
PID No. 18414B

1 of 3

AMD 29K Family

Technical
Bulletin

Using Slow Peripherals with
29K Family Processors

EPD Systems Engineering August 1, 1994

Purpose
Usually, when a peripheral requests an interrupt from
a 29K Family processor, the interrupt handling
software clears the interrupt source and the peripheral
de-asserts the interrupt line. However, some
peripheral devices are so slow that the 29K Family
processor is able to begin processing the interrupt
again (as if it were a new interrupt) before the
peripheral removes the original interrupt.

This technical bulletin describes how to work around
the disparity in speeds between a slow peripheral and
a 29K Family processor.

Affected Parts
The information in this bulletin affects the following
parts:

Device Revision

All 29K Family microprocessors and
microcontrollers

All

Slow Peripherals
If an external peripheral device requests an interrupt
from a 29K Family processor, the 29K Family-based
part clears the interrupt by reading or writing the
appropriate external bits from the interrupt handler.
Then the interrupt handler performs an interrupt
return sequence (IRET).

As part of the interrupt return, the processor looks for
active interrupt sources. In the case of a peripheral
device that is much slower than the 29K Family
processor, the peripheral device still has not
processed the interrupt-clearing LOAD or STORE, so
the interrupt is still asserted. Consequently, the
processor sees an active interrupt and begins to
process it (for the second time).

After the processor determines that an interrupt is
pending, and before the processor determines which

interrupt is active, the slow peripheral device finally
clears the interrupt condition. Now the processor is
not able to determine which peripheral called for an
interrupt, so it defaults to trap 0 (the invalid op code
trap).

This situation is aggravated because the 29K Family
pipeline allows load and store bypassing until there is
a direct dependency situation. Therefore, simply
moving the interrupt-clearing LOAD or STORE
earlier in the handler may not help, as the LOAD or
STORE is not guaranteed to actually execute any
earlier.

Work-Around
The way to work around this situation is to force the
LOAD/STORE to complete and guarantee the
peripheral has de-asserted the interrupt before the
processor executes the IRET. Adding a serializing
instruction between a LOAD/STORE and an IRET
forces a LOAD/STORE to complete before the IRET,
allowing more time for the peripheral to de-assert the
interrupt line before the processor executes the
interrupt return sequence.

If the peripheral and processor are somewhat closely
matched or if the interrupt handler is long, using a
serializing instruction alone will often resolve the
situation. However, if the speed disparity between the
peripheral and the processor is significant, it may be
necessary to guarantee that the peripheral has the time
it needs to de-assert the interrupt line. This can be
accomplished by using a busy loop or delay loop.

Using a busy loop is guaranteed to work even if the
software is ported to a different-speed platform.
However, for some applications the addition of a busy
loop will degrade performance. Using a delay loop
does not involve the bus overhead of the busy loop,
but a delay loop needs to be tuned for each system
configuration.

PID No. 18414B

2 of 3

Serializing Instruction
Using a serializing instruction is generally an
adequate work-around when the mismatch between
peripheral and processor is on the order of several
cycles.

A serializing instruction requires that all other
instructions in the pipe complete before it executes.
As explained earlier, adding a serializing instruction
between a LOAD/STORE and an IRET forces a
LOAD before the IRET, maximizing the amount of
time the peripheral has to clear the interrupt before
the processor executes the interrupt return sequence.

In the 29K Family of microprocessors and
microcontrollers, the serializing instructions are as
follows. (Note that for 29K Family microcontrollers,
any access to an internal peripheral control or status
register is also a serializing instruction.)

• Move to Special Register (MTSR)

• Move to Special Register Immediate (MTSRIM)

• Move to Translation Look-aside Buffer (MTTLB)

• Interrupt Return (IRET)

• Interrupt Return and Invalidate (IRETINV)

• Enter Halt Mode (HALT)

When adding a serializing instruction, most users
choose to serialize using the “mtsr grxx, lru”
instruction. If the application does not use MMU, or
all pages are mapped by the TLBs (page misses never
occur), then serialization can be accomplished with
this single instruction. Otherwise, the special register
value must be saved with an MFSR instruction before
serialization occurs with an MTSR instruction.

For example, an interrupt is cleared in an Am85C30
peripheral device by writing a zero to the SCC
control register for that port. Adding the serializing
instruction would look like the following:

msg_scc8530_tx_intr:
; reset tx interrupt.
 const it1, SCC8530_CHA_CONTROL
 consth it1, SCC8530_CHA_CONTROL
 const it0, 0
 store 0, 1, it0, it1
 mfsr it0, lru
 mtsr lru, it0

. {rest of handler}

.
iret

Adding the serializing instruction simply ensures that
the interrupt-clearing LOAD or STORE actually
appears on the bus as soon as possible, maximizing
the amount of time the peripheral has to clear the

interrupt before the processor executes the IRET. The
following sections explain how to guarantee the
peripheral has adequate time to clear the interrupt
before the processor executes the IRET.

Busy Loop
The work-around described above can be enhanced
by following the interrupt-clearing LOAD/STORE
with a STORE/LOAD loop that continues until the
peripheral has had time to process the clearing of the
interrupt.

Based on the same example from the previous section
and using the busy loop approach, an interrupt
handler that resets the transmit interrupt would look
like the following

msg_scc8530_tx_intr:
; reset tx interrupt.
 const it1, SCC8530_CHA_CONTROL
 consth it1, SCC8530_CHA_CONTROL
 const it0, 0
 store 0, 1, it0, it1
bsy_loop:
 load 0, 1, it1, it0
 cpeq it0, it0, 0
 jmpf it0, bsy_loop
 nop
.
. {rest of handler}
.
iret

Although this is a guaranteed work-around, remember
that the busy loop can degrade system performance
for some applications. For this reason, it is desirable
to overlap as much of the peripheral’s response time
as possible with the interrupt handling. So, the busy
loop in the above example could be moved after
“{rest of handler}”.

Delay Loop
An alternate way to enhance the work-around is by
adding a delay loop. This requires the developer to
know the exact hardware parameters of the system as
each delay loop is tuned to the specific parameters of
the design under development. The positive tradeoff
for this loss of flexibility is that the delay loop
involves less bus traffic than the busy-loop, which
may be very important in the system. In addition, this
approach minimizes the overhead to the minimum
required.

The delay in the delay loop is determined by:

 DELAY = 2 cycles + access_time + periph_time

The first two cycles are required to present the
interrupt-clearing LOAD/STORE to the bus. The
access_time value is the time in processor cycles that

PID No. 18414B

3 of 3

is required for the peripheral to give a *RDY
response to the LOAD or STORE. The periph_time
value is the number of processor cycles required for
the peripheral to process the LOAD/STORE and
remove the interrupt request.

So, using the same example from the previous two
sections, consider a system with a 3-processor-cycle
access time to the peripheral, and a peripheral that
requires two of its cycles (six processor cycles) to
process and clear the interrupt. In this case, the delay
loop implementation is the following:

msg_scc8530_tx_intr:
; reset tx interrupt.
 const it1, SCC8530_CHA_CONTROL
 consth it1, SCC8530_CHA_CONTROL
 const it0, 0
 store 0, 1, it0, it1
 mfsr it0, lru
 mtsr lru, it0
 const it0, DELAY
 jmpf it0, .
 nop
.
. {rest of handler}
.
iret

The value of DELAY is calculated as:

 DELAY = int(([2+3+6]-3) / 2;

where 2 is the access time, the first 3 is the *RDY
response time, 6 is the process interrupt clear time,
the second 3 is the number of cycles to set up the
delay loop, and 2 is the number of instructions in the
loop.

For More Information
For more information, see the appropriate processor
user’s manual.

If You Need Assistance
Product support for the 29K Family processors is
available from our Embedded Processor Division
(EPD) Technical Support Hotlines located in the U.S.
and in the U.K.

Assistance is available in the U.S. from 9:00 A.M. to
6:00 P.M. central time, Monday through Friday
(except major holidays). In Europe assistance is
available during U.K. business hours. Contact us at
one of the following numbers:

To reach the U.S. hotline

From Call

U.S. 1-800-2929-AMD
U.K. 0-800-89-1455
Japan 0031-11-1163
Any other location +1-512-602-4118✝
✝Toll applies.

To reach the U.K. hotline

From Call

U.K. (0)256-811101
France 0590-8621
Germany 0130-813875
Italy 1678-77224
Any other location +44-(0)256-811101✝
✝Toll applies.

AMD is a registered trademark, and 29K and MiniMON29K
are trademarks of Advanced Micro Devices, Inc.

