ES1PB, ES1PC & ES1PD

New Product

Vishay General Semiconductor

High Current Density Surface Mount Ultrafast Rectifiers

Major Ratings and Characteristics

I _{F(AV)}	1 A			
V _{RRM}	100 V, 150 V, 200 V			
t _{rr}	15 ns			
V _F	0.92 V			
T _j max.	150 °C			

DO-220AA (SMP)

Features

- · Very low profile typical height of 1.0 mm
- · Ideal for automated placement
- · Glass passivated chip junction
- · Ultrafast recovery times for high efficiency
- Low forward voltage, low power losses
- Low thermal resistance
- Meets MSL level 1 per J-STD-020C
- Solder Dip 260 °C, 40 seconds

Pk

Mechanical Data

Case: DO-220AA (SMP)

Epoxy meets UL 94V-0 flammability rating

Terminals: Matte tin plated leads, solderable per

J-STD-002B and JESD22-B102D

E3 suffix for commercial grade, HE3 suffix for high

reliability grade

Polarity: Color band denotes the cathode end

Typical Applications

For ues in secondary rectification and freewheeling for ultrafast switching speeds of ac-to-dc and dc-to-dc converters for both consumer and automotive applications.

Maximum Ratings

 $(T_A = 25 \, ^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	ES1PB	ES1PC	ES1PD	Unit
Device marking code		EB	EC	ED	
Maximum repetitive peak reverse voltage	V_{RRM}	100	150	200	V
Maximum average forward rectified current see Fig. 1	I _{F(AV)}	1.0			Α
Peak forward surge current 10 ms single half sine-wave superimposed on rated load	I _{FSM}	30			А
Operating junction and storage temperature range	T _J , T _{STG}		- 55 to + 150		°C

Document Number 88918 www.vishay.com 10-Nov-05 sww.vishay.com 1

ES1PB, ES1PC & ES1PD

Vishay General Semiconductor

Electrical Characteristics

(T_A = 25 °C unless otherwise specified)

Parameter	Test condition	Symbol	Value	Unit
Maximum instantaneous forward	at $I_F = 0.6 \text{ A}$, $T_J = 25 ^{\circ}\text{C}$	V_{F}	0.865	V
voltage	at $I_F = 1 \text{ A}, T_J = 25 ^{\circ}\text{C}$		0.920	
Maximum reverse current at	T _J = 25 °C	I _R	5.0	μΑ
rated V _R ⁽¹⁾	T _J = 125 °C		500	
Maximum reverse recovery time	at I _F = 0.5 A, I _R = 1 A, I _{rr} = 0.25 A	t _{rr}	15	ns
Typical reverse recovery time	at $I_F = 1.0 \text{ A}$, $V_R = 30 \text{ V}$ di/dt = 50 A/ μ s, $I_{rr} = 10 \%$ IRM $T_J = 25 \text{ °C}$	t _{rr}	25	ns
	at $I_F = 1.0 \text{ A}$, $V_R = 30 \text{ V}$ di/dt = 50 A/ μ s, $I_{rr} = 10 \%$ IRM $T_J = 100 \degree$ C		30	
Typical reverse recovery time	at $I_F = 1.0 \text{ A}$, $V_R = 30 \text{ V}$ di/dt = 50 A/ μ s, $I_{rr} = 10 \%$ IRM $T_J = 25 \text{ °C}$	Q _{RR}	8	nC
	at $I_F = 1.0 \text{ A}$, $V_R = 30 \text{ V}$ di/dt = 50 A/ μ s, $I_{rr} = 10 \%$ IRM $T_J = 100 \degree$ C		10	
Typical junction capacitance	at 4.0 V, 1 MHz	CJ	10	pF

Thermal Characteristics

(T_A = 25 °C unless otherwise specified)

Parameter	Symbol	ES1PB	ES1PC	ES1PD	Unit
Typical thermal resistance (2)	$R_{ hetaJA}$	105			
	$R_{ hetaJL}$	15			°C/W
	$R_{ hetaJC}$		20		

Notes:

- (1) Pulse test: 300 μs pulse width, 1 % duty cycle
- (2) Thermal resistance from junction to ambient and junction to lead mounted on P.C.B. with 5.0 x 5.0 mm copper pad areas. $R_{\theta JL}$ is measured at the terminal of cathode band. $R_{\theta,IC}$ is measured at the top centre of the body

Ratings and Characteristics Curves

 $(T_A = 25 \, ^{\circ}C \text{ unless otherwise specified})$

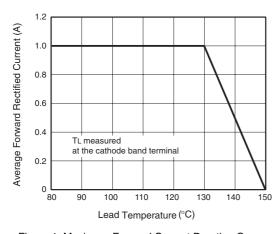


Figure 1. Maximum Forward Current Derating Curve

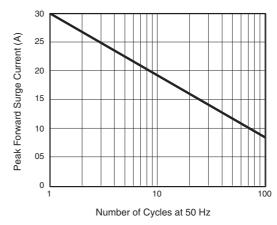


Figure 2. Maximum Non-Repetitive Peak Forward Surge Current

Document Number 88918 www.vishay.com 10-Nov-05

Vishay General Semiconductor

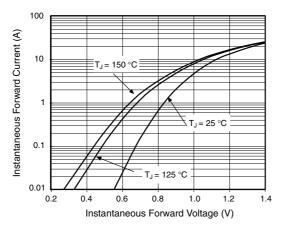


Figure 3. Typical Instantaneous Forward Characteristics

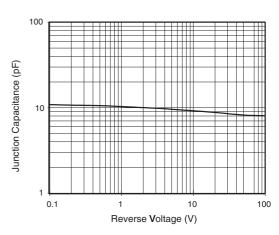


Figure 5. Typical Junction Capacitance

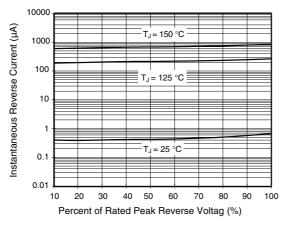


Figure 4. Typical Reverse Leakage Characteristics

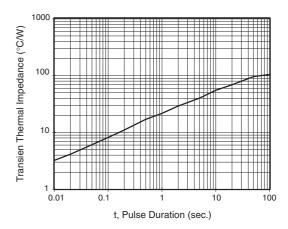
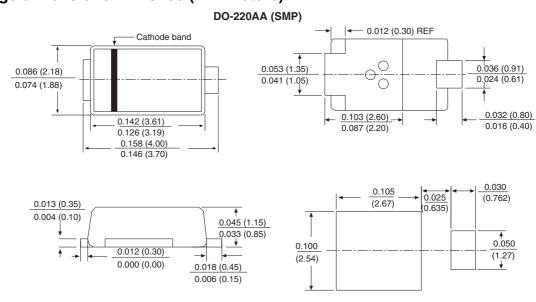



Figure 6. Typical Transient Thermal Impedance

Package dimensions in inches (millimeters)

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

www.vishay.com Revision: 08-Apr-05