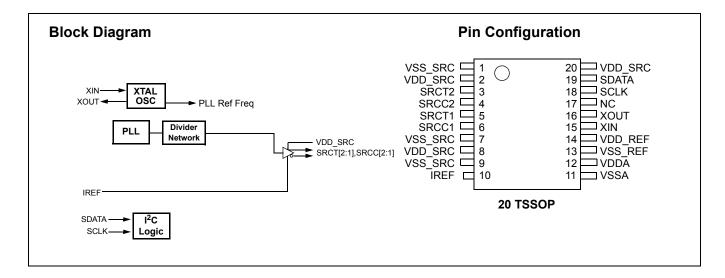


PRELIMINARY


CY28SRC02

PCI-Express Clock Generator

Features

- Two 100-MHz differential SRC clocks
- Low-voltage frequency select input
- I²C support with readback capabilities

- Ideal Lexmark Spread Spectrum profile for maximum electromagnetic interference (EMI) reduction
- 3.3V power supply
- 20-pin TSSOP package

٠

Pin Description

Pin No.	Name	Туре	Description
10	IREF	I	A precision resistor (475 Ω) attached to this pin is connected to the internal current reference.
18	SCLK	I,PU	SMBus compatible SCLOCK. This pin has an internal pull-up, but is tri-stated in power-down.
19	SDATA	I/O, PU	SMBus compatible SDATA. This pin has an internal pull-up, but is tri-stated in power-down.
3, 4, 5, 6	SRC[T/C][2:1]	O, DIF	Differential Selectable Serial reference clocks. Intel Type-X buffer.
15	XIN	1	14.318-MHz Crystal Input
16	XOUT	0	14.318-MHz Crystal Output
2, 8, 20	VDD_SRC	PWR	3.3V power supply for SRC outputs
1, 7, 9	VSS_SRC	GND	Ground for SRC outputs
12	VDDA	PWR	3.3V power supply for PLL
11	VSSA	GND	Analog Ground
14	VDD_REF	PWR	Power for Xtal
13	VSS_REF	GND	Ground for Xtal
17	NC	NC	No Connect

Serial Data Interface

To enhance the flexibility and function of the clock synthesizer, a two-signal serial interface is provided. Through the Serial Data Interface, various device functions, such as individual clock output buffers, can be individually enabled or disabled. The registers associated with the Serial Data Interface initialize to their default setting upon power-up, and therefore use of this interface is optional. Clock device register changes are normally made upon system initialization, if any are required. The interface cannot be used during system operation for power management functions.

Data Protocol

The clock driver serial protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/read operation, the bytes must be accessed in sequential order from lowest to highest byte (most significant bit first) with the ability to stop after any complete byte has been transferred. For byte write and byte read operations, the system controller can access individually indexed bytes. The offset of the indexed byte is encoded in the command code, as described in *Table 1*.

The block write and block read protocol is outlined in *Table 2* while *Table 3* outlines the corresponding byte write and byte read protocol. The slave receiver address is 11010010 (D2h).

Table 1. Command Code Definition

Bit	Description		
7	0 = Block read or block write operation, 1 = Byte read or byte write operation		
(6:5)	(5) Chip select address, set to '00' to access device		
(4:0)	Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be '00000'		

Table 2. Block Read and Block Write Protocol

	Block Write Protocol		Block Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start
8:2	Slave address – 7 bits	8:2	Slave address – 7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
18:11	Command Code – 8 bits	18:11	Command Code – 8 bits
19	Acknowledge from slave	19	Acknowledge from slave
27:20	Byte Count – 8 bits	20	Repeat start
28	Acknowledge from slave	27:21	Slave address – 7 bits

Table 2. Block Read and Block Write Protocol (continued)

	Block Write Protocol		Block Read Protocol
Bit	Description	Bit	Description
36:29	Data byte 1 – 8 bits	28	Read = 1
37	Acknowledge from slave	29	Acknowledge from slave
45:38	Data byte 2 – 8 bits	37:30	Byte Count from slave – 8 bits
46	Acknowledge from slave	38	Acknowledge
	Data Byte /Slave Acknowledges	46:39	Data byte 1 from slave – 8 bits
	Data Byte N – 8 bits	47	Acknowledge
	Acknowledge from slave	55:48	Data byte 2 from slave – 8 bits
	Stop	56	Acknowledge
			Data bytes from slave / Acknowledge
			Data Byte N from slave – 8 bits
			NOT Acknowledge

Table 3. Byte Read and Byte Write Protocol

	Byte Write Protocol		Byte Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start
8:2	Slave address – 7 bits	8:2	Slave address – 7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
18:11	Command Code – 8 bits	18:11	Command Code – 8 bits
19	Acknowledge from slave	19	Acknowledge from slave
27:20	Data byte – 8 bits	20	Repeated start
28	Acknowledge from slave	27:21	Slave address – 7 bits
29	Stop	28	Read
		29	Acknowledge from slave
		37:30	Data from slave – 8 bits
		38	NOT Acknowledge
		39	Stop

Control Registers

I

I

T

I

1

Byte 0:Control Register 0

Bit	@Pup	Name	Description
7	0	Reserved	Reserved
6	1	SRC[T/C]4	SRC[T/C]4 Output Enable <u>- only for CY28SRC04</u> 0 = Disable (Hi-Z), 1 = Enable
5	1	SRC[T/C]3	SRC[T/C]3 Output Enable <u>- only for CY28SRC04</u> 0 = Disable (Hi-Z), 1 = Enable
4	1	SRC[T/C]2	SRC[T/C]2 Output Enable <u>- only for CY28SRC02 and CY28SRC04</u> 0 = Disable (Hi-Z) 1 = Enable
3	1	SRC[T/C]1	SRC[T/C]1 Output Enable <u>- only for CY28SRC02 and CY28SRC04</u> 0 = Disable (Hi-Z), 1 = Enable
2	1	SRC [T/C]0	SRC[T/C]0 Output Enable <u>- only for CY28SRC01</u> 0 = Disable (Hi-Z), 1 = Enable

Byte 0:Control Register 0 (continued)

ſ	Bit	@Pup	Name	Description
Γ	1	0	Reserved	Reserved
	0	0	Reserved	Reserved

Byte 1: Control Register 1

Bit	@Pup	Name	Description
7	0	Reserved	Reserved
6	0	Reserved	Reserved
5	0	Reserved	Reserved
4	0	Reserved	Reserved
3	0	Reserved	Reserved
2	0	Reserved	Reserved
1	0	Reserved	Reserved
0	0	Reserved	Reserved

Byte 2: Control Register 2

Bit	@Pup	Name	Description
7	1	SRCT/C	Spread Spectrum Selection '0' = -0.35% '1' = -0.50%
6	1	Reserved	Reserved
5	1	Reserved	Reserved
4	0	Reserved	Reserved
3	1	Reserved	Reserved
2	0	SRC	SRC Spread Spectrum Enable 0 = Spread off, 1 = Spread on
1	1	Reserved	Reserved
0	1	Reserved	Reserved

Byte 3: Control Register 3

Bit	@Pup	Name	Description
7	1	Reserved	Reserved
6	0	Reserved	Reserved
5	1	Reserved	Reserved
4	0	Reserved	Reserved
3	1	Reserved	Reserved
2	1	Reserved	Reserved
1	1	Reserved	Reserved
0	1	Reserved	Reserved

Byte 4: Control Register 4

Bit	@Pup	Name	Description
7	0	Reserved	Reserved
6	0	Reserved	Reserved
5	0	Reserved	Reserved
4	0	Reserved	Reserved
3	0	Reserved	Reserved
2	0	Reserved	Reserved

Byte 4: Control Register 4 (continued)

ſ	Bit	@Pup	Name	Description
	1	0	Reserved	Reserved
Ī	0	1	Reserved	Reserved

Byte 5: Control Register 5

Bit	@Pup	Name	Description
7	0	Reserved	Reserved
6	0	Reserved	Reserved
5	0	Reserved	Reserved
4	0	Reserved	Reserved
3	0	Reserved	Reserved
2	0	Reserved	Reserved
1	0	Reserved	Reserved
0	0	Reserved	Reserved

Byte 6: Control Register 6

Bit	@Pup	Name	Description
7	0	TEST_SEL	REF/N or Tri-state Select 1 = REF/N Clock, 0 = Tri-state
6	0	TEST_MODE	Test Clock Mode Entry Control 1 = REF/N or Tri-state mode, 0 = Normal operation
5	0	Reserved	Reserved
4	1	Reserved	Reserved
3	0	Reserved	Reserved
2	0	Reserved	Reserved
1	1	Reserved	Reserved
0	1	Reserved	Reserved

Byte 7: Control Register 7

Bit	@Pup	Name	Description
7	0		Revision Code Bit 3
6	0		Revision Code Bit 2
5	1		Revision Code Bit 1
4	1		Revision Code Bit 0
3	1		Vendor ID Bit 3
2	0		Vendor ID Bit 2
1	0		Vendor ID Bit 1
0	0		Vendor ID Bit 0

Crystal Recommendations

The CY28SRC02 requires a Parallel Resonance Crystal. Substituting a series resonance crystal will cause the

CY28SRC02 to operate at the wrong frequency and violate the ppm specification. For most applications there is a 300-ppm frequency shift between series and parallel crystals due to incorrect loading.

Table 4. Crystal Recommendations

Frequency (Fund)	Cut	Loading	Load Cap	Drive (max.)	Shunt Cap (max.)	Tolerance (max.)	Stability (max.)	Aging (max.)
14.31818 MHz	AT	Parallel	12pF - 16pF	1 mW	7 pF	<u>+</u> 50ppm	<u>+</u> 50ppm	5 ppm

Crystal Loading

Crystal loading plays a critical role in achieving low ppm performance. To realize low ppm performance, the total capacitance the crystal will see must be considered to calculate the appropriate capacitive loading (CL).

Figure 1 shows a typical crystal configuration using the two trim capacitors. An important clarification for the following discussion is that the trim capacitors are in series with the crystal not parallel. It's a common misconception that load capacitors are in parallel with the crystal and should be approximately equal to the load capacitance of the crystal. This is not true.

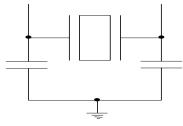


Figure 1. Crystal Capacitive Clarification

Calculating Load Capacitors

In addition to the standard external trim capacitors, trace capacitance and pin capacitance must also be considered to correctly calculate crystal loading. As mentioned previously, the capacitance on each side of the crystal is in series with the crystal. This means the total capacitance on each side of the crystal load capacitance (CL). While the capacitance on each side of the crystal is in series with the crystal, trim capacitors (Ce1,Ce2) should be calculated to provide equal capacitive loading on both sides.

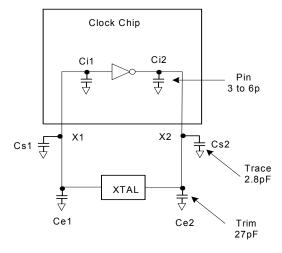


Figure 2. Crystal Loading Example

As mentioned previously, the capacitance on each side of the crystal is in series with the crystal. This mean the total capacitance on each side of the crystal must be twice the specified load capacitance (CL). While the capacitance on each side of the crystal is in series with the crystal, trim capacitors (Ce1,Ce2) should be calculated to provide equal capacitance loading on both sides.

Use the following formulas to calculate the trim capacitor values for Ce1 and Ce2.

Load Capacitance (each side)

$$Ce = 2 * CL - (Cs + Ci)$$

Total Capacitance (as seen by the crystal)

CLe =	1
$\frac{1}{(\frac{1}{Ce1 + Cs1 + Ci1})}$	$+ \frac{1}{Ce^2 + Cs^2 + Ci^2})$
CL	Crystal load capacitance
CLeAct using standard value trim capacito	
Ce	External trim capacitors
CsS	tray capacitance (terraced)
Ci (lead frame, bond wires etc.)	Internal capacitance

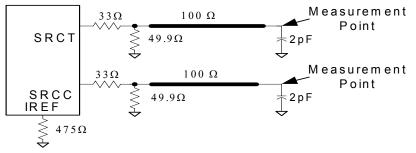
Absolute Maximum Conditions

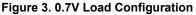
Parameter	Description	Condition	Min.	Max.	Unit	
V _{DD}	Core Supply Voltage		-0.5	4.6	V	
V _{DDA}	Analog Supply Voltage		-0.5	4.6	V	
V _{IN}	Input Voltage	Relative to V _{SS}	-0.5	V _{DD} + 0.5	VDC	
Τ _S	Temperature, Storage	Non Functional	-65	+150	°C	
T _A	Temperature, Operating Ambient	Functional	0	70	°C	
TJ	Temperature, Junction	Functional	-	150	°C	
ESD _{HBM}	ESD Protection (Human Body Model)	MIL-STD-883, Method 3015	2000	-	V	
Ø _{JC}	Dissipation, Junction to Case	Mil-Spec 883E Method 1012.1	-	20	°C/W	
Ø _{JA}	Dissipation, Junction to Ambient	JEDEC (JESD 51)	-	60	°C/W	
UL-94	Flammability Rating At 1/8 in. V–0		V-0			
MSL	Moisture Sensitivity Level 1					
Multiple Suppli	es: The voltage on any input or I/O pin cannot exceed t	he power pin during power-up. Power supply seque	encing is NOT	required.	1	

DC Electrical Specifications

Parameter	Description	Condition	Min.	Max.	Unit
VDD_SRC, VDDA	3.3V Operating Voltage	3.3V ± 5%	3.135	3.465	V
VILSMBUS	Input Low Voltage	SDATA, SCLK	-	1.0	V
V _{IHSMBUS}	Input High Voltage	SDATA, SCLK	2.2	-	V
V _{IL}	Input Low Voltage	V _{DD}	$V_{SS} - 0.3$	0.8	V
V _{IH}	Input High Voltage		2.0	V _{DD} + 0.3	V
IIL	Input Leakage Current	Except Pull-ups or Pull-downs 0 <v<sub>IN<v<sub>DD</v<sub></v<sub>	-5	5	mA
V _{OL}	Output Low Voltage	IOL = 1 mA	-	0.4	V
V _{OH}	Output High Voltage	IOH = 1 mA	2.4	-	V
I _{OZ}	High-Impedance Output Current		-10	10	μA
C _{IN}	Input Pin Capacitance		3	5	pF
C _{OUT}	Output Pin Capacitance		3	5	pF
L _{IN}	Pin Inductance		_	7	nH
V _{XIH}	Xin High Voltage		0.7*V _{DD}	V _{DD}	V
V _{XIL}	Xin Low Voltage		0	0.3*V _{DD}	V
I _{DD}	Dynamic Supply Current	At max load and frequency	-	400	mA
IPD _D	Power Down Supply Current	PD asserted, Outputs driven	-	70	mA
IPD _T	Power Down Supply Current	PD asserted, Outputs Hi-Z	-	2	mA

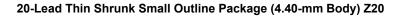
AC Electrical Specifications

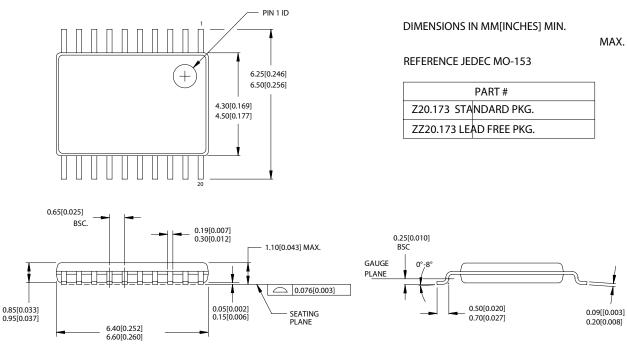

Parameter	Description	Condition	Min.	Max.	Unit
Crystal					
T _{DC}	XIN Duty Cycle	The device will operate reliably with input duty cycles up to 30/70 but the REF clock duty cycle will not be within specification	47.5	52.5	%
T _{PERIOD}	XIN Period	When XIN is driven from an external clock source	69.841	71.0	ns
T _R / T _F	XIN Rise and Fall Times	Measured between $0.3V_{DD}$ and $0.7V_{DD}$	-	10.0	ns
SRC		•			
T _{DC}	SRCT and SRCC Duty Cycle	Measured at crossing point V _{OX}	45	55	%
T _{PERIOD}	100-MHz SRCT and SRCC Period	Measured at crossing point V _{OX}	9.997001	10.00300	ns
T _{PERIODSS}	100-MHz SRCT and SRCC Period, SSC	Measured at crossing point V _{OX}	9.997001	10.05327	ns
T _{PERIODAbs}	100-MHz SRCT and SRCC Absolute Period	Measured at crossing point V _{OX}	10.12800	9.872001	ns
T _{PERIODSSAbs}	100-MHz SRCT and SRCC Absolute Period, SSC	Measured at crossing point V_{OX}	9.872001	10.17827	ns
T _{SKEW}	Any SRCT/C to SRCT/C Clock Skew	Measured at crossing point V _{OX}	-	250	ps
TSKEW	Any SRCS clock to Any SRCS clock Skew	Measured at crossing point V_{OX}	-	250	ps
T _{CCJ}	SRCT/C Cycle to Cycle Jitter	Measured at crossing point V_{OX}	-	125	ps
L _{ACC}	SRCT/C Long Term Accuracy	Measured at crossing point V_{OX}	-	300	ppm
T _R / T _F	SRCT and SRCC Rise and Fall Times	Measured from V _{OL} = 0.175 to V _{OH} = 0.525V	175	700	ps
T _{RFM}	Rise/Fall Matching	Determined as a fraction of $2^{*}(T_{R} - T_{F})/(T_{R} + T_{F})$	-	20	%
ΔT_R	Rise TimeVariation		-	125	ps
ΔT_F	Fall Time Variation		-	125	ps
V _{HIGH}	Voltage High	Math averages Figure 3	660	850	mv
V _{LOW}	Voltage Low	Math averages Figure 3	-150	1	mv
V _{OX}	Crossing Point Voltage at 0.7V Swing		250	550	mV
V _{OVS}	Maximum Overshoot Voltage		-	V _{HIGH} + 0.3	V
V _{UDS}	Minimum Undershoot Voltage		-0.3	_	V
V _{RB}	Ring Back Voltage	See Figure 3. Measure SE	-	0.2	V
T _{CCJ}	Cycle to Cycle Jitter	Measurement at 1.5V	-	350	ps
Tltj	Long Term Jitter	Measurement at 1.5V @ 1 µs	-	TBD	ps



Test and Measurement Set-up For Differential SRC Output Signals

The following diagram shows the test load configuration for the differential CPU and SRC outputs.





Ordering Information

Part Number	Package Type	Product Flow	
Lead-free			
CY28SRCZXC-02	20-pin TSSOP	Commercial, 0° to 70°C	
CY28SRCZXC-02T	20-pin TSSOP—Tape and Reel	Commercial, 0° to 70°C	

Package Diagram

51-85118-*A

Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.

All products and company names mentioned in this document may be the trademarks of their respective holders.

Document #: 001-00042 Rev. *A

© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

Document Title: CY28SRC02 PCI-Express Clock Generator Document Number: 001-00042						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	370534	See ECN	RGL	New Data Sheet		
*A	385834	See ECN	RGL	Swapped pin 5 and 6		