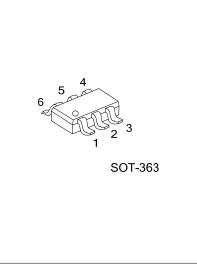


MMDT3904

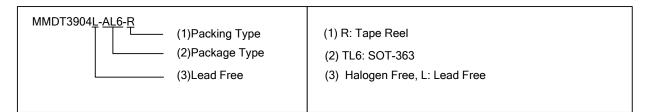
Preliminary NPN EPITAXIAL SILICON TRANSISTOR

DUAL NPN SMALL SIGNAL SURFACE MOUNT TRANSISTOR

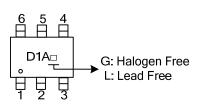

DESCRIPTION

The UTC **MMDT3904** is a dual NPN small signal surface mount transistor.

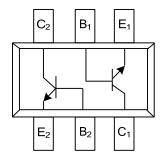
FEATURES


* Suitable for Low Power Amplification and Switching

- * Epitaxial Planar Die Construction
- * Extremely-Small Surface Mount Package



ORDERING INFORMATION


Ordering Number		Daakaga	Docking	
Lead Free	Halogen Free	Package	Packing	
MMDT3904L-AL6-R	MMDT3904G-AL6-R	SOT-363	Tape Reel	

MARKING

PIN CONFIGURATION

Preliminary NPN EPITAXIAL SILICON TRANSISTOR

■ ABSOLUTE MAXIMUM RATINGS (T_A=25°C unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Collector-Base Voltage	V _{CBO}	60	V
Collector-Emitter Voltage	V _{CEO}	40	V
Emitter-Base Voltage	V _{EBO}	6.0	V
Collector Current - Continuous	Ι _C	200	mA
Power Dissipation	PD	200	mW
Thermal Resistance, Junction to Ambient	θ_{JA}	625	°C/W
Junction Temperature	TJ	-55 ~ +150	°C
Storage Temperature	T _{STG}	-55 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (T_A =25°C unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS (Note 1)						
Collector-Base Breakdown Voltage	V _{(BR)CBO}	$I_{\rm C} = 10 \mu A, I_{\rm E} = 0$	60			V
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	$I_{\rm C} = 1.0 {\rm mA}, I_{\rm B} = 0$	40			V
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	$I_{\rm E} = 10 \mu A, I_{\rm C} = 0$	5.0			V
Collector Cut-off Current	ICEX	$V_{CE} = 30V, V_{EB(OFF)} = 3.0V$			50	nA
Base Cut-off Current	I _{BL}	$V_{CE} = 30V, V_{EB(OFF)} = 3.0V$			50	nA
ON CHARACTERISTICS (Note 1)						
DC Current Gain	h _{FE}	I _C = 100μA, V _{CE} = 1.0V	40			
		I _C = 1.0mA, V _{CE} = 1.0V	70			
		I _C = 10mA, V _{CE} = 1.0V	100		300	
		I _C = 50mA, V _{CE} = 1.0V	60			
		I _C = 100mA, V _{CE} = 1.0V	30			
Collector Emitter Saturation Voltage	V _{CE(sat)}	I _C = 10mA, I _B = 1.0mA			0.20	V
Collector-Emitter Saturation Voltage		$I_{\rm C}$ = 50mA, $I_{\rm B}$ = 5.0mA			0.30	V
Ress. Emitter Seturation Voltage	V _{BE(sat)}	$I_{\rm C}$ = 10mA, $I_{\rm B}$ = 1.0mA	0.65		0.85	V
Base- Emitter Saturation Voltage		I _C = 50mA, I _B = 5.0mA			0.95	V
SMALL SIGNAL CHARACTERISTIC	S					
Output Capacitance	C _{OBO}	$V_{CB} = 5.0V, f = 1.0MHz, I_E = 0$			4.0	pF
Input Capacitance	CIBO	$V_{EB} = 0.5V$, f = 1.0MHz, I _C = 0			8.0	pF
Input Impedance	hie		1.0		10	KΩ
Voltage Feedback Ratio	H _{RE}	V _{CE} = 10V, I _C = 1.0mA,	0.5		8.0	×10 ⁻⁴
Small Signal Current Gain	H _{FE}	f = 1.0kHz	100		400	
Output Admittance	HOE		1.0		40	μS
Current Gain-Bandwidth Product	f _T	V _{CE} = 20V, I _C = 10mA, f = 100MHz	300			MHz
Noise Figure	NF	V _{CE} = 5.0V, I _C = 100μA, R _S = 1.0kΩ, f = 1.0kHz			5.0	dB
SWITCHING CHARACTERISTICS						
Delay Time	T _D	$V_{CC} = 3.0V, I_{C} = 10mA,$			35	ns
Rise Time	T _R	V _{BE(off)} = - 0.5V, I _{B1} = 1.0mA			35	ns
Storage Time	Ts	V_{CC} = 3.0V, I_{C} = 10mA,			200	ns
Fall Time	T _F	$I_{B1} = I_{B2} = 1.0 \text{mA}$			50	ns

Note: 1. Short duration test pulse used to minimize self-heating.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

