MP1208/9/10

Microprocessor Compatible Double-Buffered, 12-Bit Digital-to-Analog Converter

FEATURES

- Lower Data Bus Feedthrough @ CS = 1
- Stable, More Accurate Segmented DAC Approach
- Ultra Stable
 - 0.2 ppm/°C Linearity Tempco
 - 2 ppm/°C Max Gain Error Tempco
- · Low Sensitivity to Amplifier VOS
- · Low Output Capacitance
- C_{OUT1} = 80 pF at Full Scale, Gives Fastest Settling Times, and Larger Stable Bandwidth capability

- Lower Glitch Emergy
- Four Quadrant Municipalication
- Guaranteed Mor otonic
- Low Feedthrough Land
- Low Power Consumption
- TTL/5 V CM 2S Compatible
- Latch-U Free
- -40 C 11 +63 C Operation
- 8-BinBus Version: MP123€A/7231A/1232A

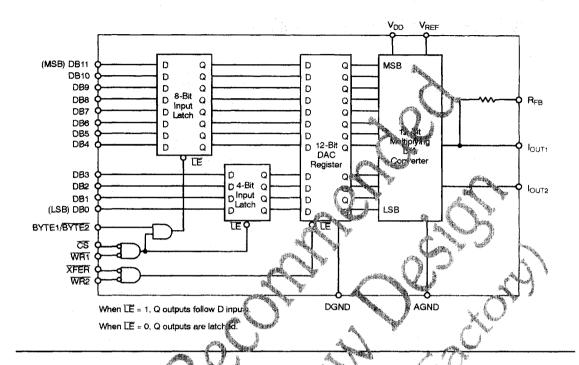
GENERAL DESCRIPTION

The MP1208/09/10 series are 12-bit Digital-to-Anana Converters with an 8/4 bit latched input interface and provide maximum flexibility in interfacing to LD data bits. All data loading and data transfer operations are identical to the WRITE cycle of a static RAM.

The MP1208 series use unique circuit which significantly reduces transients in massurplies during DATA bus transitions at $\overline{CS} = 1$.

The MP1208 series are ma ufactured using advanced thin film resistors on a double metal CMOS process. The MP1208 series is corporates a unique bit deducting technique yielding laws glisch, higher speed and excellent accorder to the proper and time. 2-bit linearity is achieved with minimal trimining. Obstantling features include:

Stability: Both integral and differential line and are rated at 0.2 ppm/°C typical, and monotonicity is guaranteed over the entire temperature range (-40 to +85°C). Scale factor is a low 2 ppm/°C maximum.


Low Output Capacitance: Due to smaller MOSFET switch geometries allowed by decoding, the output capacitance at l_0 and l_{OUT2} are slow 80pF / 40pF and 25pF / 65 pF for the conditions of full/zero scale. This is over two times less than the Neutonal DAC 1208 Series. Lower apacitance allows the MP1208 series to achieve fester CMOS DAC settling times; less than 1 µsec for a 10 V or to 0.01% when utilizing a high speed output amplifier. Larger output amplifier bandwidths are available, for a given amplifier loop gain, because a smaller feedback "zero" compensating capacitor is required to onset the smaller l_{OUT} capacitance.

Low Senaitivity to Output Amplifier Offset: 4 quadrant multiplying CMOS DACs provide an output current into the virtual ground of an op amp. The additional linearity error incurred by amplifier offset is reduced by a factor of 2 in the MP1208 series over conventional R-2R DACs, to 330µV per millivolt of offset.

SIMPLIFIED BLOCK DIAGRAM

ORDERING INFORMATION

Pickagi Type	emperature Range	Pal No.	INL (LSB)	PNL (LSB)	Gain Error (% FSR)
Plastic Dip	-40 to +85	MP12 DHN	±2	±2	±0.4
Plastic Dip	40 to €15°C	W51393N	±	±1	±0.4
Plastic Dip	-40 to +85	MP1208KN	±1/2	±3/4	±0.4

^{*}Contact factory for non-compliant military processing

TATANAN