DAC347

Sipex Data Converter Line

Low Power, Wide

Temperature Range DACs

FEATURES

- 10- and 12-bit models
- Very low power: less than 300 mW
- Wide operating temperature range: -55 Cto +125 C
- MIL-STD-883 Rev. C, Level B or commercial processing
- 18 pin hermetic package

DESCRIPTION

This Series is specifically designed and tested for low power operation. The models feature low total power dissipation of less than 300 mW . Each unit incorporates a pretrimmed output amplifier and a low power internal reference.
The DAC347 Series are high performance, general purpose, digital-to'analog converters utilizing matched CMOS current switches and ultra stable thinfilm nichrome resistor networks. All DAC347 Series models provide optimum stability in performance over the full $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.

Unipolar models use complementary binary coding and bipolar models use complementary offset binary coding. Each DAC347 Series converter comes packaged in a hermetically-sealed 18-pin package, ideal for applications where maximum performance in minimum space is required.

FUNCTIONAL DIAGRAM

SPECIFICATIONS

(Typical @ $+25^{\circ} \mathrm{C}$ using nominal supplies unless otherwise noted).

SERIES	DAC347
TYPE	Fixed Ref, Volt Output
DIGITAL INPUT	
Resolution	
-10 option	10-bits
-12 option	12-bits
Coding Unipolar	Comp. Binary
Bipolar	Comp Offset Binary
Logic Compatibility ${ }^{1}$	DTL, TTL, CMOS
	$\mathrm{V}_{\text {IH }}=2.4 \mathrm{~V}$ (min)
	$\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}$ (max)
	$\mathrm{I}_{\mathrm{IH}}=\mathrm{I}_{\mathrm{IL}}=1 \mu \mathrm{~A}$ (max)
ANALOG OUTPUT2	
Voltage Output	
-U option	0 to +10V
-B option	$\pm 5 \mathrm{~V}$
-G option	$\pm 10 \mathrm{~V}$
Impedance	0.1
Current	$\pm 5 \mathrm{~mA}$
REFERENCE	Internal
STATIC PERFORMANCE	
Integral Linearity	$\pm 1 / 2$ LSB (max)
Differential Linearity	$\pm 1 / 2 \mathrm{LSB} \pm 1 \mathrm{LSB}$ (max)
End Point Accuracy	$\pm 0.1 \%$
DYNAMIC PERFORMANCE	
Settling Time for a Worst	
Case Digital Change	
-10 models (to $\pm 0.05 \%$)	20 $\mu_{\text {S }}(\max$)
-12 models (to $\pm 0.05 \%$)	20ヶS (max)
$-25^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$ OPERATION	
Change in Accuracy ${ }^{3}$	
-10 models	$\pm 0.15 \%$ F.S.R.
-12 models	$\pm 0.1 \%$ F.S.R.
Differential Linearity	
-10 models	$\pm 0.1 \%$ F.S.R.
-12 models	$\pm 0.025 \%$ F.S.R.
Linearity Error	
-10 models	$\pm 0.05 \%$ F.S.R.
-12 models	$\pm 0.0125 \%$ F.S.R.
$-55^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$ OPERATION	

Change in Accuracy

-10 models	$\pm 0.7 \%$ F.S.R
-12 models	$\pm 0.35 \%$ F.S.R.
ferential Linearity	$\pm 0.1 \%$ F.S.R
-10 models	$\pm 0.05 \%$ F.S.R
-12 models	
earity Error	$\pm 0.05 \%$ F.S.R
-10 models	$\pm 0.025 \%$ F.S.R

POWER REQUIREMENTS

Power Supply	$+15 \mathrm{~V}, \pm 3 \%$ @ 6 mA (typ),
	$9 \mathrm{~mA}(\max)$
	$-15 \mathrm{~V}, \pm 3 \%$ @ 9 mA (typ),
	$12 \mathrm{~mA}(\max)$
Power Supply Rejection Ratio	
	$0.001 \% / \%$ (typ),
	$0.002 \% / \%$ (max)

