60115-1 4.7	Maximum voltage (V_{rms}) applied for 1 minute	No breakdown or flasho	over
	Type RC0805		
	Voltage (AC) 300 V _{rms}		
IPC/JEDEC J-STD-020D	Isopropylalcohol (C_3H_7OH) followed by brushing	No smeared	
IEC 60115-1 4.12	Maximum voltage (Vrms) applied	Resistors range	Value
		R < 100 Ω	10 dB
		$ 00 \ \Omega \leq R < K\Omega$	20 dB
		$ K\Omega \le R < 0 K\Omega$	30 dB
		$10 \text{ K}\Omega \leq \text{R} < 100 \text{ K}\Omega$	40 dB
		$100 \text{ K}\Omega \leq \text{R} < 1 \text{ M}\Omega$	46 dB
		$ M\Omega \le R \le 22 M\Omega$	48 dB
IEC 60115-1 4.37 Steady state for 1000 hours at 40 °C / 95% R.F			
	RCWV applied for 1.5 hours on and	\pm (2.0%+0.05 Ω) for 5%	(1 . 1
	IEC 60068-2-21 IEC 60068-2-1 IEC 60115-1 4.6 IEC 60115-1 4.7 IPC/JEDEC J-STD-020D IEC 60115-1 4.12	IEC 60068-2-21 Chips mounted on a 90mm glass epoxy resin PCB (FR4) 3 mm bending Bending time: 60±5 seconds IEC 60068-2-1 The resistor shall be subjected to a DC rated voltage for 1.5 h-on, 0.5 h-off, at -55±3 °C This constitutes shall be repeated for 96 hours However the applied voltage shall not exceed the maximum operating voltage IEC 60115-1 4.6 Rated continuous overload voltage (RCOV) for 1 minute Type RC0805 Voltage (DC) 100 V IEC 60115-1 4.7 Maximum voltage (Vms) applied for 1 minute Type RC0805 Voltage (AC) 300 Vms IPC/JEDEC J-STD-020D Isopropylalcohol (C ₃ H ₇ OH) followed by brushing IEC 60115-1 4.12 Maximum voltage (Vrms) applied	$\begin{array}{c} \text{IEC } 60068-2.21 \\ \text{IEC } 60068-2.21 \\ \text{Chips mounted on a 90mm glass epoxy resin} \\ \text{PCB } (\text{FR4}) \\ 3 \text{ mm bending} \\ \text{Bending time: } 60\pm5 \text{ seconds} \\ \text{IEC } 60068-2.1 \\ \text{The resistor shall be subjected to a DC rated} \\ \text{voltage for } 1.5 \text{ h-on, } 0.5 \text{ h-off, } at -55\pm3 ^{\circ}\text{C} \\ \text{This constitutes shall be repeated for 96 hours} \\ \text{However the applied voltage shall not exceed} \\ \text{the maximum operating voltage} \\ \text{IEC } 60115-1 4.6 \\ \text{Rated continuous overload voltage (RCOV)} \\ \text{for 1 minute} \\ \hline \hline \mathbf{Type} \\ \text{RC0805} \\ \hline \hline \mathbf{Voltage (DC)} \\ 100 \text{V} \\ \text{IEC } 60115-1 4.7 \\ \text{Maximum voltage (V_{rms}) applied for 1 minute} \\ \hline \hline \mathbf{Type} \\ \text{RC0805} \\ \hline \hline \mathbf{Voltage (AC)} \\ \text{Sopropylalcohol (C_3H_{7}\text{OH}) followed by} \\ \text{IEC } 60115-1 4.12 \\ \text{Maximum voltage (Vrms) applied} \\ \hline \begin{array}{c} \text{Resistors range} \\ \text{Resistors range} \\ \text{RC100 } \Omega \\ \text{ICC } \Omega \in \mathbb{C} \\ \text{ICC } 0 \times \mathbb{C} \times \mathbb{C} \otimes \Omega \\ \text{ICC } 0 \times \mathbb{C} \times \mathbb{C} \otimes \Omega \\ \text{ICC } 0 \times \mathbb{C} \times \mathbb{C} \otimes \Omega \\ \text{ICC } 0 \times \mathbb{C} \times \mathbb{C} \otimes \Omega \\ \text{Maximum voltage (Vrms) applied for 1 minute} \\ \hline \begin{array}{c} \text{Resistors range} \\ \text{RC100 } \Omega \\ \text{ICC } \Omega \in \mathbb{C} \times \mathbb{C} \otimes \Omega \\ \text{ICC } 0 \times \mathbb{C} \times \mathbb{C} \otimes \Omega \\ \text{ICC } 0 \times \mathbb{C} \times \mathbb{C} \otimes \Omega \\ \text{ICC } 0 \times \mathbb{C} \times \mathbb{C} \otimes \Omega \\ \text{ICC } 0 \times \mathbb{C} \times \mathbb{C} \otimes \Omega \\ \text{ICC } 0 \times \mathbb{C} \times \mathbb{C} \otimes \Omega \\ \text{ICC } 0 \times \mathbb{C} \times \mathbb{C} \otimes \Omega \\ \text{ICC } 0 \times \mathbb{C} \times \mathbb{C} \otimes \Omega \\ \text{ICC } 0 \times \mathbb{C} \times \mathbb{C} \otimes \Omega \\ \text{ICC } 0 \times \mathbb{C} \times \mathbb{C} \otimes \Omega \\ \text{ICC } 0 \times \mathbb{C} \times \mathbb{C} \otimes \Omega \\ \text{ICC } 0 \times \mathbb{C} \times \mathbb{C} \otimes \Omega \\ \text{ICC } 0 \times \mathbb{C} \times \mathbb{C} \otimes \Omega \\ \text{ICC } 0 \times \mathbb{C} \times \mathbb{C} \otimes \Omega \\ \text{ICC } 0 \times \mathbb{C} \times \mathbb{C} \otimes \Omega \\ \text{ICC } 0 \times \mathbb{C} \times \mathbb{C} \otimes \Omega \\ \text{ICC } 0 \times \mathbb{C} \times \mathbb{C} \otimes \Omega \\ \text{ICC } 0 \times \mathbb{C} \otimes \mathbb{C} \otimes \mathbb{C} \\ \text{ICC } 0 \times \mathbb{C} \otimes \mathbb{C} \otimes \Omega \\ \text{ICC } 0 \times \mathbb{C} \times \mathbb{C} \otimes \mathbb{C} \\ \text{ICC } 0 \times \mathbb{C} \otimes \mathbb{C} \otimes \mathbb{C} \\ \text{ICC } 0 \times \mathbb{C} \otimes \mathbb{C} \otimes \mathbb{C} \\ \text{ICC } 0 \times \mathbb{C} \otimes \mathbb{C} \otimes \mathbb{C} \\ \text{ICC } 0 \times \mathbb{C} \otimes \mathbb{C} \otimes \mathbb{C} \\ \text{ICC } 0 \times \mathbb{C} \otimes \mathbb{C} \otimes \mathbb{C} \\ \text{ICC } 0 \times \mathbb{C} \otimes \mathbb{C} \otimes \mathbb{C} \\ \text{ICC } 0 \times \mathbb{C} \otimes \mathbb{C} \otimes $

Chip Resistor Surface Mount RC SERIES 0805 (RoHS Compliant)

8 Product specification

0	
0	

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Intermittent Overload	IEC 60115-1 4.39	2.5 times of rated voltage or maximum overload voltage whichever is less for 1 second	\pm (1.0%+0.05 Ω) for 1% tol. \pm (2.0%+0.05 Ω) for 5% tol.
		on and 25 seconds off; total 10,000 cycles	$<$ 100 m Ω for Jumper
Solderability			
- Wetting	IPC/JEDEC J-STD-002B test B	Electrical Test not required	Well tinned (≥95% covered)
		Magnification 50X	No visible damage
		SMD conditions:	
		I st step: method B, aging 4 hours at 155 °C dry heat	
		2^{nd} step: leadfree solder bath at 245±3 °C	
		Dipping time: 3±0.5 seconds	
- Leaching	IPC/JEDEC J-STD-002B test D	Leadfree solder, 260 °C, 30 seconds immersion time	No visible damage
- Resistance to	IEC 60068-2-58	Condition B, no pre-heat of samples	±(0.5%+0.05 Ω) for 1% tol
Soldering Heat		Leadfree solder, 260 °C, 10 seconds	\pm (1.0%+0.05 Ω) for 5% tol.
		immersion time	<50 m Ω for Jumper
		Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	No visible damage

Chip Resistor Surface Mount RC SERIES 0805 (RoHS Compliant)

Product specification

9 9

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 4	Jun 16, 2009	-	- Test Items and methods updated
			- Test requirements upgraded
Version 3	Jul 15, 2008	-	- Change to dual brand datasheet that describe RC0805 with RoHS compliant
			- Description of "Halogen Free Epoxy" added
			- Define global part number
Version 2	Sep 03, 2004	-	- New datasheet for 0805 thick film 1% and 5% with lead-free terminations
			- Replace the 0805 part of pdf files: RC01_11_21_31_5, RC02_12_22_32_10, and HRC11_5_4
			- Test method and procedure updated
			- PE tape added (paper tape will be replaced by PE tape)
			- High ohmic products combined into standard products.

"Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

Composition of Th	ne Clear Text Code (R-Chip)	Version: 17 01-21-
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	
	x x x x x x x x x x x x x x x x x x x	
PHYCOMP Code		
9C Phycomp Thick Film Chip Re		
9T Phycomp Thin Film Chip Res		
Size		Packaging
0201 0201 (0603) 0402 0402 (1005)		T 5K Paper 3 10K Paper
0603 0603 (1608)		4 20K Paper
0805 0805 (2012)		5 4K Blister
1210 1210 (3225)		6 5K Blister
1206 1206 (3216)		7 50K Paper P 25K Bulk Case
1218 1218 (3248) 2010 2010 (5025)		P ZON DUIK Case
2512 2512 (6432)		
4527 4527 (11070)		
AC34 0603 (1608) x 4 concave array		Special Coding
AV34 0603 (1608) x 4 convex array AV22 0402 (1005) x 2 convex array	ARV241 / 242 ARV321 / 322	HF PPCK, Sn/Pb PF 100% Sn 2372
AV22 0402 (1005) x 2 convex array AV24 0402 (1005) x 4 convex array	ARV3217322	AF NiAu
AC24 0402 (1005) x 4 concave array		
AV28 0402 (1005) x 8 convex array	ARV381 / 382	
RN31 10P8R in 1206 convex networ		TOD
RC21 10P4C4R in 1608 concave ne FR01 1206 (3216) Fusible	twork RCB210	TCR A 25 ppm//0
FR21 0603 (1608) Fusible		B 50 ppm/'0
SR01 1206 (3216) Surge		K 100 ppm/'0
VR01 1206 (3216) High Voltage 5%		L 200 ppm/'(
VR02 1206 (3216) High Voltage 1% Power Rating		E 250 ppm/'0 M 300 ppm/'0
1A 1/16W 0.063 W	0402	G 500 ppm/'
1A 1/10W 0.1 W	0603 Upgraded from 1/16W	P 750 ppm/'
2A 1/8 W 0.125 W	0805	H 1000 ppm/'(
3A 1/4 W 0.25 W 4A 1/10 W 0.1 W	1206	I 1500 ppm/'(J 2000 ppm/'(
5A 1/3W 0.3W	1210	N 3000 ppm/'
7A 1/20 W 0.05 W	0201	i :
8A 1/32 W 0.03125 W	RNA310	
12 1/2 W 0.5 W 1W 1 W 1 W	2010 1218 / 2512	Tolerance
2W 2W 2W		A ±0.05%
I	<u> </u>	B ±0.19
Resistance Value		C ±0.25%
0R00 Jumper 6 R0xx < 1R 0	Example:	D ±0.5 %
R0xx < 1R 0 Rxxx < 1R 7	Example: Rchip 0603 (RC22H), 10R0, 1%, 5K reel =	F ±19 G ±29
xRxx 1R - 9.76R 8	9C06031A10R0FKHFT	J ±5%
xxRx 10R - 97.6R 9		N 0 / 20%
xxx0 100R - 976R 1	R-chip Array	R 0 / 30%
xxx1 1K - 9.76K 2 xxx2 10K - 97.6K 3	A = Array V = Convex C = Concave	
xxx3 100K - 976K 4	3 = 0603 $2 = 0402$	
xxx4 1M - 9.76M 5	4 = 4 Res. $2 = 2 Res.$	
xxx5 10M - 97.6M 6		
xxx6 100M+ 7		
Nxxx marking code for RCB210		
[_]		
Yageo America Corp HQ 16750	West Grove Dr. Suite 600 Addison, TX 75001-5156 Tel: 214-56	61-2020 Fax: 214-561-2019