Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT

D78042F, 78043F, 78044F, 78045F

8-BIT SINGLE-CHIP MICROCOMPUTER

The μ PD78042F, μ PD78043F, μ PD78044F, and μ PD78045F are 8-bit single-chip microcomputers that incorporate many hardware peripherals such as an FIP® controller/driver, 8-bit resolution A/D converter, timer, serial interface, and interrupt controller.

The one-time PROM and EPROM models that can operate in the same voltage range as that of masked ROM models, and various development tools are provided.

The functions of these microcomputers are described in detail in the following User's Manual. Be sure to read this manual when you design a system using any of these microcomputers.

μPD78044F Sub-Series User's Manual : U10908E 78K/0 Series User's Manual, Instruction: IEU-1372

FEATURES

High-capacity ROM and RAM

Item	Program memory	Data memory			
Product name	(ROM)	Internal high-speed RAM	Buffer RAM	FIP display RAM	
μPD78042F	16K bytes	512 bytes	64 bytes	48 bytes	
μPD78043F	24K bytes				
μPD78044F	32K bytes	1024 bytes			
μPD78045F	40K bytes				

 Wide range of instruction execution time - from high-speed (0.4 μs) to ultra low-speed (122 μs)

• I/O ports: 68

• FIP controller/driver: total display outputs: 34

• 8-bit resolution A/D converter: 8 channels

• Serial interface: 2 channels

• Timer: 6 channels

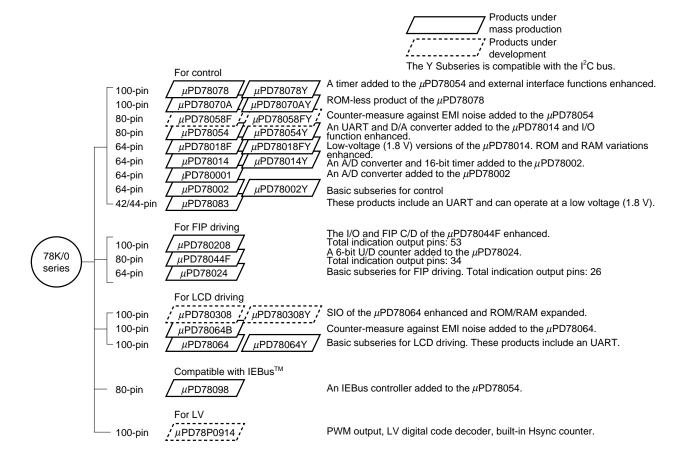
• Power supply voltage: VDD = 2.7 to 5.5 V

APPLICATIONS

CD players, cassete tape recorders, tuners, minicomponent stereos, VCRs, microwave ovens, ECRs, etc.

ORDERING INFORMATION

Part number	Package
μ PD78042FGF-×××-3B9	80-pin plastic QFP (14 \times 20 mm)
μ PD78043FGF-×××-3B9	80-pin plastic QFP (14 \times 20 mm)
μ PD78044FGF-×××-3B9	80-pin plastic QFP (14 \times 20 mm)
μ PD78045FGF-×××-3B9	80-pin plastic QFP (14 \times 20 mm)


Remark xxx indicates ROM code number.

The information in this document is subject to change without notice.

* 78K/0 SERIES PRODUCT DEVELOPMENT

The 78K/0 series products were developed as shown below. The sub-series names are indicated in frames.

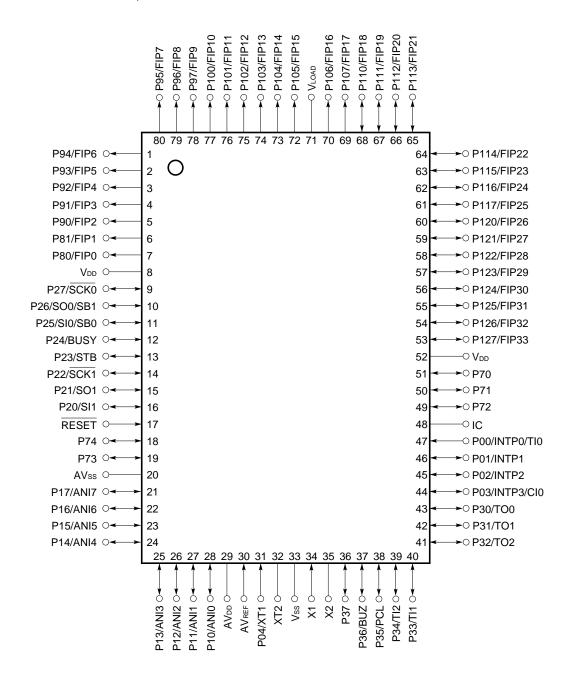
The table below shows the main differences between subseries.

	Function	ROM		Tin	ner		8-bit	8-bit	Serial	1/0	V _{DD} Min.	External
Subseries na	me	capacity	8-bit	16-bit	Watch	WDT	A/D	D/A	interface	I/O	value	expansion
For control	μPD78078	32K-60K	4ch	1ch	1ch	1ch	8ch	2ch	3ch (UART : 1ch)	88 pins	1.8 V	0
	μPD78070A	_								61 pins	2.7 V	
	μPD78058F	48K-60K	2ch							69 pins		
	μPD78054	16K-60K									2.0 V	
	μPD78018F	8K-60K						_	2ch	53 pins	1.8 V	
	μPD78014	8K-32K									2.7 V	
	μPD780001	8K		_	_				1ch	39 pins		-
	μPD78002	8K-16K			1ch		_			53 pins		0
	μPD78083	8K-16K			_		8ch		1ch (UART : 1ch)	33 pins	1.8 V	-
For FIP	μPD780208	32K-60K	2ch	1ch	1ch	1ch	8ch	_	2ch	74 pins	2.7 V	-
driving	μPD78044F	16K-40K								68 pins		
	μPD78024	24K-32K								54 pins		
For LCD	μPD780308	48K-60K	2ch	1ch	1ch	1ch	8ch	-	3ch (UART : 1ch)	57 pins	1.8 V	-
driving	μPD78064B	32K							2ch (UART : 1ch)		2.0 V	
	μPD78064	16K-32K										
Compatible	μPD78098	32K-60K	2ch	1ch	1ch	1ch	8ch	2ch	3ch (UART : 1ch)	69 pins	2.7 V	0
with IEBus												
For LV	μPD78P0914	32K	6ch	_	-	1ch	8ch	_	2ch	54 pins	4.5 V	

FUNCTIONAL OUTLINE

Item	Product name	μPD78042F	μPD78043F	μPD78044F	μPD78045F				
Internal	ROM	16K bytes	24K bytes	32K bytes	40K bytes				
memory	Internal high-speed RAM	512 bytes 1024 bytes							
	Buffer RAM	64 bytes							
	FIP display RAM	48 bytes	48 bytes						
General regi	sters	8 bits × 32 registers	(8 bits × 8 registers	× 4 banks)					
Instruction		Variable instruction	execution time						
cycle	For main system clock	0.4 μs/0.8 μs/1.6 μs	s/3.2 μs/6.4 μs (at 5.0	MHz)					
	For subsystem clock	122 μs (at 32.768 k	Hz)						
Instruction s	et	l '	sion (8 bits \times 8 bits, 1	6 bits ÷ 8 bits)					
		Bit (set, reset, tes							
	cluding those with FIP pins)	Total . CMOS input	: 68 lines						
munipiexea	with FIP pins)	CMOS input CMOS I/O	: 2 lines : 27 lines						
		N-ch open-drain	: 5 lines						
		P-ch open-drain I							
		P-ch open-drain of	output : 18 lines						
FIP controlle	er/driver	Total : 3	4 lines						
		Segments : 9 to 24 lines							
		• Digits : 2 to 16 lines							
A/D converte	er	8-bit resolution × 8 channels							
		Power supply voltage: AVDD = 4.0 to 5.5 V							
Serial interfa	ace	3-wire serial I/O/SBI/2-wire serial I/O selectable modes: 1 channel							
		3-wire serial I/O mode (with automatic transmission/ reception function of up to 64 bytes) : 1 channel							
Timer		16-bit timer/event		channel					
		8-bit timer/event		channels					
		Watch timer	: 1	channel					
		Watchdog timer	: 1	channel					
		• 6 bit up/down cou	ınter : 1	channel					
Timer output	t	3 lines (one for 14-l	oit PWM output)						
Clock output	t	19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz							
		(Main system clock: at 5.0 MHz)							
		32.768 kHz (Subsystem clock: at 32.768 kHz)							
Buzzer output		1.2 kHz, 2.4 kHz, 4.9 kHz (Main system clock: at 5.0 MHz)							
Vectored	Maskable interrupt	Internal 10 lines, ex	ternal 4 lines						
interrupt	Non-maskable interrupt	Internal 1 line							
	Software interrupt	1 line							
Text input		Internal 1 line							
Power suppl	y voltage	V _{DD} = 2.7 to 5.5 V							
	,								
Package		80-pin plastic QFP (14 × 20 mm)							

*


CONTENTS

1.	PIN CONFIGURATION (TOP VIEW)	6	
2.	BLOCK DIAGRAM	8	
3.	PINS FUNCTIONS	9	
	3.1 PORT PINS	9	
	3.2 PINS OTHER THAN PORT PINS	11	
	3.3 PIN I/O CIRCUITS AND PROCESSING OF UNUSED PINS	13	
4.	MEMORY SPACE	16	
5.	PERIPHERAL HARDWARE FUNCTIONS	17	
	5.1 PORTS	17	
	5.2 CLOCK GENERATOR CIRCUIT	18	
	5.3 TIMER/EVENT COUNTER	18	
	5.4 CLOCK OUTPUT CONTROL CIRCUIT	21	
	5.5 BUZZER OUTPUT CONTROL CIRCUIT	21	
	5.6 A/D CONVERTER	22	
	5.7 SERIAL INTERFACE	22	
	5.8 FIP CONTROLLER/DRIVER	24	
6.	INTERRUPT FUNCTION AND TEST FUNCTION	26	
	6.1 INTERRUPT FUNCTION	26	
	6.2 TEST FUNCTION	29	
7.	STANDBY FUNCTION	30	
8.	RESET FUNCTION	30	
9.	INSTRUCTION SET	31	
10.	ELECTRICAL SPECIFICATIONS	34	*
11.	CHARACTERISTIC CURVE (REFERENCE VALUE)	58	*
12.	PACKAGE DRAWING	63	
13.	RECOMMENDED SOLDERING CONDITIONS	64	+
ΑP	PENDIX A DEVELOPMENT TOOLS	65	
ΔΡ	PENDLY B. RELATED DOCUMENTS	67	

1. PIN CONFIGURATION (TOP VIEW)

80-pin plastic QFP (14 × 20 mm)
 μPD78042FGF-xxx-3B9, μPD78043FGF-xxx-3B9
 μPD78044FGF-xxx-3B9, μPD78045FGF-xxx-3B9

Cautions 1. Connect the IC (Internally Connected) pins directly to the Vss.

- 2. Connect the AVDD pin to the VDD pin.
- 3. Connect the AVss pin to the Vss pin.

P00-P04 : Port 0 SCK0, SCK1: Serial clock

P10-P17 : Port 1 PCL : Programmable clock

 P20-P27
 : Port 2
 BUZ
 : Buzzer clock

 P30-P37
 : Port 3
 STB
 : Strobe

 P70-P74
 : Port 7
 BUSY
 : Busy

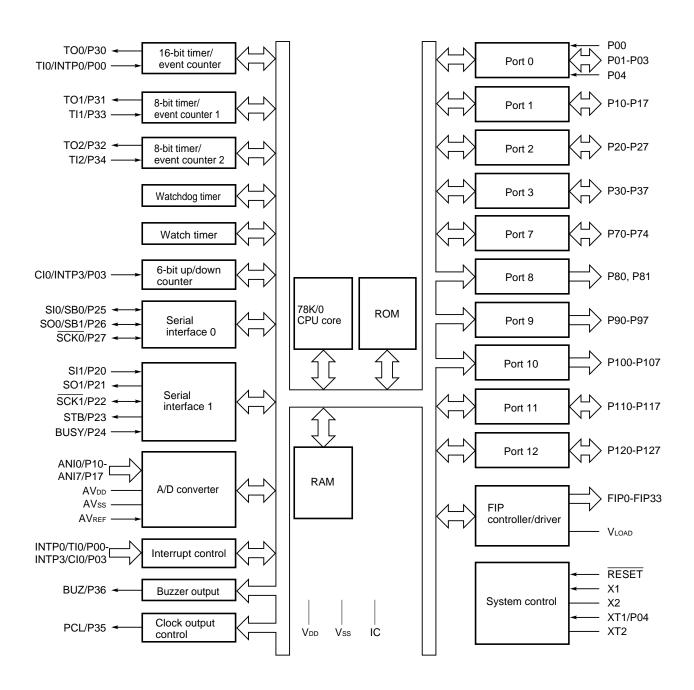
P80, P81 : Port 8 FIP0-FIP33 : Fluorescent indicator panel P90-P97 : Port 9 VLOAD : Negative power supply P100-P107 : Port 10 X1, X2 : Crystal (main system clock) P110-P117 : Port 11 XT1, XT2 : Crystal (subsystem clock)

P120-P127 : Port 12 RESET : Reset

INTP0-INTP3: Interrupt from peripherals ANI0-ANI7 : Analog input

TI0-TI2 : Timer input : Analog power supply

TO0-TO2 : Timer output AVss : Analog ground


CIO : Counter input AVREF : Analog reference voltage

SB0, SB1 : Serial bus V_{DD} : Power supply SI0, SI1 : Serial input V_{SS} : Ground

SO0, SO1 : Serial output IC : Internally connected

2. BLOCK DIAGRAM

Remark The capacities of the internal ROM and RAM differ depending on the product.

3. PINS FUNCTIONS

3.1 PORT PINS (1/2)

Pin name	I/O		On reset	Shared by:		
P00	Input	Port 0	Port 0 Input only I		INTP0/TI0	
P01	I/O	5-bit I/O port	5-bit I/O port Can be specified for input or output in 1-bit		INTP1	
P02			units. When used as an input port pin, a built-in		INTP2	
P03			pull-up resistor can be used by software.		INTP3/CI0	
P04Note 1	Input		Input only	Input	XT1	
P10-P17	I/O	Port 1		Input	ANI0-ANI7	
		8-bit I/O port				
		Can be specified	for input or output in 1-bit units.			
		When used as ar	n input port pin, a built-in pull-up resistor can be			
		used by software	Note 2			
P20	I/O	Port 2	Port 2			
P21		8-bit I/O port			SO1	
P22		Can be specified	Can be specified for input or output in 1-bit units.		SCK1	
P23		When used as ar	n input port pin, a built-in pull-up resistor can be		STB	
P24		used by software			BUSY	
P25					SI0/SB0	
P26					SO0/SB1	
P27					SCK0	
P30	I/O	Port 3		Input	TO0	
P31		8-bit I/O port			TO1	
P32		Can be specified	for input or output in 1-bit units.		TO2	
P33		Can directly drive	LEDs.		TI1	
P34		When used as ar	n input port pin, a built-in pull-up resistor can be		TI2	
P35		used by software			PCL	
P36		A pull-down resis	tor can be connected in 1-bit units by the mask		BUZ	
P37		option.			_	

- **Notes 1.** When the P04/XT1 pins is used as an input port pin, bit 6 (FRC) of the processor clock control register (PCC) must be set to 1. At this time, do not use the feedback resistor of the subsystem clock oscillator circuit.
 - 2. When the P10/ANI0 through P17/ANI7 pins are used as the analog input lines of the A/D converter, be sure to place the port 1 in the input mode. In this case, the built-in pull-up resistors are automatically unused.

3.1 PORT PINS (2/2)

Pin name	I/O	Function	On reset	Shared by:
P70-P74	I/O	Port 7 5-bit N-ch open-drain I/O port Can be specified for input or output in 1-bit units. Can directly drive LEDs. A pull-up resistor can be connected in 1-bit units by the mask option.	Input	_
P80, P81	Output	Port 8 2-bit P-ch open-drain high-voltage output port. Can directly drive LEDs. A pull-down resistor can be connected in 1-bit units by the mask option (whether VLOAD or Vss is connected can be specified in bit units).	Output	FIP0, FIP1
P90-P97	Output	Port 9 8-bit P-ch open-drain high-voltage output port. Can directly drive LEDs. A pull-down resistor can be connected in 1-bit units by the mask option (whether VLOAD or Vss is connected can be specified in 4-bit units).	Output	FIP2-FIP9
P100-P107	Output	Port 10 8-bit P-ch open-drain high-voltage output port. Can directly drive LEDs. A pull-down resistor can be connected in 1-bit units by the mask option (whether VLOAD or Vss is connected can be specified in 4-bit units).	Output	FIP10-FIP17
P110-P117	I/O	Port 11 8-bit P-ch open-drain high-voltage I/O port. Can be specified for input or output in 1-bit units. Can directly drive LEDs. A pull-down resistor can be connected in 1-bit units by the mask option (whether VLOAD or Vss is connected can be specified in 4-bit units).	Input	FIP18-FIP25
P120-P127	I/O	Port 12 8-bit P-ch open-drain high-voltage I/O port Can be specified for input or output in 1-bit units. Can directly drive LEDs. A pull-down resistor can be connected in 1-bit units by the mask option (whether VLOAD or Vss is connected can be specified in 4-bit units).	Input	FIP26-FIP33

3.2 PINS OTHER THAN PORT PINS (1/2)

Pin name	I/O	Function	On reset	Shared by:
INTP0	Input	Valid edge (rising, falling, or both rising and falling edges) can	Input	P00/TI0
INTP1		be specified.		P01
INTP2		External interrupt input		P02
INTP3		Falling edge-active external interrupt input	Input	P03/CI0
SI0	Input	Serial data input lines of serial interface	Input	P25/SB0
SI1				P20
SO0	Output	Serial data output lines of serial interface	Input	P26/SB1
SO1				P21
SB0	I/O	Serial data I/O lines of serial interface	Input	P25/SI0
SB1				P26/SO0
SCK0	I/O	Serial clock I/O lines of serial interface	Input	P27
SCK1				P22
STB	Output	Automatic transmission/reception strobe output line of serial interface	Input	P23
BUSY	Input	Automatic transmission/reception busy input line of serial interface	Input	P24
TI0	Input	External count clock input to 16-bit timer (TM0)	Input	P00/INTP0
TI1		External count clock input to 8-bit timer (TM1)		P33
TI2		External count clock input to 8-bit timer (TM2)		P34
TO0	Output	16-bit timer output (multiplexed with 14-bit PWM output)	Input	P30
TO1		8-bit timer output		P31
TO2				P32
CI0	Input	Clock input to 6-bit up/down counter	Input	P03/INTP3
PCL	Output	Clock output (for trimming main system clock and subsystem clock)	Input	P35
BUZ	Output	Buzzer output	Input	P36
FIP0, FIP1	Output	High-voltage, high-current digit/segment output of FIP	Output	P80, P81
FIP2-FIP9		controller/driver		P90-P97
FIP10-FIP15	Output	High-voltage, high-current digit/segment output of FIP controller/driver	Output	P100-P105
FIP16, FIP17	Output	High-voltage segment output of FIP controller/driver	Output	P106, P107
FIP18-FIP25			Input	P110-P117
FIP26-FIP33				P120-P127
VLOAD	_	Connects pull-down resistor to FIP controller/driver	_	_

3.2 PINS OTHER THAN PORT PINS (2/2)

Pin name	I/O	Function	On reset	Shared by:
ANI0-ANI7	Input	A/D converter analog input lines	Input	P10-P17
AVREF	Input	A/D converter reference voltage input line	_	_
AV _{DD}	_	Analog power supply to A/D converter. Connected to the VDD pin.	_	_
AVss	_	A/D converter ground line. Connected to the Vss pin.	_	_
RESET	Input	System reset input	_	_
X1	Input	Connect crystal for main system clock oscillation	_	_
X2	_		_	_
XT1	Input	Connect crystal for subsystem clock oscillation	Input	P04
XT2	_		_	_
V _{DD}	_	Positive power supply	_	_
Vss	_	Ground potential	_	_
IC	_	Internal connection. Connected directly to the Vss pin.	_	_

3.3 PIN I/O CIRCUITS AND PROCESSING OF UNUSED PINS

Table 3-1 shows the I/O circuit type of each pin and the processing of unused pins. For the configuration of the I/O circuit of each type, refer to Fig. 3-1.

Table 3-1 I/O Circuit Type

Pin name	I/O Circuit type	I/O	Recommended connections when unused
P00/INTP0/TI0	2	Input	Connected to Vss.
P01/INTP1	8-A	I/O	Individually connected to Vss with a resistor.
P02/INTP2			
P03/INTP3/CI0			
P04/XT1	16	Input	Connected to V _{DD} or V _{SS} .
P10/ANI0-P17/ANI7	11	I/O	Individually connected to VDD or Vss with a resistor.
P20/SI1	8-A		
P21/SO1	5-A		
P22/SCK1	8-A		
P23/STB	5-A		
P24/BUSY	8-A		
P25/SI0/SB0	10-A		
P26/SO0/SB1			
P27/SCK0			
P30/TO0	5-C		
P31/TO1			
P32/TO2			
P33/TI1	8-B		
P34/TI2			
P35/PCL	5-C		
P36/BUZ			
P37			
P70-P74	13-B		
P80/FIP0, P81/FIP1	14-A	Output	Open
P90/FIP2-P97/FIP9			
P100/FIP10-P107/FIP17			
P110/FIP18-P117/FIP25	15-C	I/O	Individually connected to V _{DD} or V _{SS} with a resistor.
P120/FIP26-P127/FIP33			
RESET	2	Input	_
XT2	16	_	Open
AVREF			Connected to Vss.
AV _{DD}			Connected to V _{DD} .
AVss			Connected to Vss.
VLOAD			
IC			Connected directly to Vss.

Fig. 3-1 Pin I/O Circuits (1/2)

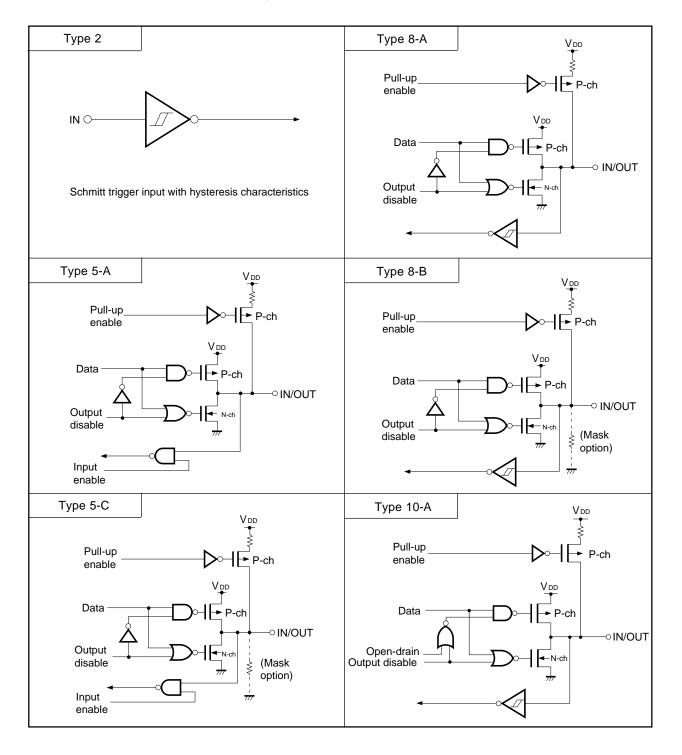
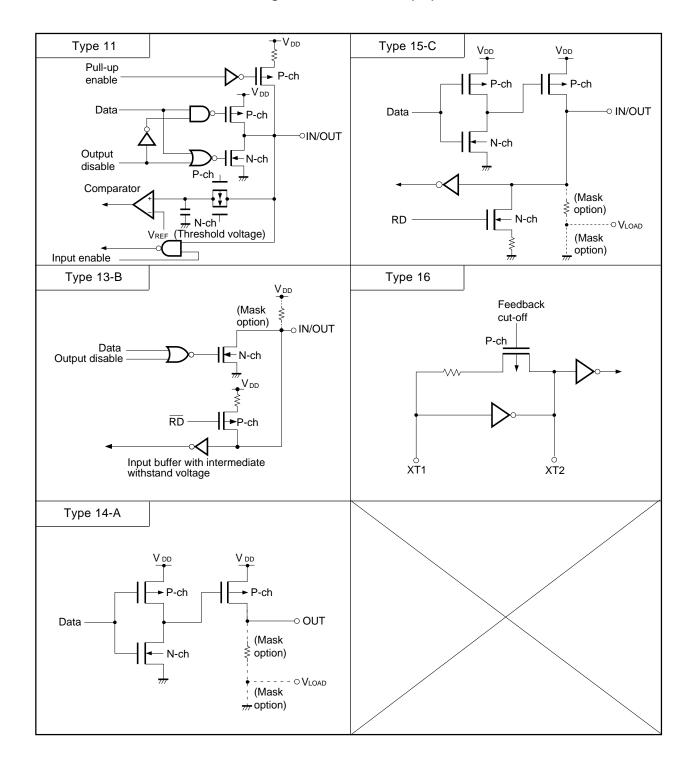



Fig. 3-1 Pin I/O Circuits (2/2)

4. MEMORY SPACE

Fig. 4-1 shows the memory map for μ PD78042F, μ PD78044F, μ PD78044F, and μ PD78045F.

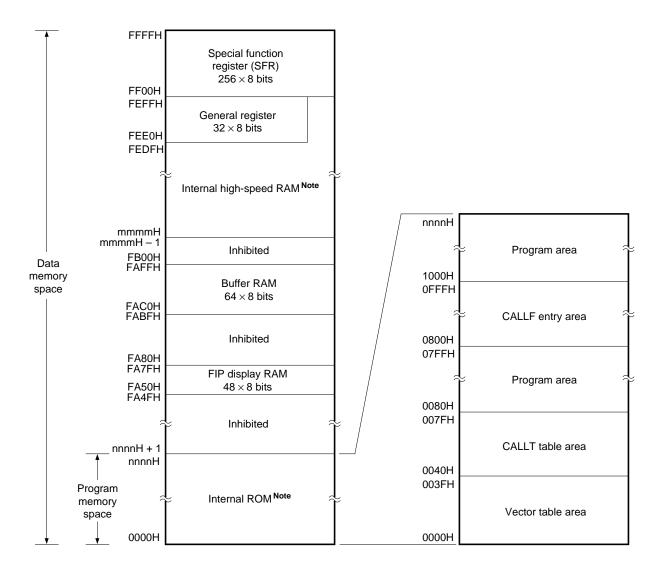


Fig. 4-1 Memory Map

Note The internal ROM and internal high-speed RAM capacities vary depending on the product. (See the table below.)

Product name	Last Address of Internal ROM	First address of internal high-speed RAM
	nnnnH	mmmmH
μPD78042F	3FFFH	FD00H
μPD78043F	5FFFH	
μPD78044F	7FFFH	FB00H
μPD78045F	9FFFH	

5. PERIPHERAL HARDWARE FUNCTIONS

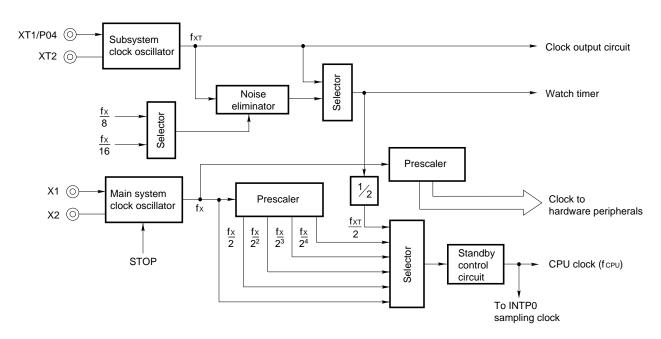
5.1 PORTS

I/O ports are classified into the following five types:

CMOS input (P00, P04)
CMOS input/output (P01 - P03, ports 1 - 3)
N-ch open-drain input/output (port 7)
5
P-ch open-drain output (ports 8 - 10)
18
P-ch open-drain input/output (ports 11 and 12)
16
Total
2
27
18
18
16

Table 5-1 Port Function

Product	Pin	Function			
Port 0	P00, P04	Input-only port			
	P01-P03	I/O port. Can be specified for input or output in 1-bit units. When used as input port, internal pull-up resistor can be connected through software.			
Port 1	P10-P17	I/O port. Can be specified for input or output in 1-bit units. When used as input port, internal pull-up resistor can be connected through software.			
Port 2	P20-P27	I/O port. Can be specified for input or output in 1-bit units. When used as input port, internal pull-up resistor can be connected through software.			
Port 3	P30-P37	I/O port. Can be specified for input or output in 1-bit units. When used as input port, internal pull-up resistor can be connected through software. Pull-down resistor can be connected in 1-bit units by the mask option. Can directly drive LED.			
Port 7	P70-P74	N-ch open-drain I/O port. Can be specified for input or output in 1-bit units. Pull-up resistor can be connected in 1-bit units by the mask option. Can directly drive LED.			
Port 8	P80, P81	P-ch open-drain output port with high withstand voltage. Pull-down resistor can be connected in 2-bit units by the mask option (connection to VLOAD or Vss can be specified in 2-bit units). Can directly drive LED.			
Port 9	P90-P97	P-ch open-drain output port with high withstand voltage. Pull-down resistor can be connected in 1-bit units by the mask option (connection to VLOAD or Vss can be specified in 4-bit units). Can directly drive LED.			
Port 10	P100-P107	P-ch open-drain output port with high withstand voltage. Pull-down resistor can be connected in 1-bit units by the mask option (connection to VLOAD or Vss can be specified in 4-bit units). Can directly drive LED.			
Port 11	P110-P117	P-ch open-drain I/O port with high withstand voltage. Can be specified for input or output in 1-bit units. Pull-down resistor can be connected in 1-bit units by the mask option (connection to VLOAD or Vss can be specified in 4-bit units). Can directly drive LED.			
Port 12	P120-P127	P-ch open-drain I/O port with high withstand voltage. Can be specified for input or output in 1-bit units. Pull-down resistor can be connected in 1-bit units by the mask option (connection to VLOAD or Vss can be specified in 4-bit units). Can directly drive LED.			



5.2 CLOCK GENERATOR CIRCUIT

The clock generator circuit has two kinds of generator circuits: the main system clock and subsystem clock. The instruction time can be changed.

- 0.4 μ s/0.8 μ s/1.6 μ s/3.2 μ s/6.4 μ s (with main system clock: 5.0 MHz)
- 122 μ s (with subsystem clock: 32.768 kHz)

Fig. 5-1 Clock Generator Circuit Block Diagram

5.3 TIMER/EVENT COUNTER

Six channels of timer/event counters are provided.

16-bit timer/event counter: 1 channel
8-bit timer/event counter: 2 channels
Watch timer: 1 channel
Watchdog timer: 1 channel
6-bit up/down counter: 1 channel

Table 5-2 Timer/Event Counter Groups and Configurations

		16-bit timer/ event counter	8-bit timer/ event counter	Watch timer	Watchdog timer	6-bit up/ down counter
Group	Interval timer	1 channel	2 channels	1 channel	1 channel	_
Ģ	External event counter	1 channel	2 channels	_	_	1 channel
	Timer output	1 output	2 outputs	_	_	_
	PWM output	1 output	_	_	_	_
Function	Pulse width measurement	1 input	_	_	_	_
Func	Square wave output	1 output	2 outputs	_	_	_
	Interrupt Request	1	2	1	1	1
	Test input	_	_	1 input	_	_

Fig. 5-2 16-Bit Timer/Event Counter Block Diagram

Fig. 5-3 8-Bit Timer/Event Counter Block Diagram

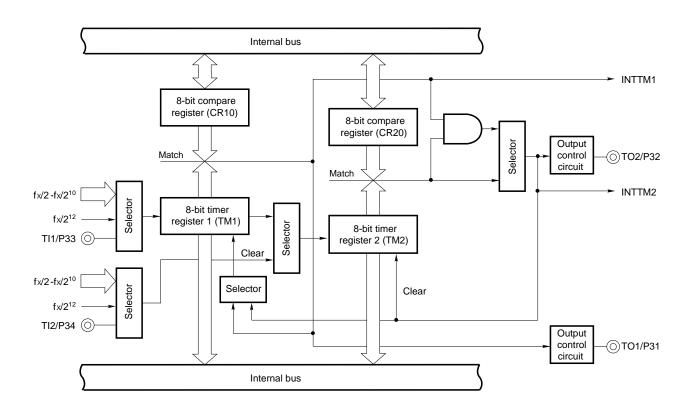


Fig. 5-4 Watch Timer Block Diagram

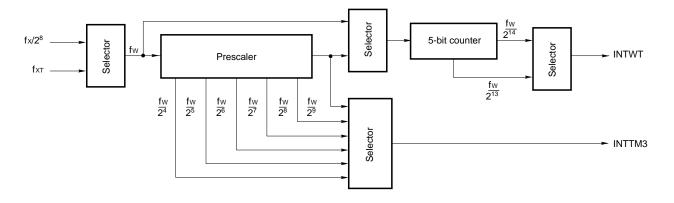


Fig. 5-5 Watchdog Timer Block Diagram

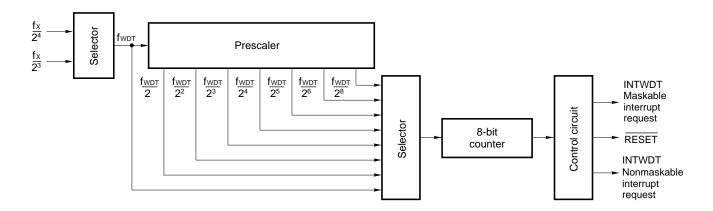
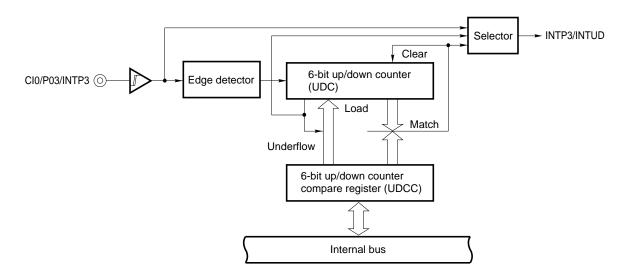
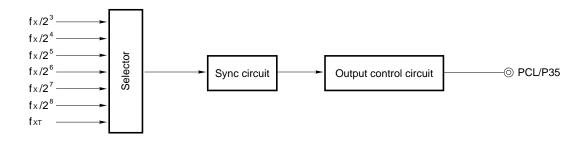



Fig. 5-6 6-Bit Up/Down Counter Block Diagram

Caution When using the 6-bit up/down counter, set the Cl0/P03/INTP3 pin in the input mode (set bit 3 of port mode register 0 (PM03) to 1).

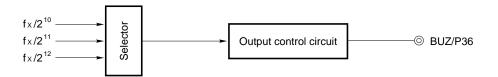


5.4 CLOCK OUTPUT CONTROL CIRCUIT

Clocks of the following frequencies can be output to the clock:

- 19.5 kHz/39.1 kHz/78.1 kHz/156 kHz/313 kHz/625 kHz (with main system clock: 5.0 MHz)
- 32.768 kHz (with subsystem clock: 32.768 kHz)

Fig. 5-7 Clock Output Control Circuit Block Diagram

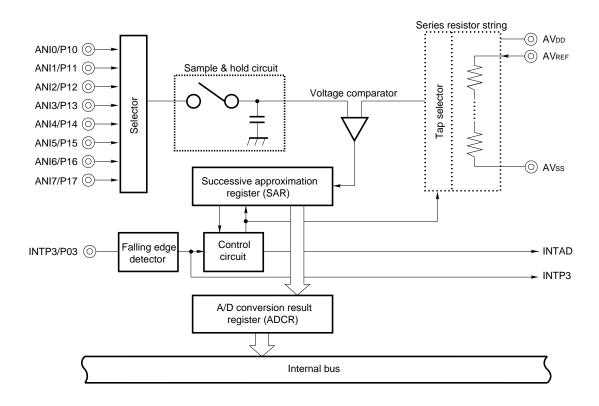


5.5 BUZZER OUTPUT CONTROL CIRCUIT

Clocks of the following frequencies can be output to the buzzer:

• 1.2 kHz/2.4 kHz/4.9 kHz (with main system clock: 5.0 MHz)

Fig. 5-8 Buzzer Output Control Circuit Block Diagram


5.6 A/D CONVERTER

An 8-bit resolution 8-channel A/D converter is provided.

This A/D converter can be started in the following two modes:

- · Hardware start
- · Software start

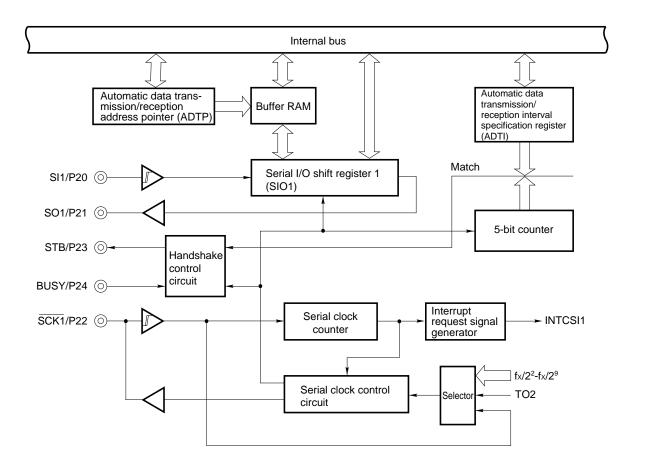
Fig. 5-9 A/D Converter Block Diagram

5.7 SERIAL INTERFACE

Two channels of clocked serial interfaces are provided.

- Serial interface channel 0
- · Serial interface channel 1

Table 5-3 Serial Interface Groups and Functions


Function	Serial interface channel 0	Serial interface channel 1
3-wire serial I/O mode	(MSB/LSB first selectable)	(MSB/LSB first selectable)
SBI (serial bus interface) mode	(MSB first)	_
2-wire serial I/O mode	(MSB first)	_
3-wire serial I/O mode with automatic transmission/ reception function	_	(MSB/LSB first selectable)

Internal bus SI0/SB0/P25 (O) Selector Serial I/O shift Output register 0 (SIO0) latch SO0/SB1/P26 (iii) Busy/acknowledge Selector output circuit Bus release/ command/acknowledge detector Interrupt request - INTCSI0 Serial clock signal generator SCK0/P27 (O) counter $fx/2^2 - fx/2^9$ Serial clock TO2 control circuit

Fig. 5-10 Serial Interface Channel 0 Block Diagram

Fig. 5-11 Serial Interface Channel 1 Block Diagram

5.8 FIP CONTROLLER/DRIVER

An FIP controller/driver having the following features is provided:

- (a) Automatic output of segment signals (DMA operation) and digit signals by automatically reading display data
- (b) Display mode registers (DSPM0 and DSPM1) that can control an FIP of 9 to 24 segments and 2 to 16 digits
- (c) Port pins not used for FIP display can be used as output port or I/O port pins.
- (d) Display mode register (DSPM1) can adjust luminance in eight steps.
- (e) Hardware suitable for key scan application using segment pins
- (f) High-voltage output buffer (FIP driver) that can directly drive an FIP
- (g) Display output pins can be connected to a pull-down resistor by the mask option.

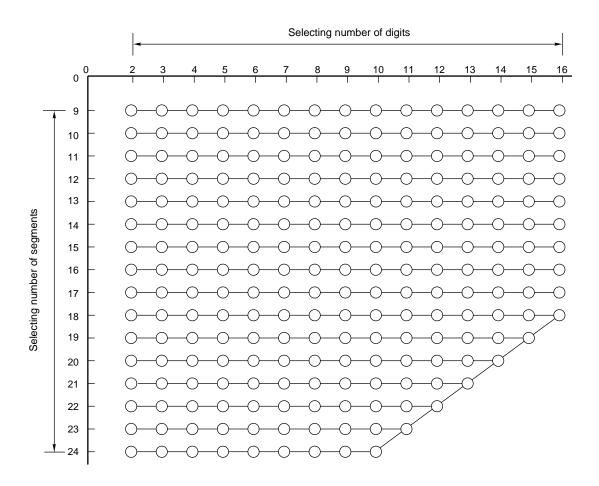


Fig. 5-12 Selecting Display Modes

Caution If the total number of digits and segments exceeds 34, the specified number of digits takes precedence.

Display data memory

Digit signal generator

Port output latch

Port output latch

Buffer with high withstand voltage

FIPO/P80 FIP1/P81

FIP33/P127

Fig. 5-13 FIP Controller/Driver Block Diagram

6. INTERRUPT FUNCTION AND TEST FUNCTION

6.1 INTERRUPT FUNCTION

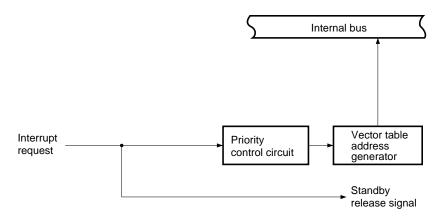
The following three types of interrupt functions are available:

Non-maskable interrupt : 1Maskable interrupt : 13Software interrupt : 1

Table 6-1 Interrupt Source List

Interrupt	Note 1 Default		Interrupt source	Internal/	Vector table	Note 2 Basic configuration
type	priority	Name	Trigger		address	type
Non-maskable	_	INTWDT	Watchdog timer overflow (with watchdog timer mode 1 selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (with interval timer mode selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	(D)
	3	INTP2			000AH	
	4	INTP3			000CH	
		INTUD	6-bit up/down counter match signal generation	Internal		(B)
	5	INTCSI0	End of serial interface channel 0 transfer		000EH	
	6	INTCSI1	End of serial interface channel 1 transfer		0010H	
	7	INTTM3	Reference time interval signal from watch timer		0012H	
	8	INTTM0	16-bit timer/event counter match signal generation		0014H	
	9	INTTM1	8-bit timer/event counter 1 match signal generation		0016H	
	10	INTTM2	8-bit timer/event counter 2 match signal generation		0018H	
	11	INTAD	End of A/D converter conversion		001AH	
	12	INTKS	Key scan timing from FIP controller/driver		001CH	
Software		BRK	Execution of BRK instruction		003EH	(E)

Notes 1. Default priority is the priority order when several maskable interrupts are generated at the same time.


0 is the highest order and the 12 is the lowest order.

2. Basic configuration types (A) to (E) correspond to (A) to (E) in Fig. 6-1.

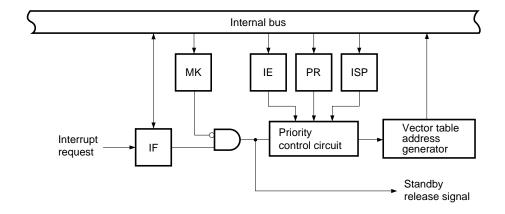
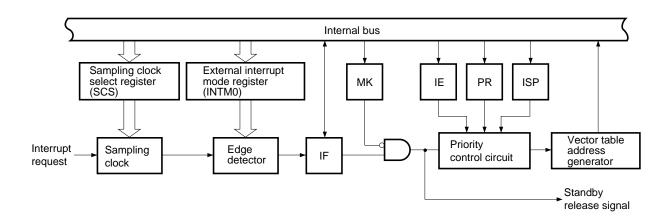
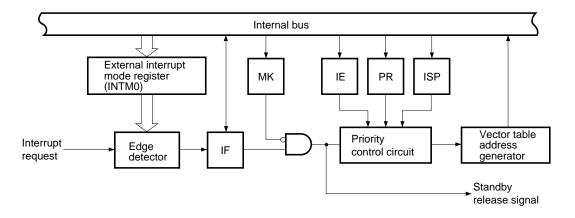


Fig. 6-1 Basic Configuration of Interrupt Function (1/2)

(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt (INTP0)

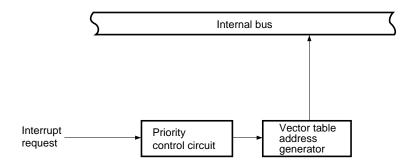
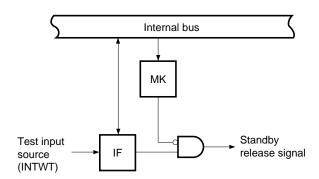


Fig. 6-1 Basic Configuration of Interrupt Function (2/2)

(D) External maskable interrupt (except INTP0)

(E) Software interrupt

IF : Interrupt request flag
IE : Interrupt enable flag
ISP : In-service priority flag
MK : Interrupt mask flag
PR : Priority specification flag



6.2 TEST FUNCTION

The following test function is available.

	Test input source	Internal/external
Name	Trigger	
INTWT	Overflow of watch timer	Internal

Fig. 6-2 Basic Configuration of Test Function

IF : Test request flag
MK : Test mask flag

29

7. STANDBY FUNCTION

The standby function is to reduce the current dissipation of the system and can be effected in the following two modes:

- HALT mode: In this mode, the operating clock of the CPU is stopped. By using this mode in combination with the normal operation mode, the system can be operated intermittently, so that the average current dissipation can be reduced.
- STOP mode: Oscillation of the main system clock is stopped. All the operations on the main system clock are stopped, and therefore, the current dissipation of the system can be minimized with only the subsystem clock oscillating.

CSS = 1Main system Subsystem clock operationNote clock operation CSS = 0STOP HALT instruction **HALT** instruction instruction Interrupt Interrupt request Interrupt request STOP mode request HALT mode HALT modeNote (Oscillation of main system (Clock supply to CPU stopped (Clock supply to CPU stopped clock stopped) Oscillation continues) Oscillation continues)

Fig. 7-1 Standby Function

Note By stopping the main system clock, the current dissipation can be reduced. When the CPU operates on the subsystem clock, stop the main system clock by setting bit 7 (MCC) of the processor clock control register (PCC). The STOP instruction cannot be used.

Caution When the main system clock is stopped and the subsystem clock is operating, to switch again from the subsystem clock to the main system clock, allow sufficient time for the oscillation to settle before switching, by coding the program accordingly.

8. RESET FUNCTION

The system can be reset in the following two modes:

- External reset by RESET pin
- · Internal reset by watchdog timer that detects hang up

9. INSTRUCTION SET

(1) 8-bit instruction

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

Second operand First operand	#byte	А	Note r	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL + byte] [HL + B] [HL + C]	\$addr16	1	None
А	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											INC DEC
B, C											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		INC DEC
!addr16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]		MOV											
[HL]		MOV											ROR4 ROL4
[HL + byte] [HL + B] [HL + C]		MOV											
Х													MULU
С													DIVUW

Note Except for r = A

*

(2) 16-bit instruction

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

Second operand First operand	#word	AX	rp ^{Note}	sfrp	saddrp	!addr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
гр	MOVW	MOVW MOVE						INCW DECW PUSH POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp = BC, DE, HL

(3) Bit manipulation instruction

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

Second operand First operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
CY	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1

(4) Call/Branch instruction

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

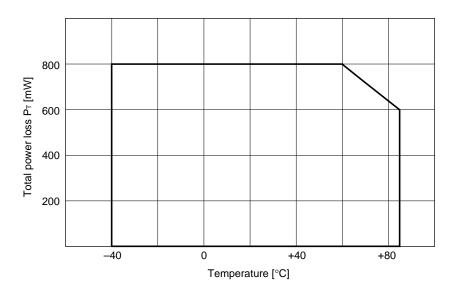
Second operand First operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic operation	BR	CALL BR	CALLF	CALLT	BR BC BNC BZ BNZ
Compound operation					BT BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

★ 10. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)


Parameter	Symbol	Condition	ns		Rating	Unit
Power supply	V _{DD}				-0.3 to +7.0	٧
voltage	VLOAD				V _{DD} - 40 to V _{DD} + 0.3	V
	AV _{DD}				-0.3 to +7.0 VDD - 40 to VDD + 0.3 -0.3 to +0.3 input pins), -0.3 to +16Note 1 VDD - 40 to VDD + 0.3 -0.3 to +16Note 1 VDD - 40 to VDD + 0.3 -0.3 to +16Note 1 VDD - 40 to VDD + 0.3 -0.3 to +16Note 1 VDD - 40 to VDD + 0.3 -10 -127 VDD - 40 to VDD + 0.3 -10 -30 -127 total -120 reak value 30 ms value 15Note 2 reak value 50 Note 2 reak value 50	٧
Power supply voltage				-0.3 to V _{DD} + 0.3	٧	
	AVss				-0.3 to +0.3	٧
Power supply voltage Input voltage Output voltage Output current, high Output current, low Total power dissipation Operating	VI1	P00-P04, P10-P17 (except when us P20-P27, P30-P37, X1, X2, XT2, R		og input pins),	-0.3 to V _{DD} + 0.3	V
	Vı2	P70-P74	N-ch oper	n drain	-0.3 to +16 ^{Note 1}	V
	Vıз	P110-P117, P120-P127	P-ch oper	n drain	V _{DD} - 40 to V _{DD} + 0.3	V
Output voltage	Vo ₁	P01-P03, P10-P17, P20-P27, P30-F	P37		-0.3 to V _{DD} + 0.3	٧
	V ₀₂	P70-P74			-0.3 to +16 ^{Note 1}	٧
	V _{O3}	P80, P81, P90-P97, P100-P107, P110)-P117, P12	:0-P127	V _{DD} - 40 to V _{DD} + 0.3	٧
Analog input voltage	Van	ANI0-ANI7	Analog in	put pin	AVss - 0.3 to AVREF + 0.3	٧
Output current,	Іон	P01-P03, P10-P17, P20-P27, P30-F	37 per pin		-0.3 to +7.0 VDD - 40 to VDD + 0.3 -0.3 to VDD + 0.3 drain -0.3 to +16Note 1 VDD - 40 to VDD + 0.3 -0.3 to +16Note 1 VDD - 40 to VDD + 0.3 -0.3 to +16Note 1 VDD - 40 to VDD + 0.3 -10 -10 -30 -10 -10 -30 -P127 per pin -30 -P127 total -120 Peak value 30 TSNote 2 Peak value 100 -ms value 50 -ms value 50 -ms value 50 -ms value 800 600 -40 to +85	mA
high		P01-P03, P10-P17, P20-P27, P30-F	237 total			mA
		P80, P81, P90-P97, P100-P107, P110)-P117, P12	-0.3 to +7.0 -0.3 to Vbb + 0.3 -0.4 to Vbb + 0.3 -0.5 to Vbb + 0.3 -0.5 to Vbb + 0.3 -0.3 to Vbb + 0.3 -0.3 to +16 Note 1 -0.3 to Vbb + 0.3 -0.3 to +16 Note 1 -	mA	
		P80, P81, P90-P97, P100-P107, P110)-P117, P12	0-P127 total	-120	mA
Output current,	Іоь	P01-P03, P10-P17, P20-P27, P30-F	P37,	Peak value	30	mA
low		P70-P74 per pin		rms value	15 ^{Note 2}	mA
		P70-P74 total		Peak value	100	mA
				rms value	60 ^{Note 2}	mA
		P01-P03, P10-P17, P20-P27, P30-F	237 total	Peak value	50	mA
				rms value	20 ^{Note 2}	mA
Total power	P _T Note 3	T _A = -40 to +60 °C			800	mW
dissipation		T _A = +85 °C			600	mW
ambient	Та				-40 to +85	°C
Storage temperature	Tstg	_			-65 to +150	°C

Caution Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The parameters apply independently. The device should be operated within the limits specified under DC and AC Characteristics.

Remark Unless otherwise specified, the characteristics of a shared pin are the same as those of a port pin.

Notes 1. For pins to which pull-up resistors are connected by the mask option, the rating is -0.3 to $V_{DD} + 0.3$.

2. To obtain the rms value, calculate [rms value] = [peak value] $\times \sqrt{\text{duty}}$.

Notes 3. Permissible total power loss differs depending on the temperature (see the following figure).

How to calculate total power loss

The following three power consumption are available for the μ PD78042F. The sum of the three power consumption should be less than the total power loss P_T (80 % or less of ratings is recommended).

- 1) CPU power consumption: calculate VDD (MAX.) × IDD1 (MAX.).
- ② Output pin power consumption: Normal output and display output are available. Power consumption when maximum current flows into each output pin.
- 3 Pull-down resistor power consumption: Power consumption by pull-down resistor connected to display output pin by the mask option.

The following total power consumption calculation example assumes the case where the characters shown in the figure on the next page are displayed.

Example: The operating conditions are as follows:

 $V_{DD} = 5 \text{ V} \pm 10 \%$, operating at 5.0 MHz

Supply current (IDD) = 21.6 mA

Display outputs: 11 grids \times 10 segments (cut width is 1/16)

It is assumed that up to 15 mA flows to each grid pin, and that up to 3 mA flows to each segment pin.

It is also assumed that all display outputs are turned off at key scan timings.

Display output voltage: grid Vo3 = VDD - 2 V (Voltage drop of 2 V is assumed.)

segment $V_{O3} = V_{DD} - 0.4 \text{ V}$ (Voltage drop of 0.4 V is assumed.)

Voltage applied to fluorescent indication panel (V_{LOAD}) = -30 V

Mask-option pull-down resistor = 25 k Ω

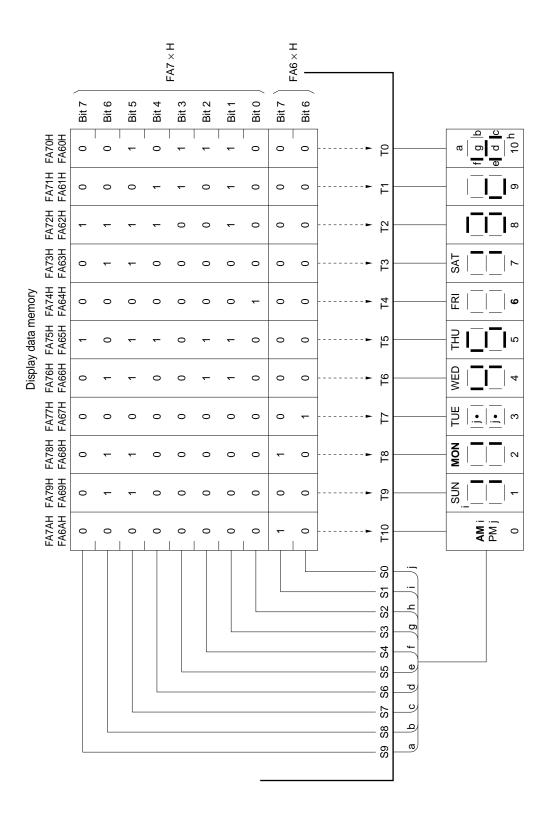
The total power loss is calculated by determining power consumption ① to ③ under the above conditions.

- (1) Power consumption of CPU: $5.5 \text{ V} \times 21.6 \text{ mA} = 118.8 \text{ mW}$
- (2) Power consumption at output pins:

Grid:
$$(V_{DD} - V_{O3}) \times \frac{\text{total current for all grids}}{\text{number of grids} + 1} \times \text{digit width } (1 - \text{cut width}) =$$

$$2 \text{ V} \times \frac{15 \text{ mA} \times 11 \text{ grids}}{11 \text{ grids} + 1} \times (1 - 1/16) = 25.8 \text{ mW}$$

Segment:
$$(V_{DD} - V_{O3}) \times \frac{\text{total segment current for all dots to be lit}}{\text{number of grids + 1}} = 0.4 \text{ V} \times \frac{3 \text{ mA} \times 31 \text{ dots}}{11 \text{ grids + 1}} = 3.1 \text{ mW}$$


(3) Power consumption at pull-down resistors:

Grid:
$$\frac{(\text{Vo}_3 - \text{V}_{\text{LOAD}})^2}{\text{pull-down resistance}} \times \frac{\text{number of grids}}{\text{number of grids} + 1} \times \text{digit width} = \\ \frac{(5.5 \text{ V} - 2 \text{ V} - (-30 \text{ V}))^2}{25 \text{ k}\Omega} \times \frac{11 \text{ grids}}{11 \text{ grids} + 1} \times (1 - 1/16) = 38.6 \text{ mW}$$
Segment:
$$\frac{(\text{Vo}_3 - \text{V}_{\text{LOAD}})^2}{\text{pull-down resistance}} \times \frac{\text{number of dots to be lit}}{\text{number of grids} + 1} = \\ \frac{(5.5 \text{ V} - 0.4 \text{ V} - (-30 \text{ V}))^2}{25 \text{ k}\Omega} \times \frac{31 \text{ dots}}{11 \text{ grids} + 1} = 127.3 \text{ mW}$$

Total power consumption = (1) + (2) + (3) = 118.8 + 25.8 + 3.1 + 38.6 + 127.3 = 313.6 mW

In this example, the total power consumption does not exceed the rated value for the permissible total power loss shown in the graph on the previous page. Therefore, the calculation result in this example (313.6 mW) satisfies the requirement. If the total power consumption exceed the rated value for the permissible total power loss, the power consumption must be reduced, by reducing the number of built-in pull-down resistors.

10-Segment/11-Digit Display Example

MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA = -40 to +85 °C, VDD = 2.7 to 5.5 V)

Resonator	Recommended circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	Vss X1 X2	Oscillation frequency (fx)Note 1		1		5	MHz
	C1 C2	Oscillation settling timeNote 2				4	ms
Crystal		Oscillation frequency (fx)Note 1		1	4.19	5	MHz
	C1 C2	Oscillation settling	V _{DD} = 4.5 to 5.5 V			10	ms
		time ^{Note 2}				30	
External clock	X1 X2	X1 input frequency (fx)Note 1		1		5	MHz
	Δ μPD74HCU04	X1 input high, low-level width (txH, txL)		100		500	ns

Notes 1. It indicates only the oscillator characteristics. For the instruction execution time, see the AC Characteristics.

2. Time required until oscillation becomes stable after VDD is applied or the STOP mode is disabled.

Cautions 1. If the main system clock oscillator is to be used, wire the area inside the broken line square as follows to avoid influence of wiring capacitance:

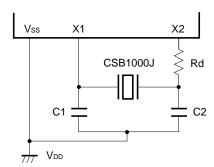
- · Make wiring as short as possible.
- Do not cross other signal lines.
- Do not get close to lines with fluctuating large current.
- Make sure that the connecting points of the capacitor of the oscillator always have the same electric potential as Vss.
- Do not connect the oscillator to a ground pattern that conducts a large current.
- · Do not take out signal from the oscillator.
- 2. When switching to the main system clock again after the subsystem clock has been used with the main system clock stopped, be sure to set the program to provide enough time for the oscillation to stabilize.

SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA = -40 to +85 °C, VDD = 2.7 to 5.5 V)

Resonator	Recommended circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal	XT1 XT2 Vss R	Oscillation frequency (fxT)Note 1		32	32.768	35	kHz
	±C3 ±C4	Oscillation settling	V _{DD} = 4.5 to 5.5 V		1.2	2	s
	777	time ^{Note 2}				10	
External	XT1 XT2	XT1 input frequency (fxr)Note 1		32		100	kHz
	Å P	XT1 input high, low-level width (txth, txtl)		5		15	μs

- **Notes 1.** It indicates only the oscillator characteristics. For the instruction execution time, see the AC Characteristics.
 - 2. Time required until oscillation becomes stable after VDD reaching MIN. of oscillation voltage range.
- Cautions 1. If the subsystem clock oscillator is to be used, wire the area inside the broken line square as follows to avoid influence of wiring capacitance:
 - Make wiring as short as possible.
 - · Do not cross other signal lines.
 - Do not get close to lines with fluctuating large current.
 - Make sure that the connecting points of the capacitor of the oscillator always have the same electric potential as Vss.
 - Do not connect the oscillator to a ground pattern that conducts a large current.
 - · Do not take out signal from the oscillator.
 - The subsystem clock oscillator is more likely to have malfunctions due to noise than the main system clock oscillator because gain for the subsystem clock oscillator is made lower to reduce current consumption. When using the subsystem clock, be careful about how to connect wires.

RECOMMENDED OSCILLATOR CONSTANT


MAIN SYSTEM CLOCK: CERAMIC RESONATOR (TA = -40 to +85 °C)

Manufacturer	Product name	Frequency (MHz)		mended constant	Oscillator v	oltage range	Remark
			C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)	
Murata Mfg. Co., Ltd.	CSB1000J	1.00	100	100	2.7	5.5	$Rd = 4.7 \text{ k}\Omega^{\text{Note}}$
	CSA2.00MG040	2.00	100	100	2.7	5.5	
	CST2.00MG040	2.00	_	_	2.7	5.5	Built-in capacitor
	CSA4.00MG	4.00	30	30	2.7	5.5	
	CST4.00MGW	4.00	_	_	2.7	5.5	Built-in capacitor
	CSA5.00MG	5.00	30	30	2.7	5.5	
	CST5.00MGW	5.00	_	_	2.7	5.5	Built-in capacitor
TDK Corp.	CCR1000K2	1.00	150	150	2.7	5.5	Surface-mount type
	CCR2.0MC3	2.00	_	_	2.7	5.5	Built-in capacitor, surface-mount type
	CCR4.0MC3	4.00	_	_	2.7	5.5	Built-in capacitor, surface-mount type
	FCR4.0MC5	4.00	_	_	2.7	5.5	Built-in capacitor
	CCR5.0MC3	5.00	_	_	2.7	5.5	Built-in capacitor, surface-mount type
	FCR5.0MC5	5.00	_	_	2.7	5.5	Built-in capacitor
Matsushita Electronics	EFOEC2004A4	2.00	33	33	2.7	5.5	Built-in capacitor
Components Co., Ltd.	EFOS2004B5	2.00	33	33	2.7	5.5	Built-in capacitor, surface-mount type
	EFOEC3584A4	3.58	33	33	2.7	5.5	Built-in capacitor
	EFOS3584B5	3.58	33	33	2.7	5.5	Built-in capacitor, surface-mount type
	EFOEC4004A4	4.00	33	33	2.7	5.5	Built-in capacitor
	EFOS4004B5	4.00	33	33	2.7	5.5	Built-in capacitor, surface-mount type
	EFOEC5004A4	5.00	33	33	2.7	5.5	Built-in capacitor
	EFOS5004B5	5.00	33	33	2.7	5.5	Built-in capacitor, surface-mount type

Note When the CSB1000J (1.00 MHz) manufactured by Murata Mfg. is used, a limiting resistor (4.7 k Ω) is necessary (see the figure in the next page). When one of other resonators is used, no limiting resistor is required.

Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation but do not guarantee accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency of the resonator in the application circuit. For this, it is necessary to directly contact the manufacturer of the resonator that being used.

Recommended sample circuit for the main system clock when the CSB1000J manufactured by Murata Mfg. is used

CAPACITANCE (TA = 25 °C, VDD = Vss = 0 V)

Parameter	Symbol	Condition	ns	MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	f = 1 MHz Unmeasured pins retur	= 1 MHz Unmeasured pins returned to 0 V				pF
Output capacitance	Соит	f = 1 MHz Unmeasured pins retur	- 1 MHz Unmeasured pins returned to 0 V				pF
Input/output capacitance	Сю	f = 1 MHz Unmeasured pins returned to 0 V	P01-P03, P10-P17, P20-P27, P30-P37			15	pF
			P70-P74			20	pF
			P110-P117, P120-P127			35	pF

Remark Unless otherwise specified, the characteristics of the shared pin are the same as the characteristics of the port pin.

POWER SUPPLY VOLTAGE ($T_A = -40 \text{ to } +85 \text{ °C}$)

Parameter	Conditions	MIN.	TYP.	MAX.	Unit
CPUNote 1		2.7 ^{Note 2}		5.5	V
Display controller/driver		4.5		5.5	V
PWM mode of 16-bit timer/event counter (TM0)		4.5		5.5	V
A/D converter		4.0		5.5	V
Other hardware		2.7		5.5	V

Notes 1. Except for system clock oscillator, display controller/driver, and PWM.

2. Operating power supply voltage differs depending on the cycle time. See the AC Characteristics.

DC CHARACTERISTICS (TA = -40 to +85 °C, VDD = 2.7 to 5.5 V)

Parameter	Symbol	Conditions	;	MIN.	TYP.	MAX.	Unit
High-level	V _{IH1}	P21, P23		0.7V _{DD}		V _{DD}	V
input voltage	V _{IH2}	P00-P03, P20, P22, P24-P27, P33	, P34, RESET	0.8V _{DD}		V _{DD}	V
	V _{IH3}	P70-P74	N-ch open drain	0.7V _{DD}		15Note 1	V
	V _{IH4}	X1, X2Note 2		V _{DD} - 0.5		V _{DD}	V
	V _{IH5}	XT1/P04, XT2Note 2	V _{DD} = 4.5 to 5.5 V	V _{DD} - 0.5		V _{DD}	V
				V _{DD} - 0.3		V _{DD}	٧
	V _{IH6}	P10-P17, P30-P32, P35-P37	V _{DD} = 4.5 to 5.5 V	0.65V _{DD}		V _{DD}	V
				0.7V _{DD}		V _{DD}	٧
	V _{IH7}	P110-P117, P120-P127	V _{DD} = 4.5 to 5.5 V	0.7V _{DD}		V _{DD}	V
				V _{DD} - 0.5		V _{DD}	V
Low-level	V _{IL1}	P21, P23		0		0.3V _{DD}	V
input voltage	V _{IL2}	P00-P03, P20, P22, P24-P27, P33	, P34, RESET	0		0.2V _{DD}	V
	V _{IL3}	P70-P74	V _{DD} = 4.5 to 5.5 V	0		0.3V _{DD}	V
				0		0.2V _{DD}	V
	VIL4	X1, X2Note 2		0		0.4	V
	VIL5	XT1/P04, XT2Note 2	V _{DD} = 4.5 to 5.5 V	0		0.4	V
				0		0.3	V
	VIL6	P10-P17, P30-P32, P35-P37	P10-P17, P30-P32, P35-P37			0.3V _{DD}	V
	VIL7	P110-P117, P120-P127		V _{DD} - 35		0.3V _{DD}	٧
High-level output	Vон	P01-P03, P10-P17, P20-P27, P30-P37, P80, P81, P90-P97,	V _{DD} = 4.5 to 5.5 V Іон = -1 mA	V _{DD} – 1.0			V
voltage		P100-P107, P110-P117, P120-P127	Іон = −100 μА	V _{DD} - 0.5			V
Low-level output	Vol1	P30-P37, P70-P74	V _{DD} = 4.5 to 5.5 V, I _{OL} = 15 mA		0.4	2.0	V
voltage		P01-P03, P10-P17, P20-P27	V _{DD} = 4.5 to 5.5 V, I _{OL} = 1.6 mA			0.4	V
	V _{OL2}	SB0, SB1, SCK0	$V_{DD}=4.5$ to 5.5 V, With open-drain and pull-up (R = 1 k Ω)			0.2V _{DD}	V
	Vol3	P01-P03, P10-P17, P20-P27, P30-P37, P70-P74	IoL = 400 μA			0.5	V

Notes 1. Pins to which pull-up resistors are connected by the mask option become VDD.

2. If the X1 pin is used for high-level voltage input, the X2 pin is used for low-level voltage input, or vice versa. This is also true for the XT1/P04 pin and XT2 pin.

Remark Unless otherwise specified, the characteristics of a shared pin are the same as those of a port pin.

DC CHARACTERISTICS (TA = -40 to +85 °C, VDD = 2.7 to 5.5 V)

Parameter	Symbol	С	onditions	MIN.	TYP.	MAX.	Unit
High-level input leakage	Ішн1	Vin = Vdd	P00-P03, P10-P17, P20-P27, P30-P37, RESET			3	μΑ
current	ILIH2		X1, X2, XT1/P04, XT2			20	μΑ
	Ілнз	VIN = 15 V	P70-P74			20	μΑ
	ILIH4	P110-P117, P120-P127,	V _{DD} = 4.5 to 5.5 V			3Note 1	μΑ
		VIN = VDD				3Note 2	μΑ
Low-level input leakage	ILIL1	Vin = 0 V	P00-P03, P10-P17, P20-P27, P30-P37, RESET			-3	μΑ
current	ILIL2		X1, X2, XT1/P04, XT2			-20	μΑ
	IL1L3		P70-P74			_3Note 3	μΑ
	ILIL4		P110-P117, P120-P127			-10	μΑ
High-level output leakage	Ісон1	Vout = Vdd	P01-P03, P10-P17, P20-P27, P30-P37, P80, P81, P90-P97, P100-P107, P110-P117, P120-P127			3	μΑ
currentNote 4	ILOH2	Vout = 15 V	P70-74, N-ch open drain			20	μΑ
Low-level output	ILOL1	Vout = 0 V	P01-P03, P10-P17, P20-P27, P30-P37, P70-P74			-3	μΑ
leakage current Note 4	ILOL2	Vout = Vload = Vdd - 35 V	P80, P81, P90-P97, P100-P107, P110-P117, P120-P127			-10	μΑ
Display output current	Іор	V _{DD} = 4.5 to 5.5 V, V _{O3} = V	_{DD} – 2 V	-15	-25		mA
Mask option pull-up resistor	R ₁	Vin = 0 V, P70-P74		20	40	90	kΩ
Software pull- up resistor	R ₂	V _{IN} = 0 V, P01-P03, P10-P17,	V _{DD} = 4.5 to 5.5 V	15	40	90	kΩ
		P20-P27, P30-P37		20		500	kΩ
Mask option pull-down	R ₃	P80, P81, P90-P97, P100-P107, P110-P117,	Vo3 - VLOAD = 35 V	25	65	135	kΩ
resistor		P120-P127	Vo3 – Vss = 5 V	15	40	90	kΩ
	R ₄	P30-P37, VIN = VDD		40	80	150	kΩ

- **Notes 1.** When P110 to P117 and P120 to P127 do not contain the pull-down resistors (according to the specification of the mask option), a high-level input leakage current of 150 μ A (MAX.) flows only during 1.5 clocks after a read instruction has been executed to read out port 11 or 12 (P11 or P12) or port mode register 11 or 12 (PM11 or PM12). Outside the 1.5 clocks after a read instruction, the current is 3 μ A (MAX.).
 - **2.** When P110 to P117 and P120 to P127 do not contain the pull-down resistors (according to the specification of the mask option), a high-level input leakage current of 90 μ A (MAX.) flows only during 1.5 clocks after a read instruction has been executed to read out P11, P12, PM11, or PM12. Outside the 1.5 clocks after a read instruction, the current is 3 μ A (MAX.).
 - 3. When P70 to P74 do not contain the pull-down resistors (according to the specification of the mask option), a low-level input leakage current of $-150~\mu\text{A}$ (MAX.) flows only during 1.5 clocks after a read instruction has been executed to read out port 7 (P7) or port mode register 7 (PM7). Outside the 1.5 clocks after a read out instruction, the current is $-3~\mu\text{A}$ (MAX.).
 - 4. Current which flows in the built-in pull-up or pull-down resistor is not included.

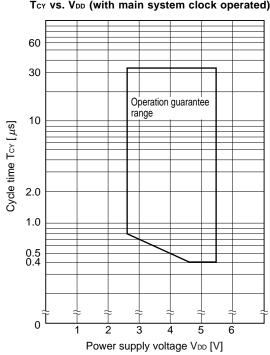
Remark Unless otherwise specified, the characteristics of a shared pin are the same as those of a port pin.

DC CHARACTERISTICS (TA = -40 to +85 °C, VDD = 2.7 to 5.5 V)

Parameter	Symbol	Condition	s	MIN.	TYP.	MAX.	Unit
Power supply	I _{DD1}	5.0 MHz crystal oscillation	V _{DD} = 5.0 V ±10 % Note 2		7.2	21.6	mA
current ^{Note} 1		Operating mode	V _{DD} = 3.0 V ±10 % Note 3		0.9	2.7	mA
	I _{DD2}	5.0 MHz crystal oscillation	V _{DD} = 5.0 V ±10 %		1.3	3.9	mA
		HALT mode	V _{DD} = 3.0 V ±10 %		550	1650	μΑ
	IDD3	32.768 kHz crystal oscillation	V _{DD} = 5.0 V ±10 %		60	120	μΑ
		Operating mode ^{Note 4}	V _{DD} = 3.0 V ±10 %		35	70	μΑ
	I _{DD4}	32.768 kHz crystal oscillation	V _{DD} = 5.0 V ±10 %		25	50	μΑ
		HALT mode ^{Note 4}	V _{DD} = 3.0 V ±10 %		5	10	μΑ
	I _{DD5}	XT1 = 0 V STOP mode	V _{DD} = 5.0 V ±10 %		1	20	μΑ
		Feedback resistor connected	V _{DD} = 3.0 V ±10 %		0.5	10	μΑ
	I _{DD6}	XT1 = 0 V STOP mode	V _{DD} = 5.0 V ±10 %		0.1	20	μΑ
		Feedback resistor not connected	V _{DD} = 3.0 V ±10 %		0.05	10	μΑ

Notes 1. This current excludes the AVREF current, port current, and current which flows in the built-in pull-down resistor (mask option).

- 2. When operating at high-speed mode (when the processor clock control register (PCC) is set to 00H)
- 3. When operating at low-speed mode (when the PCC is set to 04H)
- 4. When the main system clock is stopped


AC CHARACTERISTICS

(1) Basic operation ($T_A = -40 \text{ to } +85 \text{ °C}$, $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Conditions	Conditions			MAX.	Unit
Cycle time	Тсч	Operated with main system clock	V _{DD} = 4.5 to 5.5 V	0.4		32	μs
(minimum instruction				0.8		32	μs
execution time)		Operated with subsystem clock		40Note 1	122	125	μs
TI1, 2 input	f⊤ı	V _{DD} = 4.5 to 5.5 V		0		2	MHz
frequency				0		138	kHz
TI1, 2 input high, low-level	tтıн	V _{DD} = 4.5 to 5.5 V		250			ns
width	t⊤ı∟			3.6			μs
Interrupt input high,	tinth	INTP0		8/f _{sam} Note 2			μs
low-level width	t INTL	INTP1-INTP3		10			μs
RESET low- level width	trsL			10			μs

Notes 1. Value when external clock input is used as subsystem clock. When crystal is used, the value becomes 114 μ s.

2. Selection of $f_{sam} = f_{x/2}^{N+1}$, $f_{x/64}$, $f_{x/128}$ is available (N = 0 to 4) by bits 0 and 1 (SCS0, SCS1) of sampling clock select register (SCS).

Tcy vs. VDD (with main system clock operated)

(2) Serial interface ($T_A = -40 \text{ to } +85 \text{ °C}$, $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$)

(a) Serial interface channel 0

(i) Three-wire serial I/O mode (SCK0: Internal clock output)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy1	V _{DD} = 4.5 to 5.5 V		800			ns
				3200			ns
SCK0 high, low-level width	t _{KH1}	V _{DD} = 4.5 to 5.5 V		tkcy1/2 - 50			ns
	t _{KL1}			tксү1/2 – 150			ns
SI0 setup time to SCK0↑	tsik1			100			ns
SI0 hold time from SCK0↑	tksi1			400			ns
$\overline{\text{SCK0}} \downarrow \rightarrow \text{SO0 output}$	tkso1	C = 100 pF ^{Note}	V _{DD} = 4.5 to 5.5 V			300	ns
delay time						1000	ns

Note C is a load capacitance of the SCK0 or SO0 output line.

(ii) Three-wire serial I/O mode (SCK0: External clock input)

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy2	V _{DD} = 4.5 to 5.5 V		800			ns
				3200			ns
SCK0 high, low-level width	t KH2	V _{DD} = 4.5 to 5.5 V		400			ns
	t KL2			1600			ns
SI0 setup time to SCK0↑	t sık2	V _{DD} = 4.5 to 5.5 V		100			ns
SI0 hold time from SCK0↑	tksi2			400			ns
SCK0↓→ SO0 output	tkso2	C = 100 pF ^{Note}	V _{DD} = 4.5 to 5.5 V			300	ns
delay time						1000	ns
SCK0 rise time and fall time	t _{R2}					160	ns
	t F2						

Note C is a load capacitance of the SO0 output line.

(iii) SBI mode (SCK0: Internal clock output)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксүз	V _{DD} = 4.5 to 5.5 V		800			ns
				3200			ns
SCK0 high, low-level width	t кнз	V _{DD} = 4.5 to 5.5 V		tксүз/2 – 50			ns
	t KL3			tксүз/2 – 150			ns
SB0, SB1 setup time to SCK0↑	t sık3	V _{DD} = 4.5 to 5.5 V		100			ns
				300			ns
SB0, SB1 hold time from SCK0↑	t ksi3			tксүз/2			ns
SCK0↓→SB0, SB1 output	tkso3	$R = 1 k\Omega$,	V _{DD} = 4.5 to 5.5 V	0		250	ns
delay time		C = 100 pF ^{Note}		0		1000	ns
SCK0↑→SB0, SB1↓	tкsв			tксүз			ns
SB0, SB1 $\downarrow \rightarrow \overline{SCK0} \downarrow$	t sbk			tксүз			ns
SB0, SB1 high-level width	tsвн			tксүз			ns
SB0, SB1 low-level width	tsbl			tксүз			ns

Note R is a load resistance of the $\overline{SCK0}$, SB0, or SB1 output line, and C is its load capacitance.

(iv) SBI mode (SCK0: External clock input)

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy4	V _{DD} = 4.5 to 5.5 V		800			ns
				3200			ns
SCK0 high, low-level width	t _{KH4}	V _{DD} = 4.5 to 5.5 V		400			ns
	t KL4			1600			ns
SB0, SB1 setup time to SCK0↑	tsık4	V _{DD} = 4.5 to 5.5 V		100			ns
				300			ns
SB0, SB1 hold time from SCK0↑	t KSI4			tксү4/2			ns
SCK0↓→SB0, SB1 output	tkso4	$R = 1 k\Omega$,	V _{DD} = 4.5 to 5.5 V	0		300	ns
delay time		C = 100 pF ^{Note}		0		1000	ns
SCK0↑→SB0, SB1↓	tкsв			tkcy4			ns
SB0, SB1↓→ SCK0 ↓	tsвк			tkcy4			ns
SB0, SB1 high-level witdh	tsвн			tkcy4			ns
SB0, SB1 low-level width	tsbl			tkcy4			ns
SCK0 rise time and fall time	t _{R4}					160	ns

Note R is a load resistance of the SB0 or SB1 output line, and C is its load capacitance.

(v) Two-wire serial I/O mode (SCK0: Internal clock output)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy5	$R = 1 k\Omega$,	V _{DD} = 4.5 to 5.5 V	1600			ns
		C = 100 pF ^{Note}		3800			ns
SCK0 high-level width	t кн5			tkcy5/2 - 160			ns
SCK0 low-level width	t _{KL5}			tkcy5/2 - 50			ns
SB0, SB1 setup time to SCK0↑	tsik5			300			ns
SB0, SB1 hold time from SCK0↑	tksi5			600			ns
$\overline{\text{SCK0}} \downarrow \rightarrow \text{SB0}$, SB1 output	t KSO5		V _{DD} = 4.5 to 5.5 V	0		250	ns
delay time				0		1000	ns

Note R is a load resistance of the $\overline{SCK0}$, SB0, or SB1 output line, and C is its load capacitance.

(vi) Two-wire serial I/O mode (SCK0: External clock input)

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy6	V _{DD} = 4.5 to 5.5 V		1600			ns
				3800			ns
SCK0 high-level width	t кн6			650			ns
SCK0 low-level width	t KL6			800			ns
SB0, SB1 setup time to SCK0↑	tsik6			100			ns
SB0, SB1 hold time from SCK0↑	tksi6			tксу6/2			ns
$\overline{\text{SCK0}} \downarrow \rightarrow \text{SB0}$, SB1 output	tkso6	$R = 1 k\Omega$,	V _{DD} = 4.5 to 5.5 V	0		300	ns
delay time		C = 100 pF ^{Note}		0		1000	ns
SCK0 rise time and fall time	tre tre					160	ns

Note R is a load resistance of the SB0 or SB1 output line, and C is its load capacitance.

(b) Serial interface channel 1

(i) Three-wire serial I/O mode (SCK1: Internal clock output)

Parameter	Symbol	Con	nditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcy7	V _{DD} = 4.5 to 5.5 V		800			ns
				3200			ns
SCK1 high, low-level width	t кн7	V _{DD} = 4.5 to 5.5 V		tксүт/2 - 50			ns
	t _{KL7}			tксүт/2 - 150			ns
SI1 setup time to SCK1↑	tsik7			100			ns
SI1 hold time from SCK1↑	tksi7			400			ns
SCK1↓→ SO1 output delay	t ks07	C = 100 pF ^{Note}	V _{DD} = 4.5 to 5.5 V			300	ns
time						1000	ns

Note $\,$ C is a load capacitance of the $\overline{\text{SCK1}}$ or SO1 output line.

(ii) Three-wire serial I/O mode (SCK1: External clock input)

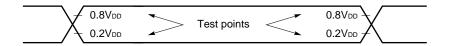
Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcy8	V _{DD} = 4.5 to 5.5 V		800			ns
				3200			ns
SCK1 high, low-level width	t _{KH8}	V _{DD} = 4.5 to 5.5 V		400			ns
	t _{KL8}			1600			ns
SI1 setup time to SCK1↑	tsik8	V _{DD} = 4.5 to 5.5 V		100			ns
SI1 hold time from SCK1↑	tksi8			400			ns
SCK1↓→ SO1 output delay	tkso8	C = 100 pF ^{Note}	V _{DD} = 4.5 to 5.5 V			300	ns
time						1000	ns
SCK1 rise time and fall time	t _{R8}					160	ns
	t F8						

Note C is a load capacitance of the SO1 output line.

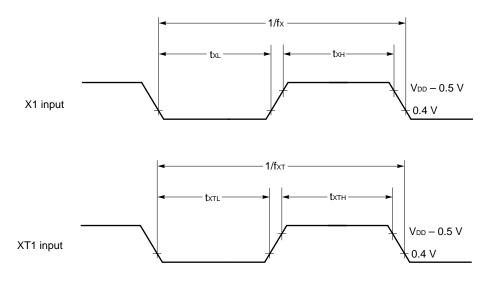
(iii) 3-wire serial I/O mode with automatic transmission/reception function (SCK1: internal clock output)

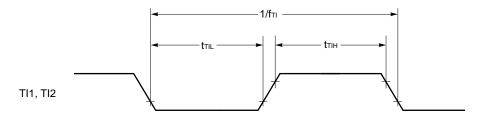
Parameter	Symbol	Cor	ditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	t KCY9	V _{DD} = 4.5 to 5.5 V		800			ns
				3200			ns
SCK1 high, low-level width	t кн9	V _{DD} = 4.5 to 5.5 V		tксү9/2 – 50			ns
	t KL9			tксүе/2 - 150			ns
SI1 setup time to SCK1↑	tsik9			100			ns
SI1 hold time from SCK1↑	t KSI9			400			ns
SCK1↓→SO1 output delay time	tks09	C = 100 pF ^{Note}	V _{DD} = 4.5 to 5.5 V			300	ns
						1000	ns
SCK1↑→STB∞	t sbd			tксу9/2 - 100		tkcy9/2 + 100	ns
Strobe signal high level width	t sbw			tксү9 – 30		tксү9 + 30	ns
Busy signal setup time (to busy signal detection timing)	t _{BYS}			100			ns
Busy signal hold time (to busy signal detection timing)	tвүн			100			ns
Busy inactive \rightarrow SCK1 \downarrow	tsps					2t ксү9	ns

Note C is a load capacitance of the $\overline{SCK1}$ or SO1 output line.

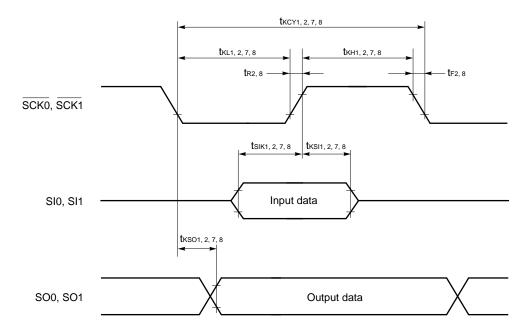

(iv) 3-wire serial I/O mode with automatic transmission/reception function (SCK1: external clock input)

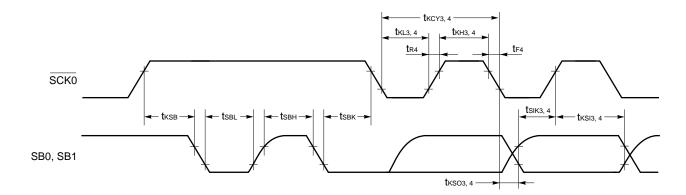
Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tKCY10	V _{DD} = 4.5 to 5.5 V		800			ns
				3200			ns
SCK1 high, low-level width	t KH10	V _{DD} = 4.5 to 5.5 V		400			ns
	tKL10			1600			ns
SI1 setup time to SCK1↑	t sik10			100			ns
SI1 hold time from SCK1↑	t KSI10			400			ns
SCK1↓→ SO1 output delay	t KSO10	C = 100 pF ^{Note}	V _{DD} = 4.5 to 5.5 V			300	ns
time						1000	ns
SCK1 rise time and fall time	t R10					160	ns
	t F10						


Note C is a load capacitance of the SO1 output line.

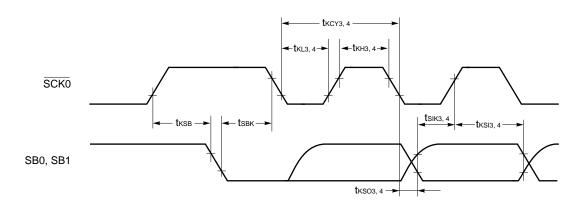

AC timing test points (except X1, XT1 input)

Clock timing

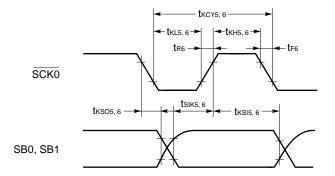

TI timing



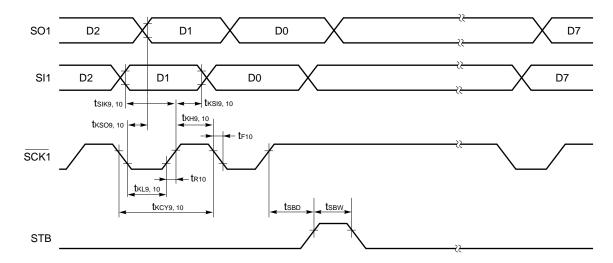
Serial transfer timing

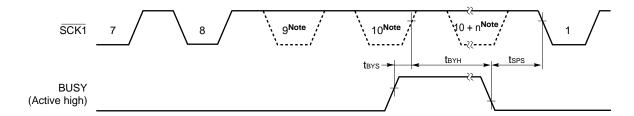

3-wire serial I/O mode:

SBI mode (bus release signal transfer):



SBI mode (command signal transfer):




2-wire serial I/O mode:

3-wire serial I/O mode with automatic transmission/reception function:

3-wire serial I/O mode with automatic transmission/reception function (busy processing):

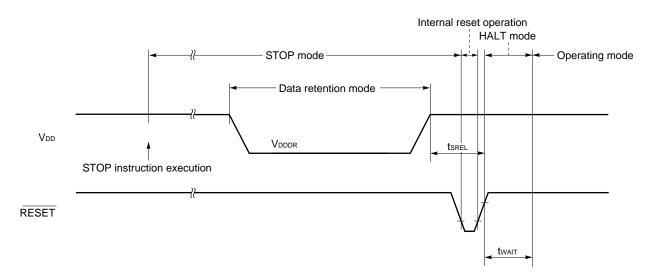
Note SCK does not become low actually at this point, but is indicated so to conform to the timing specification.

A/D CONVERTER CHARACTERISTICS ($T_A = -40 \text{ to } +85 \text{ °C}$, $AV_{DD} = V_{DD} = 4.0 \text{ to } 5.5 \text{ V}$, $AV_{SS} = V_{SS} = 0 \text{ V}$)

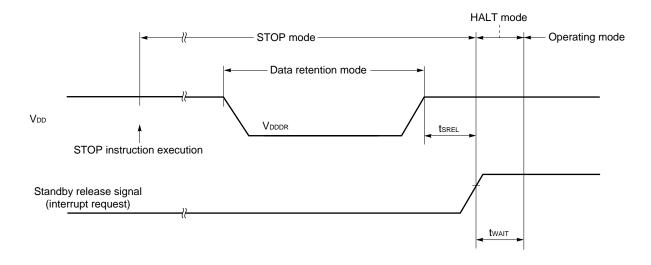
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Total error Note 1					0.8	%
Conversion time ^{Note 2}	tconv	1 MHz - fx - 5.0 MHz	19.1		200	μs
Sampling time ^{Note 3}	t samp		2.86		30	μs
Analog signal input voltage	VIAN		AVss		AVREF	V
Reference voltage	AVREF		4.0		AV _{DD}	V
AVREF resistor	Ravref		4	14		kΩ
AV _{DD} current	Aldd			200	400	μΑ

Notes 1. Quantization error (±1/2LSB) is not included. This parameter is indicated as the ratio to the full-scale value.

- **2.** Set the A/D conversion time to 19.1 μ s or more.
- 3. Sampling time depends on the conversion time.

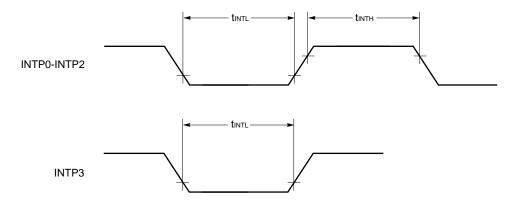


DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS ($T_A = -40 \text{ to } +85 \text{ °C}$)

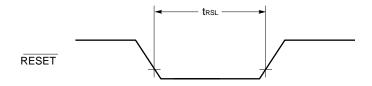

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		2.0		5.5	V
Data retention supply current	IDDDR	VDDDR = 2.0 V Subsystem clock stopped Feedback resistor not connected		0.1	10	μΑ
Release signal set time	tsrel		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁷ /fx		ms
wait time		Release by interrupt		Note		ms

Note Selection of 2^{12} /fx, 2^{14} /fx to 2^{17} /fx is available by bits 0 to 2 (OSTS0 to OSTS2) of oscillation settling time select register (OSTS).

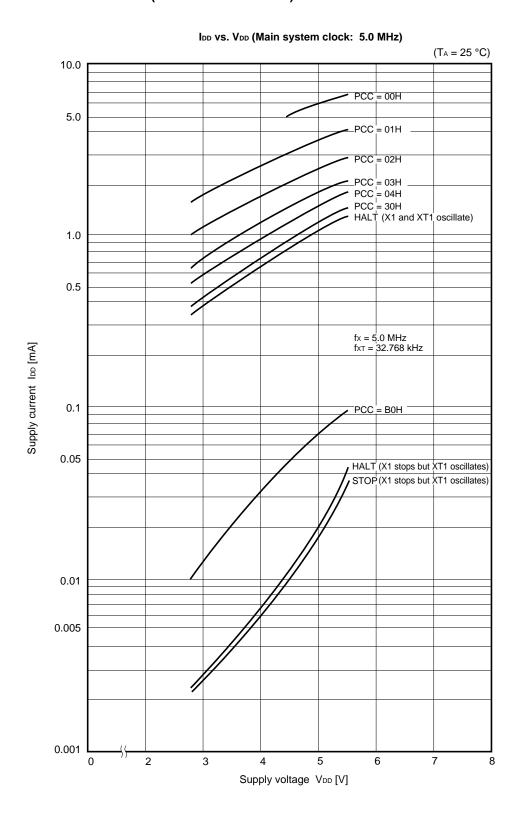
Data retention timing (STOP mode release by RESET)

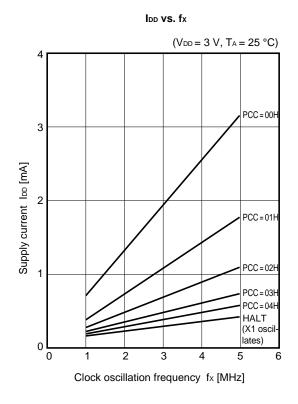


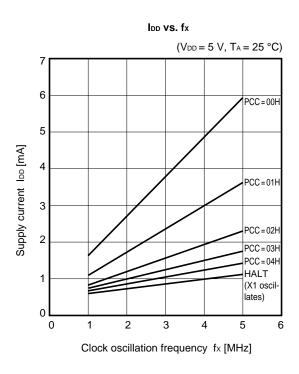
Data retention timing (standby release signal: STOP mode release by interrupt signal)

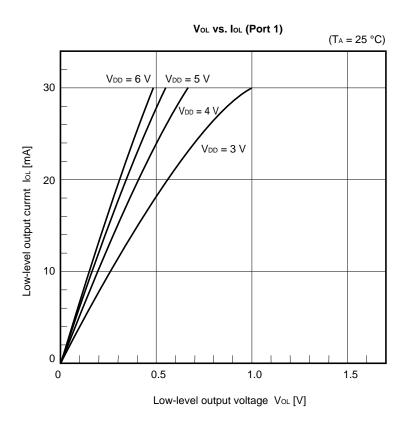


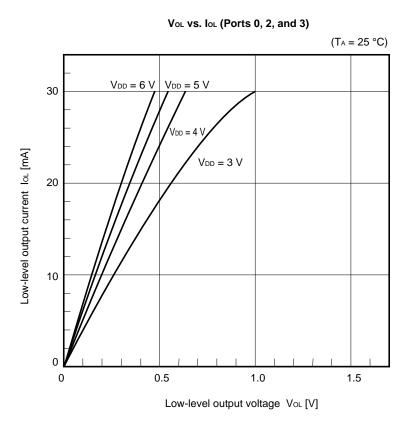
Interrupt input timing

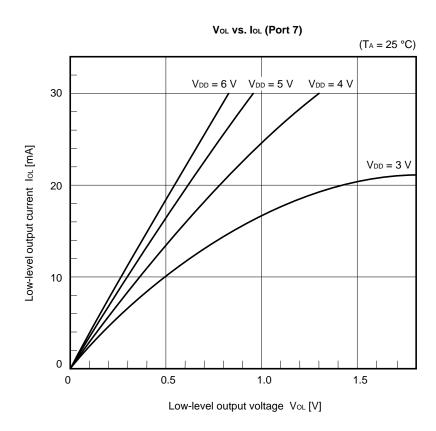


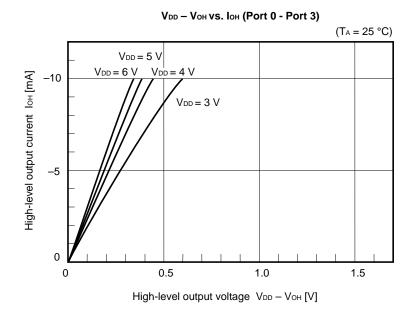

RESET input timing

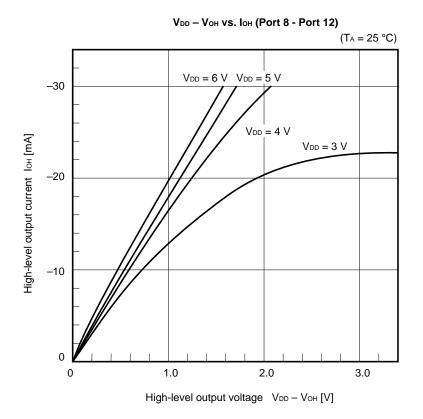


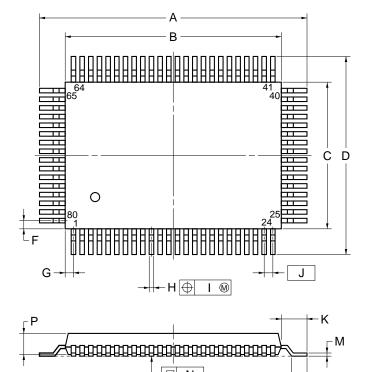


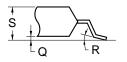

★ 11. CHARACTERISTIC CURVE (REFERENCE VALUE)











12. PACKAGE DRAWING

80 PIN PLASTIC QFP (14×20)

detail of lead end

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	23.6±0.4	0.929±0.016
В	20.0±0.2	$0.795^{+0.009}_{-0.008}$
С	14.0±0.2	0.551 ^{+0.009} _{-0.008}
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	0.8	0.031
Н	0.35±0.10	0.014+0.004
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
K	1.8±0.2	$0.071^{+0.008}_{-0.009}$
L	0.8±0.2	0.031+0.009
М	0.15 ^{+0.10} -0.05	0.006+0.004
N	0.10	0.004
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.

P80GF-80-3B9-3

Remark The shape and material of the ES version are the same as those of the corresponding mass-produced product.

★ 13. RECOMMENDED SOLDERING CONDITIONS

The conditions listed below shall be met when soldering the μ PD78042F, μ PD78043F, μ PD78044F, or μ PD78045F.

For details of the recommended soldering conditions, refer to our document *Semiconductor Device Mounting Technology Manual* (C10535E).

Please consult with our sales offices in case any other soldering process is used, or in case soldering is done under different conditions

Table 13-1 Soldering Conditions for Surface-Mount Devices

μPD78042FGF-xxx-3B9: 80-pin plastic QFP (14 × 20 mm) μPD78043FGF-xxx-3B9: 80-pin plastic QFP (14 × 20 mm) μPD78044FGF-xxx-3B9: 80-pin plastic QFP (14 × 20 mm) μPD78045FGF-xxx-3B9: 80-pin plastic QFP (14 × 20 mm)

Soldering process	Soldering conditions	Recommended conditions
Infrared ray reflow	Peak package's surface temperature: 235 °C Reflow time: 30 seconds or less (210 °C or more) Maximum allowable number of reflow processes: 3	IR35-00-3
VPS	Peak package's surface temperature: 215 °C Reflow time: 40 seconds or less (200 °C or more) Maximum allowable number of reflow processes: 3	VP15-00-3
Wave soldering	Solder temperature: 260 °C or less Flow time: 10 seconds or less Number of flow processes: 1 Preheating temperature : 120 °C max. (measured on the package surface)	WS60-00-1
Partial heating method	Terminal temperature: 300 °C or less Heat time: 3 seconds or less (for one side of a device)	_

Caution Do not apply two or more different soldering methods to one chip (except for partial heating method for terminal sections).

APPENDIX A DEVELOPMENT TOOLS

The following tools are available for development of systems using the μ PD78042F, μ PD78043F, μ PD78044F, or μ PD78045F.

Language processing software

RA78K/0Notes 1, 2, 3, 4	Assembler package common to 78K/0 series
CC78K/0Notes 1, 2, 3, 4	C compiler package common to 78K/0 series
DF78044Notes 1, 2, 3, 4	Device file for μ PD78044A subseries
CC78K/0-LNotes 1, 2, 3, 4	C compiler library source file common to 78K/0 series

PROM writing tools

PG-1500	PROM programmer
PA-78P048GF PA-78P048KL-S	Programmer adapter connected to PG-1500
PG-1500 controller Notes 1, 2	Control program for PG-1500

Debugging tools

IE-78000-R	In-circuit emulator common to 78K/0 series	
IE-78000-R-A ^{Note 8}	In-circuit emulator common to 78K/0 series (for integrated debugger)	
IE-78000-R-BK	Break board common to 78K/0 series	
IE-78044-R-EM	Emulation board for evaluating μ PD78044A subseries	
EP-78130GF-R	Emulation probe common to μ PD78134	
EV-9200G-80	Socket mounted on target system created for 80-pin plastic QFP	
SM78K0Notes 5, 6, 7	System simulator common to 78K/0 series	
ID78K0Notes 4, 5, 6, 7, 8	Integrated debugger for IE-78000-R-A	
SD78K/0 ^{Notes 1, 2}	Screen debugger for IE-78000-R	
DF78044Notes 1, 2, 5, 6, 7	Device file common to µPD78044A subseries	

Real-time OS

RX78K/0Notes 1, 2, 3, 4	Real-time OS for 78K/0 series
MX78K0Notes 1, 2, 3, 4	OS for 78K/0 series

Notes 1. PC-9800 series (MS-DOSTM) based

- 2. IBM PC/ATTM and compatible (PC DOSTM/IBM DOSTM/MS-DOS) based
- 3. HP9000 series 300TM (HP-UXTM) based
- **4.** HP9000 series 700TM (HP-UX) based, SPARCstationTM (SunOSTM) based, EWS-4800 series (EWS-UX/V) based
- 5. PC-9800 series (MS-DOS + WindowsTM) based
- 6. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS + Windows) based
- 7. NEWSTM (NEWS-OSTM) based
- 8. Under development

*

*

Fuzzy inference development support system

FE9000 ^{Note 1} /FE9200 ^{Note 3}	Fuzzy knowledge data creation tool
FT9080Note 1/FT9085Note 2	Translator
FI78K0Notes 1, 2	Fuzzy inference module
FD78K0Notes 1, 2	Fuzzy inference debugger

- Notes 1. PC-9800 series (MS-DOS) based
 - 2. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS) based
 - 3. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS + Windows) based
- Remarks 1. Please refer to the 78K/O Series Selection Guide (U11126E) for information on third party development tools
 - **2.** RA78K/0, CC78K/0, SM78K/0, ID78K0, SD78K/0, and RX78K/0 are used in combination with DF78044.

APPENDIX B RELATED DOCUMENTS

• Documents Related to Devices

Document name	Document No.	
Document name	Japanese	English
μPD78044F Sub-Series User's Manual	U10908J	U10908E
μPD78042F, 78043F, 78044F, 78045F Data Sheet	U10700J	This manual
μPD78P048A Data Sheet	U10611J	U10611E
μ PD78044A, 78044F Sub-Series Special Function Registers	U10701J	_
78K/0 Series User's Manual, Instruction	IEU-849	IEU-1372
78K/0 Series Instruction Summary Sheet	U10903J	_
78K/0 Series Instruction Set	U10904J	_

• Documents Related to Development Tools (User's Manual)

Document name		Docu	Document No.	
		Japanese	English	
RA78K Series Assembler Package	Operation	EEU-809	EEU-1399	
	Language	EEU-815	EEU-1404	
RA78K Series Structured Assembler Preproce	essor	EEU-817	EEU-1402	
CC78K Series C Compiler	Operation	EEU-656	EEU-1280	
	Language	EEU-655	EEU-1284	
CC78K/0 Compiler Application Note	Programming Know-How	EEA-618	EEA-1208	
CC78K Series Library Source File		EEU-777		
PG-1500 PROM Programmer		EEU-651	EEU-1335	
PG-1500 Controller PC-9800 Series (MS-DO	S) Base	EEU-704	EEU-1291	
PG-1500 Controller IBM PC Series (PC DOS	i) Base	EEU-5008	U10540E	
IE-78000-R		EEU-810	U11376E	
IE-78000-R-A		U10057J	U10057E	
IE-78000-R-BK		EEU-867	EEU-1427	
IE-78044-R-EM		EEU-833	EEU-1424	
EP-78130GF-R		EEU-943	EEU-1470	
SM78K0 System Simulator	Reference	EEU-5002	U10181E	
SM78K Series System Simulator	External Parts User Open Interface Specifications	U10092J	U10092E	
ID78K0 Integrated Debugger	Reference	U11151J	_	
SD78K/0 Screen Debugger	Tutorial	EEU-852	U10539E	
PC-9800 Series (MS-DOS) Base	Reference	EEU-816	_	
SD78K/0 Screen Debugger	Tutorial	EEU-5024	EEU-1414	
IBM PC/AT (PC DOS) Base	Reference	U11279J	EEU-1413	

Caution The above documents may be revised without notice. Use the latest versions when you design an application system.

67

• Documents Related to Software to Be Incorporated into the Product (User's Manual)

Document name		Document No.	
		Japanese	English
78K/0 Series Real-Time OS	Basic	EEU-912	_
	Installation	EEU-911	_
	Technical	EEU-913	_
OS for 78K/0 Series MX78K0	Basic	EEU-5010	_
Tool for Creating Fuzzy Knowledge Data		EEU-829	EEU-1438
78K/0, 78K/II, and 87AD Series Fuzzy Inference Development Support System, Translator		EEU-829	EEU-1444
78K/0 Series Fuzzy Inference Development Support System, Fuzzy Inference Module		EEU-858	EEU-1441
78K/0 Series Fuzzy Inference Development Support System, Fuzzy Inference Debugger		EEU-921	EEU-1458

• Other Documents

Document name	Document No.	
Document name	Japanese	English
IC PACKAGE MANUAL	C10943X	
SMD Surface Mount Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Device	IEI-620	IEI-1209
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	_
Guide to Quality Assurance for Semiconductor Device	MEI-603	MEI-1202
Guide for Products Related to Micro-Computer: Other Companies	MEI-604	_

Caution The above documents may be revised without notice. Use the latest versions when you design an application system.

*

[MEMO]

Cautions on CMOS Devices

Countermeasures against static electricity for all MOSs

Caution When handling MOS devices, take care so that they are not electrostatically charged.

Strong static electricity may cause dielectric breakdown in gates. When transporting or storing MOS devices, use conductive trays, magazine cases, shock absorbers, or metal cases that NEC uses for packaging and shipping. Be sure to ground MOS devices during assembling. Do not allow MOS devices to stand on plastic plates or do not touch pins.

Also handle boards on which MOS devices are mounted in the same way.

CMOS-specific handling of unused input pins

Caution Hold CMOS devices at a fixed input level.

Unlike bipolar or NMOS devices, if a CMOS device is operated with no input, an intermediate-level input may be caused by noise. This allows current to flow in the CMOS device, resulting in a malfunction. Use a pull-up or pull-down resistor to hold a fixed input level. Since unused pins may function as output pins at unexpected times, each unused pin should be separately connected to the VDD or GND pin through a resistor.

If handling of unused pins is documented, follow the instructions in the document.

Statuses of all MOS devices at initialization

Caution The initial status of a MOS device is unpredictable when power is turned on.

Since characteristics of a MOS device are determined by the amount of ions implanted in molecules, the initial status cannot be determined in the manufacture process. NEC has no responsibility for the output statuses of pins, input and output settings, and the contents of registers at power on. However, NEC assures operation after reset and items for mode setting if they are defined.

When you turn on a device having a reset function, be sure to reset the device first.

FIP is a trademark of NEC Corporation.

IEBus is trademark of NEC Corporation.

MS-DOS and Windows are trademarks of Microsoft Corporation.

IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.

HP9000 series 300, HP9000 series 700, and HP-UX are trademarks of Hewlett-Packard.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of SONY Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Mountain View, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby Sweden Tel: 8-63 80 820 Fax: 8-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130

Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

J96. 3

Note that "preliminary" is not indicated in this document, even though the related documents may be preliminary versions.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.

M4 94.11