

Application Note AN2352

I2C-USB Bridge Usage

Author: Valeriy Kyrynyuk
Associated Project: Yes

Associated Part Family: CY8C24894
Software Version: PSoC Designer™ v. 4.3

Associated Application Notes and Kits: AN2304,
CY3240-I2USB, CY3242-IOX >> Available in Cypress Online Store

Abstract
This Application Note, which is included in the CY3240-I2USB kit available in the Cypress Online Store, details several
examples using the I2C-USB bridge design. It is also a supplement to the I2C-USB Bridge Quick Start Guide reference [2] at
the end of this document, also available in CY3240-I2USB. The Application Note contains details about implementing an I2C
interface into existing projects and using I2C communication to test, debug and tune device designs.

Introduction
The normal capabilities of a PC can be well expanded
upon by using the new I2C-USB bridge and its supporting
software. A PC with I2C-USB bridge can be useful for
following tasks:

• Debug existing projects (using I2C communication
instead of UART, for example).

• Acquire and manipulate data from various I2C
devices, such as ADCs, DACs, IO expanders,
sensors with I2C interfaces, etc.

• Program EEPROM, SRAM devices.

• Train users and demonstrate I2C device capabilities.

This Application Note details the following examples of
bridge usage:

1. Monitoring CapSense CSR User Module operation.

2. Monitoring tachometer operation.

3. Working with a 20-pin IO port expander with
EEPROM.

4. Programming 24Cxxx serial EEPROM devices.

5. Working with a PSoC-based 3-channel potentiometer.

The simplest way to implement I2C into a PSoC project
and attach the device to the bridge will also be looked at
closely. This document does not describe the internal
structure and protocol of the bridge. For this information
refer to the I2C-USB Bridge Guide reference [1] at the end
of this document, also available in CY3240-I2USB. The
USB2IIC.exe program was used in all examples. Details of
this program are described in [2].

Attach Device to Bridge
Execute the following steps to connect the device to the
I2C-USB bridge:

1. Connect GND of the device to GND of the bridge.

2. Connect the SDA, SCL lines to the bridge (Figure 1).
Bridge has 2.2k pull-up resistors connected to +5V.

3. Power the device from the Vdd pin on the bridge if it
does not have its own power supply. Note that the
connection of Vdd between the bridge and target
board is REQUIRED, even if the board is self-
powered. The bridge can (optionally) provide 3.3V or
5V, or it can work with an externally powered board
using 2.4V to 5.6V.

4. Connect the bridge to USB.

5. Run USB2IIC.exe program from PC.

6. Select the bridge in the list at the bottom center of the
screen.

9/22/2006 Revision ** - 1 -

www.DataSheet4U.com

AN2352

7. Click the List button in the USB2IIC.exe program.
The list of all connected I2C devices will appear. Note
that if the bridge is providing power, it is necessary to
turn the power on before the List button will work.

Now designers can work with all listed devices.

Figure 1. I2C-USB Bridge

Implement I2C Interface into PSoC
A tool that can continuously collect and display variable
values is very useful during debugging/testing PSoC-
based projects. Reading measurement results, pin states
and dynamic modification of device properties are tasks
commonly performed by designers. The UART User
Module is frequently used for such tasks. But such a
method contains several disadvantages:

• The design requires one spare digital PSoC block for
half-duplex UART operation. (The I2C interface
hardware is independent of the digital blocks.)

• Some computers, particularly notebooks, do not have
COM ports and communication capabilities for a
UART. A USB-UART bridge is needed.

• The additional level-bridge, such as a MAX232, is
necessary on the designed board.

• The bandwidth of an I2C-USB bridge is greater than
the bandwidth of a standard UART. The maximum
bandwidth for a UART is about 11 kB/s, but I2C-USB
bridge can attain a 25kB/s bandwidth.

Taking into account everything mentioned above, using an
I2C-USB bridge is more suitable and cheaper than other
solutions.

To implement the I2C slave interface into a PSoC project,
the following steps are required:

• Place the EzI2Cs User Module in the PSoC project.

• Set the following User Module Parameters:

o Slave_Addr to 1 (this address can be
almost anything, it is not restricted to 1)

o Address_Type to Static

o ROM_Registers, in most cases, to
Disable

o I2C Clock to 400 kHz Fast

o I2C Pins to P1[0]-P1[1] or P1[5]-P1[7]

• Define the RAM buffer that will contain data required
for I2C transmission. Define the array or structure
whose address will be specified when the
SetRamBuffer function is called. For example:

struct I2C_Regs { // Example I2C interface structure
 WORD wX1; // read/write value
 int iADC; // read only value
 BYTE bStatus; // read only value
} MyI2C_Regs;

• Insert, into the initialization part of program, the
following two strings:

EzI2Cs_SetRamBuffer(cI2CREAD,cI2CWRITE,(BYTE
*)&MyI2C_Regs);

EzI2Cs_Start();

• Set the arguments of EzI2Cs_SetRamBuffer function
to proper values. Length of data, which could be read,
is set by cI2CREAD argument and length of data,
which could be written, is set by cI2CWRITE. The
address of the I2C buffer is set by MyI2C_Regs, which
is the third argument.

Once the above steps are complete, there is no additional
code required to support I2C communication. The EzI2Cs
User Module works in the background with I2C interrupt
handlers.

The first byte received by I2C slave is the offset into the
buffer from where data will be read from or written to.
Default offset is 0. There is one aspect that should be
considered when working with the I2C buffer. If the size of
the variable going into the buffer is greater than 1 byte, a
special technique must be used. First, always disable the
interrupt before changing or reading this variable in the
program. Second, verify the permissibility of variable
access. To implement this, the program must analyze the
EzI2Cs bRAM_RWcntr variable. This variable points to
current transmission index of the I2C buffer. Without such
analysis, the situation depicted in Figure 2 can occur.

9/22/2006 Revision ** - 2 -

www.DataSheet4U.com

AN2352

Figure 2. Example of Erroneous Transmission of WORD-Type Variable

00 FF

255
WORD type variable into I2C buffer

Current buffer index
of I2C interrupt

service
I2C Sends 00 h

This is MSB Byte
of WORD Value

01 00

256
WORD type variable into I2C buffer

Current buffer index
of I2C interrupt

service

Step 1. I2 C Sends MSB Byte of WORD
Value

Step 2. Program Updates I2C Buffer
WORD Value Changed by 1

01 00

256
WORD type variable into I2C buffer

Current buffer index
of I2C interrupt

service

Step 3. I2C Sends LSB Byte of WORD
Value

I2C Sends 00 h
This is LSB Byte
of WORD Value

9/22/2006 Revision ** - 3 -

www.DataSheet4U.com

AN2352

Below is the simple example of I2C slave implementation
in a PSoC project:

Code 1. I2C Slave Implementation
extern BYTE EzI2Cs_bRAM_RWcntr;
struct I2C_Regs { // Example I2C interface structure
 WORD wX1; //read/write value
 int iADC; // read only Value
 BYTE bStatus; // read only Value
} MyI2C_Regs;

void main()
{
WORD wLop;
INT iA;
 EzI2Cs_SetRamBuffer(5, 2, (BYTE *) &MyI2C_Regs); // Set up RAM buffer
 M8C_EnableGInt; // Turn on interrupts
 EzI2Cs_Start(); // Turn on I2C
............
// wX1 access

 M8C_DisableGInt; //!!! turn off interrupt if variable holds more than 1 byte!
 if (EzI2Cs_bRAM_RWcntr!=1)wLop=MyI2C_Regs.wX1;
 M8C_EnableGInt; // turn on interrupt

...........
............
// iADC access

 M8C_DisableGInt; //!!! turn off interrupt if variable holds more than 1 byte!
 if (EzI2Cs_bRAM_RWcntr!=3) MyI2C_Regs.iADC=iA;
 M8C_EnableGInt; // turn on interrupt

...........
...........
// bStatus access is not need interrupt disable
 MyI2C_Regs.bStatus=0x20;
...........
}

Examples of Bridge Usage During
Testing and Debugging Projects
As was described earlier, the I2C-USB bridge is an ideal
approach to a PC-based data acquisition system. The
collected data can be used to calibrate, rate accuracy,
optimize device parameters and prepare reports.
Hardware configuration of such a system includes an I2C-
USB bridge, a PC with Windows® 2000\XP installed, and
a communication program (in this design it was
USB2IIC.exe).

Let’s consider how a PC-based data acquisition system
can be used to test and debug projects by examining three
examples. The first example is a tachometer project
(test2_Tach project). This project measures the input
frequency (range 20-20000 Hz) and sends this value to
the PC via the bridge. The input frequency enters through
port pin P0[7] and the I2C interface uses P1[5] and P1[7].
The Slave_Addr parameter is 0. The command line for the
USB2IIC.exe program, which reads tachometer values, is
as follows:

s 01 xk3 xk2 xk1 xk0 p

Figure 3 shows a diagram of data collected from the
tachometer.

9/22/2006 Revision ** - 4 -

www.DataSheet4U.com

AN2352

Figure 3. Tachometer Measurements

The second example project (test3_cap) demonstrates a
CapSense-driven keypad. It indicates and collects data
from the CSR User Module measurements. This data
helps monitor keypad performance and optimize the CSR
User Module properties and PCB layout. The Slave_Addr
parameter for this example is set to 5. Figure 4 shows the
operation of this project – the period value during
sequential pressing of keypad buttons.

The command line of this example is as follows:

s 0B xk1 xk0 xl1 xl0 xm1 xm0 xn1 xn0 p

Figure 4. CSR Keypad Period Samples

Kgfedcb
Lgfedcb
Mgfedcb
Ngfedcb

400350300250200150100500

6 000

5 500

5 000

4 500

4 000

3 500

3 000

2 500

2 000

9/22/2006 Revision ** - 5 -

www.DataSheet4U.com

AN2352

The third example project (Test4_ADC3) demonstrates a
low-cost, three channel, low-frequency oscilloscope based
on the CY8C27x43 device and uses a PC. This project
can be modified to a larger number of channels (up to 8)
and greater ADC resolution (up to 12 bits). The current
project uses a TRIADC8, which can attain performance of
up to 6000 samples per second for each channel. The
BURST mode of the bridge transmits this data to the PC.
In BURST mode, the bridge transmits up to 25 kB/s, which
is enough bandwidth for this project. Furthermore, this
project allows designers to change the PGA gain value.
The PGA gain can be dynamically adjusted for better
sensitivity, which allows measurement of a wider range of
signals. The first three bytes in the I2C buffers are the PGA
gain values, which have the PGA_Set_Gain function
format.

Following is the command line that sets up a gain value for
each analog input: first input gain is set to 2 (0x78 value),
second input gain is set to 1 (0xF8) and third input gain is
set to 0.5 (0x70).

s 02 00 78 F8 70 p

To read ADC samples, the offset address for the ADC
data into the I2C buffer should be set first at:

s 02 03 p

The following command string will read samples from the
device in high-speed BURST mode:

s 03 xk0 xl0 xm0 p

The samples were recorded at about 10 seconds. A
diagram of the received data is shown below (Figure 5).

Figure 5. Three Channel ADC Samples

9/22/2006 Revision ** - 6 -

www.DataSheet4U.com

AN2352

IO Expander Usage with Bridge
A good example of I2C-USB bridge implementation is
usage of the Cypress IO port expander, CY8C9520.
Command line examples using USB2IIC.exe, for working
with the 20-pin IO expander, are described below.

The CY8C9520 expander has 20 pins, which can be
separately configured to several modes. The command
string below shows how pins on IO expander port 0 can be
configured (Table 1). Register 0x18 selects which
expander port is to be configured.

s 42 18 00 S 42 19 9F 00 CD 71 04 02 10 80 01 48
20

Table 1. Pin Configuration of Expander Port 1

Register Value Description
19 9F Interrupt Mask Register

1A 00 PWM Output Register

1B CD Inversion Register

1C 71 Input/Output Register

1D 04 Pull Up Drive Mode Pins

1E 02 Pull Down Drive Mode Pins

1F 10 Open Drain High Drive Mode Pins

20 80 Open Drain Low Drive Mode Pins

21 01 Strong Drive Mode Pins

22 48 Strong Slow Drive Mode Pins

23 20 High Z Drive Mode Pins

The state of expander inputs can be read from registers
with 0..2 address:

s 42 00 s 43 x x x p

The pins’ output data are controlled by registers that have
0x08..0x0A address. The following example turns to zero
all outputs of port 0 and turns to 1 all outputs of port 1:

s 42 08 00 FF p

The Interrupt Status registers can be read to detect
expander input activity. This feature is very useful for
counting quantity of certain physical values such as water,
gas or electricity. The Interrupt Status registers start at
register 0x10. Below is a command string that reads the
interrupt status from all three expander ports:

s 42 10 s 43 x x x p

Remember that the Interrupt Status register is updated
each time an activity on the input pin is present and
Interrupt Mask bit of the pin is set to 0 (register 0x19).

The CY8C9520 expander also has several PWM blocks,
which output can be directed to the output pins. The
frequency range for the PWMs is from 12 MHz to
0.0000001 Hz. They can be used for transforming a digital
signal to a pulse-duration analog signal, or even as a low-
speed DAC with high-resistance output. The example
below shows the initialization strings, which turn the
PWM1 to a frequency of 3.5 Hz with 50% duty cycle. The
output of the PWM is sent to pin 24 of the expander
(Port1[3]):

s 42 18 01 s 42 1A 08 p //set PWM pin

s 42 21 01 s 42 1A 08 p //set pin mode

s 42 28 00 S 42 29 04 68 34 p //set PWM1
parameters

Moreover, the CY8C9520 expander has built-in EEPROM,
which is available for use with I2C master. To enable
EEPROM, use the following string:

s 42 2D 43 4d 53 02 p

Once this command string executes, EEPROM is available
at address 0x80+Expander Address, or 0xA2, in this case.
Let’s write 8 bytes to EEPROM address of 0x0020:

s A2 00 20 00 11 22 33 44 55 66 77 p

Now, we will read 4 bytes from address 0x0024:

sA2 00 24 s A3 x x x x p

9/22/2006 Revision ** - 7 -

www.DataSheet4U.com

AN2352

The expander allows designers to save current
configuration settings to EEPROM. In future use, these
configuration settings can be automatically loaded upon
start up. Use the command string below to save current
configuration settings as default:

s 42 30 01 p

For more details on port expander operation, refer to [3].

Programming I2C EEPROM Using
Bridge
The CY8C9520 expander can be used to write and read
data from standard I2C EEPROM or SRAM devices. The
program BINTOUSB2IIC.exe, which was added to this
Application Note, converts binary data to a command file.
To program the device, the generated command file
should be opened in USB2IIC.exe program and all
command strings executed. The following steps must be
performed to program an I2C memory device:

1. Determine the I2C address of the device to be
programmed. To do this, click the Scan button and
choose the appropriate address from the list of
identified devices.

2. Pass the binary file (data for programming) through
the BINTOUSB2IIC.exe program. Three parameters
must be entered into the command line of the
program: file name of input and output files (default
output file is data.txt) and device I2C address (default
is 0xA0). For example:
BINTOUSB2IIC.exe data.bin data.txt A2

3. Open the output file in the USB2IIC.exe program.
Send all command strings by checking the “Send All
Strings” box and clicking the Send button.

After this, the device will be programmed.

Conclusion
This Application Note demonstrates how to effectively pair
an I2C-USB bridge with the USB2IIC.exe software
program. If interested, read through the documentation on
the bridge internal protocol and structure [1]. It is also an
advantage to be familiar with writing software that works
with USB HID devices. The source code of the
USB2IIC.exe program is a good starting point for such
designing.

References
[1]. I2C-USB Bridge Guide, included in the CY3240-I2USB
kit available in the Cypress Online Store.

[2]. I2C-USB Bridge Quick Start Guide, included in the
CY3240-I2USB kit available in the Cypress Online Store.

[3]. AN2304 “I2C Port Expander with Flash Storage”
http://www.cypress.com/design/AN2304

Associated Project and Support
Materials

Name Description
test2.zip Tachometer Example Project

test3.zip CapSense Keypad Example Project

test4.zip Three Channel ADC Example Project

usb2iic.exe PC Software for I2C-USB Bridge

bittiusb2iic.exe PC Software for Binary Data Conversion

About the Author
Name: Valeriy Kyrynyuk

Title: Engineer
Background: Eight years experience with

fieldbus and communication
device designs.

Contact: lopik@lviv.farlep.net

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the
use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended
to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of
Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

9/22/2006 Revision ** - 8 -

www.DataSheet4U.com

mailto:lopik@lviv.farlep.net
http://www.cypress.com/

