
Features

- Fast Read Access Time 20 ns
- Low Power

100 mA Maximum (Active) 0.1 mA Maximum (Standby)

- . Fully Static: No Clock Required
- Two Control Inputs (CE and OE)
- TTL Compatible Inputs and Outputs
- 5 V ± 10% Supply
- 28-Lead Dual In-line and Surface Mount Packages
- JEDEC Pinout
- Commercial and Industrial Temperature Ranges

Block Diagram

Description

The AT38H256 is a high performance CMOS static Random Access Memory. Its 256K of memory is organized as 32768 words by eight bits. Manufactured with an advanced CMOS technology, the AT38H256 offers access times down to 20 ns. When the AT38H256 is deselected, the standby current is just 0.1 mA.

The AT38H256 powers down to the standby mode when deselected (\overline{CE}) is HIGH). The I/O pins remain in the high impedance state unless the chip is selected (\overline{CE} is LOW), the outputs are enabled (\overline{OE} is LOW), and Write Enable is not active (\overline{WE} is HIGH).

The AT38H256 is completely TTL compatible and requires a single five-volt power supply. The device is fully static and does not need any clocks or refresh control signals for operation.

Pin Configurations

For .300 DIP/.600 DIP/.300 SOJ

Pin Name	Function
A0-A14	Addresses
I/O ₁ -I/O ₈	Outputs
CE	Chip Enable
ŌĒ	Output Enable
WE	Write Enable
Vcc, GND	Power, Ground

A14 A12 A7 A6 A5 A4 A3 A2 A1 A0		1 2 3 4 5 6 7 8 9	~	28 27 26 25 24 23 22 21 20 19		VCC WE A13 A8 A9 A11 OE A0 CE I/O8	
A2 A0 I/O1 I/O2 I/O3 GND	0000000	9		21 20 19 18 17 16 15	200000	CE	

256K (32K x 8) CMOS SRAM

Absolute Maximum Ratings*

Temperature Under Bias55° C to 125° C
Storage Temperature65° C to 150° C
All Input Voltages (including NC Pins) with Respect to Ground0.3 V ⁽¹⁾ to V _{CC} + 0.3 V
All Output Voltages with Respect to Ground0.3 V ⁽¹⁾ to Vcc + 0.3 V
Maximum Supply Voltage+7.0 V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note:

 Minimum input voltages are -3.5 V for pulse width less than 20 ns.

Device Operation

READ: When \overline{CE} is LOW, \overline{OE} is LOW, and \overline{WE} is HIGH, the eight bits of data stored at the memory location determined by the address input (pins A_0 through A_{14}) are inserted on the data outputs (pins I/O₁ through I/O₈).

WRITE: When \overline{CE} is LOW and \overline{WE} is LOW, the eight bits of data placed on the input pins (I/O₁ through I/O₈) are stored at the memory location determined by the address input (pins A₀ through A₁₄).

Operating Modes

MODERNI		<u> </u>	WE	
MODE\PIN	CE	OE	WE	1/0
Read	L	L	Н	Dout
Write	L	X ⁽¹⁾	L	DIN
Standby (Not Selected)	н	X	X	High Z
Output Disable (High Impedance)	X	н	Х	High Z

Note: 1. X can be L (Low) or H (High)

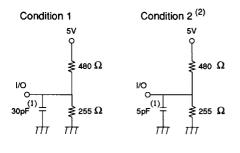
D.C. and A.C. Operating Range

		AT38H256
Operating	Commercial	0°C - 70°C
Temperature (Ambient)	Industrial	-40°C - 85°C
Vcc Power Supply		5 V ± 10%

D.C. and Operating Characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Units
lu	Input Load Current	VIN = 0 to VCC				2	μΑ
ILO	Output Leakage Current	\overline{CE} = 2.2 V to V _{CC} + 0.3 V or \overline{OE} = 2.2 V to V _{CC} + 0.3 V or \overline{WE} = -0.3 V to 0.8 V V _{I/O} = 0 to V _{CC}				2	μА
İSB1	Standby Current	CE ≥ Vcc - 0.2 V,	Com.			0.1	mA
1281	(CMOS)	$V_{IN} = (V_{CC} - 0.2 \text{ V}) \text{ or } \le 0.2 \text{ V}$	Ind.			1.0	mA
ISB2	Standby Current (TTL)	CE = 2.2 V to V _{CC} +0.3 V, V _{IN} = V _{IL} or V _{IH}				25	mA
Icc	V _{CC} Active Current (TTL)	CE = -0.3 V to 0.8 V, I _{OUT} = 0 mA, min cycle				100	mA
V _{IL} (1)	Input Low Voltage			-0.3 ⁽²⁾		0.8	٧
V _{IH} ⁽¹⁾	Input High Voltage			2.2 V		Vcc + 0.3	٧
VoL	Output Low Voltage	loL = 8.0 mA				0.4	٧
Vон	Output High Voltage	I _{OH} = -4.0 mA		2.4			٧

Note: 1. These are voltages with repect to device GND. 2. $V_{IL} = -3.0 \text{ V}$ for pulse width less than 20 ns.


Pin Capacitance (f = 1 MHz, T = 25°C) (1)

Symbol	Parameter	Conditions	Min	Max	Units
Соит	Input/Output Capacitance	Vout = 0 V		10	pF
CIN	Input Capacitance	VIN = 0 V		10	pF

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Output Test Load

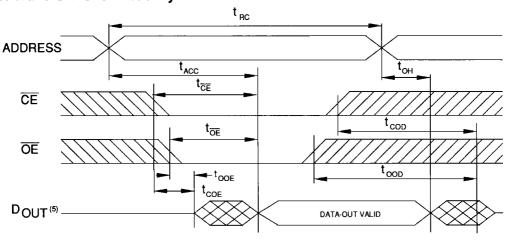
Figure 1

Item	Condition
Input pulse "High" level	V _{IH} = 3.0 V
Input pulse "Low" level	VIL = 0 V
Input rise time	t _R = 5 ns
Input fall time	tr = 5 ns
Input and output reference level	1.5 V
Output load	See Figure 1

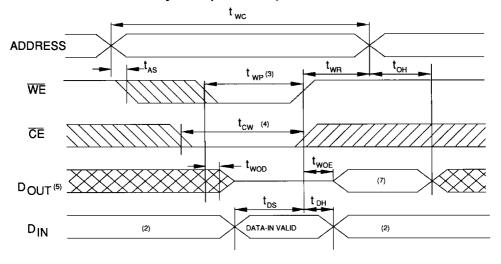
Notes: 1. Capacitance Load includes scope and jig capacitances.

2. For tooe, tooe, tood, tood, twoe, twod.

A.C. Characteristics for Read

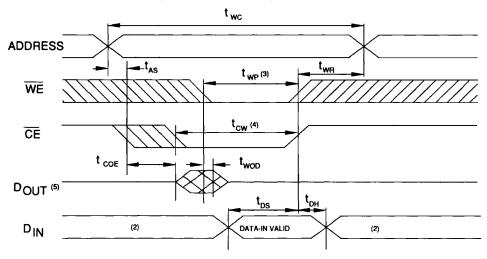

		AT38	AT38H256-20		AT38H256-25		AT38H256-35	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units
trc	Read Cycle Time	20		25		35		ns
tacc	Address Access Time		20		25		35	ns
tCE	CE Access Time		20		25		35	ns
TOE	OE Access Time		12		12		20	ns
tон	Output Hold Time	5		5		5	-	ns
tcoE (1)	CE Output Enable Time	5		5		5		ns
tooe (1)	OE Output Enable Time	0		0		0		ns
tcop (1)	CE Output Disable Time		10		10		15	ns
toop (1)	OE Output Disable Time		13		13		15	ns

A.C. Characteristics for Write


			AT38H256-20		AT38H256-25		AT38H256-35	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units
twc	Write Cycle Time	20		25		35		ns
tas	Address Setup Time	0		0		0		ns
twp	Write Pulse Width	15		20		30		ns
tcw	CE Setup Time	15		20		30		ns
twn	Write Recovery Time	2		2		2		ns
tos	Data Setup Time	12		12		15		ns
tон	Data Hold Time	0		0		0		ns
twoe (1)	WE Output Enable Time	0		0		0		ns
twop (1)	WE Output Disable Time		8		13		15	ns

Note: 1. Transition is measured by ± 500 mV from the normal state with the output test load circuit, condition 2. This parameter is sampled and is not 100% tested.

A.C. Waveforms for Read Cycle (1)



A.C. Waveforms for Write Cycle 1 (WE Write) (6)

A.C. Waveforms for Write Cycle 2 (WE Write) (6)

Notes:

- 1. During a Read Cycle, WE should be HIGH.
- 2. During this period, I/O pins are in the output state.
- A Write occurs when CE and WE are LOW at the same time.
 A Write begins at the latest transition among CE going LOW, and WE going LOW.
 - A Write ends at the earliest transition among \overline{CE} going HIGH, and \overline{WE} going HIGH.
 - twp is measured from the beginning of Write to the end of Write.
- tcw is measured from the later of CE going LOW or going HIGH to the end of Write.
- If CE or OE is HIGH, or WE is LOW, DOUT goes to a high impedance state.
- 6. During a write cycle, $\overline{OE} = V_{IH}$ or V_{IL} .
- 7. Dour is equal to the Input Data written during the same cycle.

Ordering Information

tacc (ne)	lcc	(mA)	Ordering Code	Package	Operation Range
(ns) Active Standby		Standby			
20	100	0.1	AT38H256-20NC AT38H256-20XC	28P3 28S2	Commercial (0° to 70°C)
20	100	1.0	AT38H256-20NI AT38H256-20XI	28P3 28S2	Industrial (-40° to 85°C)
25	100	0.1	AT38H256-25NC AT38H256-25XC	28P3 28S2	Commercial (0° to 70°C)
25	100	1.0	AT38H256-25NI AT38H256-25XI	28P3 28S2	Industrial (-40° to 85°C)
35	100	0.1	AT38H256-35NC AT38H256-35XC	28P3 28S2	Commercial (0° to 70°C)
35	100	1.0	AT38H256-35NI AT38H256-35XI	28P3 28S2	Industrial (-40° to 85°C)

	Package Type				
28P3	28 Lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)				
2852	28 Lead, 0.300" Wide, Plastic J-Leaded Small Outline (SOJ)				

