

PEEL[™]18CV8-7 CMOS Programmable Electrically Erasable Logic Device Features

■ Advanced CMOS EEPROM Technology

■ Low Power Consumption

— 90mA at 25MHz

■ High Performance

- tpD = 7.5ns, fmax=90.9

■ EE Instant Reprogrammability

- 100% factory tested
- Cost-effective windowless package
- Erases and programs in seconds
- Reduces retrofit and development costs
- Provides low risk inventory

■ Foolproof Design Security

 Prevents unauthorized reading or copying of design

■ Architectural Flexibility

- 74 product term x 36 input array
- Up to 18 inputs and 8 I/O pins
- Independently programmable 12-configuration I/O macro cells
- Synchronous preset, asynchronous clear
- Independent output enables

■ Application Versatility

- Replaces SSI/MSI logic
- Emulates PAL*, GAL* and EPLDs
- Simplifies inventory control
- Allows new design possibilities

■ Development/Programmer Support

 PC-based development tools and programmer support from ICT and thirdparty manufacturers

General Description

The ICT PEEL18CV8-7 is a CMOS Programmable Electrically Erasable Logic device that provides a high-performance, low-power, reprogrammable, and architecturally flexible alternative to early-generation programmable logic devices (PLDs). Designed in advanced CMOS EEPROM technology, the performance of the PEEL18CV8 rivals speed parameters of bipolar PLDs with a dramatic reduction in power consumption. EE reprogrammability simplifies inventory management, reduces development and field retrofit costs, enhances testability to ensure 100% field programmability and function, while allowing for low-cost "windowless"

packaging in a 20-pin, 300-mil DIP. The PEEL18CV8's flexible architecture allows the device to replace SSI/MSI logic circuitry. ICT's JEDEC file translator allows the PEEL18CV8 to replace existing 20-pin PLDs without the need to rework the existing design. Development and programming support for the PEEL18CV8 is provided by popular third-party PC-based development tools and programmers from third-party manufacturers. ICT also offers a free design software package and a low-cost development system

PEEL[™]18CV8-7

Absolute Maximum Ratings

Exposure to absolute maximum ratings over extended periods of time may affect device reliability. Exceeding absolute maximum ratings may cause permanent damage

Symbol	Parameter	Conditions	Rating	Unit
Vcc	Supply Voltage	Relative to GND	- 0.5 to + 7.0	V
V _I , V _O	Voltage Applied to Any Pin 3	Relative to GND ¹	- 0.5 to Vcc + 0.6	٧
lo	Output Current	Per pin (IoL, IoH)	± 25	mA
Тѕт	Storage Temperature		- 65 to + 150	·c
TLT	Lead Temperature	Soldering 10 seconds	+ 300	.c

Operating Ranges²

Symbol	Parameter	Conditions	Min	Max	Unit
Vcc	Supply Voltage	Commercial	4.75	5.25	V
		Industrial	4.5	5.5	V
TA	Ambient Temperature	Commercial	0	+ 70	°C
		Industrial	- 40	+ 85	°C
TR	Clock Rise Time	See note 4		250	ns
TF	Clock Fall Time	See note 4		250	ns
TRVCC	Vcc Rise Time	See note 4	-	250	ms

D.C. Electrical Characteristics Over the operating range

Symbol	Parameter	Conditions	Min	Max	Unit
Vон	Output HIGH Voltage - TTL	Vcc = Min, IoH = - 4.0mA	2.4		V
Vонс	Output HIGH Voltage-CMOS	Vcc = Min, IoH = -10μA	Vcc - 0.1		٧
VoL	Output LOW Voltage - TTL	Vcc = Min, loL = 16mA		0.45	٧
Volc	Output LOW Voltage-CMOS	Vcc = Min, loL = 10μA		0.1	V
VIH	Input HIGH Level		2.0	Vcc + 0.3	٧
VIL	Input LOW Level		- 0.3	0.8	V
lic	Input Leakage Current	Vcc = Max, GND ≤ Vin ≤ Vcc		±10	μA
loz	Output Leakage Current	I/O = High-Z, GND ≤ Vo≤ Vcc		±10	μА
Isc	Output Short Circuit Current	VCC=5V, VO=0.5V ⁹ , TA=25°C	- 30	- 100	mA
lcc	Vcc Current	V _{IN} = 0V or 3V ^{5,10} f = 25MHz All outputs disabled		90	mA
Cin 7	Input Capacitance	TA = 25°C, V _{CC} = 5.0V		6	pF
Cout 7	Output Capacitance	@ f = 1MHz		12	pF

A.C. Electrical Characteristics

Over the Operating Range 8,11

Symbol	Parameter	18CV8-7		Unit
		Min	Max	<u> </u>
tpD	Input or I/O to non-registered output		7.5	nS
toE	Input or I/O to output enable ⁶		7.5	nS
top	Input or I/O to output disable ⁶		7.5	nS
tco1	Clock to output		5	nS
tco2	Clock to combinatorial output delay via internal registered feedback		10	nS
tcF	Clock to Feedback		2.5	nS
tsc	Input or feedback setup to clock	3.5	- "	nS
thc	Input hold after clock	0		nS
tcL,tcH	Clock width - clk low time, clk high time 4	3.5		nS
tcp	Min clock period External (tsc + tco1)	8.5		nS
f _{max1}	Max clock freq. Internal Feedback ¹²	166.7		MHz
f _{max2}	Max clock freq. External (1/tcp)	117.6		MHz
f _{max3}	Max clock freq. No Feedback (1/tcL+tcH) ¹²	142.8		MHz
taw	Asynchronous clear pulse width	7.5		nS
tap	Input to asynchronous clear		7.5	nS
tar	Asynchronous Reset Recovery Time		7.5	nS
treset	Power-on reset time for registers in clear state ⁴	. [5	μS

Switching Waveforms

- Minimum DC input is -0,5V, however inputs may undershoot to -2.0V for periods less than 20ns
 Contact ICT for other operating ranges.
 Vi and Vo are not specified for program/verify operation.

 Texture into for Confer and Very in the letter and become

- 4. Test points for Clock and Vcc in ta, te, tcl, tch, and treset are referenced at 10% and 90% levels.
- 5. I/O pins are 0V or 3V.
- 6. t_{OE} is measured from input transition to $V_{REF} \pm 0.1 V$, t_{OD} is measured from input transition to VoH-0.1V or VoL+0.1V; VREF = VL see test loads at the end of this section.
- Capacitances are tested on a sample basis.

- 8. Test conditions assume: signal transition times of 5ns or less from the 10% and 90% points, timing reference levels of 1.5V (unless otherwise specified).
- 9. Test one output at a time for a duration less than 1 second.
- 10. ICC for a typical application: This parameter is tested with the device programmed as an 8-bit counter.
- 11. PEEL Device test loads are specified at the end of this section
- 12. Parameters are not 100% tested. Specifications are based on initial characterization and are tested after any design or process modification which may affect operational frequency.