www.DataSheet4U.com



**Integrated Circuits Group** 

# LHF00L14 Flash Memory 32M (2Mb × 16)

(Model No.: LHF00L14)

Spec No.: EL163055 Issue Date: March 15, 2004

| <u>To;</u>                                                                                                                                                    | SPEC No.         E L 1 6 3 0 5 5           ISSUE:         Mar.         15, 2004                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPECIFI                                                                                                                                                       | CATIONS                                                                                                                                                                 |
| Product Type <u>32 M b i t</u>                                                                                                                                | Flash Memory                                                                                                                                                            |
| LHF                                                                                                                                                           | 00L14                                                                                                                                                                   |
| Model No. (LHF                                                                                                                                                | 00L14)                                                                                                                                                                  |
| If you have any objections, please contact<br>* This specifications contains <u>34</u> pages i<br>* Refer to LHF00LXX series Appendix<br>CUSTOMERS ACCEPTANCE | ncluding the cover and appendix.                                                                                                                                        |
| DATE:                                                                                                                                                         |                                                                                                                                                                         |
| <u>BY:</u>                                                                                                                                                    | PRESENTED<br><u>BY: M. Hotta</u><br>Y.HOTTA<br>Dept. General Manager                                                                                                    |
|                                                                                                                                                               | REVIEWED BY: PREPARED BY:<br><u>H. Jakata</u> <u>S. Otaní</u><br>Product Development Dept. I<br>System-Flash Division<br>Integrated Circuits Group<br>SHARP CORPORATION |

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
  - The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
    - Office electronics
    - Instrumentation and measuring equipment
    - Machine tools

- Audiovisual equipment
- Home appliance
- Communication equipment other than for trunk lines
- (2) Those contemplating using the products covered herein for the following equipment <u>which demands high</u> <u>reliability</u>, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
  - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
  - Mainframe computers
  - Traffic control systems
  - Gas leak detectors and automatic cutoff devices
  - Rescue and security equipment
  - Other safety devices and safety equipment, etc.
- (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
  - Aerospace equipment
  - Communications equipment for trunk lines
  - Control equipment for the nuclear power industry
  - Medical equipment related to life support, etc.
- (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales representative of the company.

### CONTENTS

### PAGE

| 48-Lead TSOP (Normal Bend) Pinout 3                           |
|---------------------------------------------------------------|
| Pin Descriptions 4                                            |
| Memory Map 5                                                  |
| Identifier Codes and OTP Address<br>for Read Operation        |
| OTP Block Address Map for OTP Program7                        |
| Bus Operation                                                 |
| Command Definitions                                           |
| Functions of Block Lock and Block Lock-Down 11                |
| Block Locking State Transitions<br>upon Command Write 11      |
| Block Locking State Transitions<br>upon WP#/ACC Transition 12 |
| Status Register Definition                                    |

| PAGE                                                                           |
|--------------------------------------------------------------------------------|
| 1 Electrical Specifications 14                                                 |
| 1.1 Absolute Maximum Ratings 14                                                |
| 1.2 Operating Conditions 14                                                    |
| 1.2.1 Capacitance 15                                                           |
| 1.2.2 AC Input/Output Test Conditions 15                                       |
| 1.2.3 DC Characteristics 16                                                    |
| 1.2.4 AC Characteristics<br>- Read-Only Operations                             |
| 1.2.5 AC Characteristics<br>- Write Operations                                 |
| 1.2.6 Reset Operations 22                                                      |
| 1.2.7 Block Erase, Full Chip Erase,<br>Program and OTP Program Performance. 23 |
| 2 Related Document Information 24                                              |
| 3 Package and packing specification                                            |

LHF00L14

#### LHF00L14 32Mbit (2Mbit×16) Flash MEMORY ■ 32-M density with 16-bit I/O Interface Enhanced Data Protection Features • Individual Block Lock and Block Lock-Down with Read Operation Zero-Latency • 90ns Low Power Operation during Power Transitions • 2.7V Read and Write Operations Automatic Power Savings Mode reduces I<sub>CCR</sub> Automated Erase/Program Algorithms in Static Mode • 3.0V Low-Power 10µs/Word (Typ.) Programming Enhanced Code + Data Storage • 12.0V No Glue Logic 9µs/Word (Typ.) • 5µs Typical Erase/Program Suspends OTP (One Time Program) Block Cross-Compatible Command Support • 4-Word Factory-Programmed Area • Basic Command Set • 4-Word User-Programmable Area • Common Flash Interface (CFI) $\blacksquare$ Operating Temperature -40°C to +85°C Extended Cycling Capability • Minimum 100,000 Block Erase Cycles CMOS Process (P-type silicon substrate) ■ 48-Lead TSOP (Normal Bend) ■ Flexible Blocking Architecture

- Eight 4-Kword Parameter Blocks
- One 32-Kword Block

SHARP

- Thirty-one 64-Kword Blocks
- Top Parameter Location

- All blocks are locked at power-up or device reset.
- Block Erase, Full Chip Erase, Word Program Lockout
- Production Programming and 0.8s Erase (Typ.)

- ETOX<sup>TM\*</sup> Flash Technology
- Not designed or rated as radiation hardened

The product is a low power, high density, low cost, nonvolatile read/write storage solution for a wide range of applications. The product can operate at  $V_{CC}=2.7V-3.6V$ . Its low voltage operation capability greatly extends battery life for portable applications.

The memory array block architecture utilizes Enhanced Data Protection features, which provides maximum flexibility for safe nonvolatile code and data storage.

Special OTP (One Time Program) block provides an area to store permanent code such as an unique number.

\* ETOX is a trademark of Intel Corporation.

### LHF00L14

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | 48-LEAD TSOP<br>STANDARD PINOUT<br>12mm x 20mm<br>TOP VIEW | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |
|--------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------|

www.DataSheet4U.com

SHARP

|                                   |                      | Table 1. Pin Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbol                            | Туре                 | Name and Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A <sub>20</sub> -A <sub>0</sub>   | INPUT                | ADDRESS INPUTS: Inputs for addresses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DQ <sub>15</sub> -DQ <sub>0</sub> | INPUT/<br>OUTPUT     | DATA INPUTS/OUTPUTS: Inputs data and commands during CUI (Command User Interface) write cycles, outputs data during memory array, status register, query code, identifier code reads. Data pins float to high-impedance (High Z) when the chip or outputs are deselected. Data is internally latched during an erase or program cycle.                                                                                                                                                                                                                                                                                                                                                              |
| CE#                               | INPUT                | CHIP ENABLE: Activates the device's control logic, input buffers, decoders and sense amplifiers. CE#-high ( $V_{IH}$ ) deselects the device and reduces power consumption to standby levels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RST#                              | INPUT                | RESET: When low ( $V_{IL}$ ), RST# resets internal automation and inhibits write operations which provides data protection. RST#-high ( $V_{IH}$ ) enables normal operation. After power-up or reset mode, the device is automatically set to read array mode. RST# must be low during power-up/down.                                                                                                                                                                                                                                                                                                                                                                                               |
| OE#                               | INPUT                | OUTPUT ENABLE: Gates the device's outputs during a read cycle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| WE#                               | INPUT                | WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of CE# or WE# (whichever goes high first).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| WP#/ACC                           | INPUT/<br>SUPPLY     | WRITE PROTECT: When WP#/ACC is $V_{IL}$ , locked-down blocks cannot be unlocked.<br>Erase or program operation can be executed to the blocks which are not locked and not<br>locked-down. When WP#/ACC is $V_{IH}$ , lock-down is disabled.<br>Applying 12.0V±0.3V to WP#/ACC provides fast erasing or fast programming mode. In<br>this mode, WP#/ACC is power supply pin. Applying 12.0V±0.3V to WP#/ACC during<br>erase/program can only be done for a maximum of 1,000 cycles on each block. WP#/<br>ACC may be connected to 12.0V±0.3V for a total of 80 hours maximum. Use of this pin<br>at 12.0V+0.3V beyond these limits may reduce block cycling capability or cause<br>permanent damage. |
| RY/BY#                            | OPEN DRAIN<br>OUTPUT | READY/BUSY#: Indicates the status of the internal WSM (Write State Machine). When<br>low, WSM is performing an internal operation (block erase, full chip erase, program or<br>OTP program). RY/BY#-High Z indicates that the WSM is ready for new commands,<br>block erase is suspended and program is inactive, program is suspended, or the device is<br>in reset mode.                                                                                                                                                                                                                                                                                                                          |
| V <sub>CC</sub>                   | SUPPLY               | DEVICE POWER SUPPLY (2.7V-3.6V): With $V_{CC} \leq V_{LKO}$ , all write attempts to the flash memory are inhibited. Device operations at invalid $V_{CC}$ voltage (see DC Characteristics) produce spurious results and should not be attempted.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| GND                               | SUPPLY               | GROUND: Do not float any ground pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NC                                |                      | NO CONNECT: Lead is not internally connected; it may be driven or floated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

LHF00L14

| [A <sub>20</sub> -A <sub>0</sub> ] |                   |
|------------------------------------|-------------------|
| 1FFFFF<br>1FF000                   | 4-Kword Block 39  |
| 1FEFFF<br>1FE000                   | 4-Kword Block 38  |
| 1FDFFF<br>1FD000                   | 4-Kword Block 37  |
| 1FCFFF<br>1FC000                   | 4-Kword Block 36  |
| 1FBFFF<br>1FB000                   | 4-Kword Block 35  |
| 1FAFFF<br>1FA000<br>1F9FFF         | 4-Kword Block 34  |
| 1F9000                             | 4-Kword Block 33  |
| 1F8FFF<br>1F8000                   | 4-Kword Block 32  |
| 1F7FFF<br>1F0000                   | 32-Kword Block 31 |
| 1EFFFF<br>1E0000                   | 64-Kword Block 30 |
| 1DFFFF<br>1D0000<br>1CFFFF         | 64-Kword Block 29 |
| 1C0000                             | 64-Kword Block 28 |
| 1BFFFF<br>1B0000                   | 64-Kword Block 27 |
| 1AFFFF<br>1A0000                   | 64-Kword Block 26 |
| 19FFFF<br>190000                   | 64-Kword Block 25 |
| 18FFFF<br><u>180000</u>            | 64-Kword Block 24 |
| 17FFFF<br>170000                   | 64-Kword Block 23 |
| 16FFFF<br>160000                   | 64-Kword Block 22 |
| 15FFFF<br>150000                   | 64-Kword Block 21 |
| 14FFFF<br>140000                   | 64-Kword Block 20 |
| 13FFFF<br>130000                   | 64-Kword Block 19 |
| 12FFFF<br>120000                   | 64-Kword Block 18 |
| 11FFFF<br>110000                   | 64-Kword Block 17 |
| 10FFFF<br>100000                   | 64-Kword Block 16 |
| 0FFFFF<br>0F0000                   | 64-Kword Block 15 |
| 0EFFFF<br>0E0000                   | 64-Kword Block 14 |
| 0DFFFF<br>0D0000<br>0CFFFF         | 64-Kword Block 13 |
| 0C0000                             | 64-Kword Block 12 |
| 0BFFFF<br>0B0000                   | 64-Kword Block 11 |
| 0AFFFF<br>0A0000                   | 64-Kword Block 10 |
| 09FFFF<br>090000                   | 64-Kword Block 9  |
| 08FFFF<br>080000                   | 64-Kword Block 8  |
| 07FFFF<br>070000                   | 64-Kword Block 7  |
| 06FFFF<br>060000                   | 64-Kword Block 6  |
| 05FFFF<br>050000                   | 64-Kword Block 5  |
| 04FFFF<br>040000                   | 64-Kword Block 4  |
| 03FFFF<br>030000                   | 64-Kword Block 3  |
| 02FFFF<br>020000                   | 64-Kword Block 2  |
| 01FFFF<br>010000                   | 64-Kword Block 1  |
| 00FFFF<br>000000                   | 64-Kword Block 0  |
|                                    |                   |

Figure 2. Memory Map (Top Parameter)

### Table 2. Identifier Codes and OTP Address for Read Operation

|                                  | Table 2. Identifier Codes and OTT Address | for Read Operation                            |                                              |       |
|----------------------------------|-------------------------------------------|-----------------------------------------------|----------------------------------------------|-------|
|                                  | Code                                      | Address<br>[A <sub>20</sub> -A <sub>0</sub> ] | Data<br>[DQ <sub>15</sub> -DQ <sub>0</sub> ] | Notes |
| Manufacturer Code                | Manufacturer Code                         | 000000H                                       | 00B0H                                        |       |
| Device Code                      | Device Code                               | 000001H                                       | 00A0H                                        |       |
| Block Lock Configuration<br>Code | Block is Unlocked                         |                                               | $DQ_0 = 0$                                   | 1     |
|                                  | Block is Locked                           | Block                                         |                                              | 1     |
|                                  | Block is not Locked-Down                  | -Down Address + 2                             | $DQ_1 = 0$                                   | 1     |
|                                  | Block is Locked-Down                      |                                               | DQ <sub>1</sub> = 1                          | 1     |
| OTP                              | OTP Lock                                  | 000080H                                       | OTP-LK                                       | 2     |
|                                  | OTP                                       | 000081-000088H                                | OTP                                          | 3     |

NOTES:

Block Address = The beginning location of a block address. DQ<sub>15</sub>-DQ<sub>2</sub> are reserved for future implementation.
 OTP-LK=OTP Block Lock configuration.
 OTP=OTP Block data.

| [A <sub>20</sub> -A <sub>0</sub> ] |                                                  |
|------------------------------------|--------------------------------------------------|
| 000088H                            |                                                  |
| 00008811                           |                                                  |
|                                    | Customer Programmable Area                       |
| 000085H                            |                                                  |
| 000084H                            |                                                  |
|                                    | Factory Programmed Area                          |
| 000081H                            |                                                  |
| 000080H                            | Reserved for Future Implementation<br>(DQ15-DQ2) |
| Ũ                                  | mmable Area Lock Bit (DQ1)                       |

Figure 3. OTP Block Address Map for OTP Program (The area outside 80H~88H cannot be used.)

| Table 3. Bus $Operation^{(1, 2)}$ |       |                 |                 |                 |                 |                 |                    |            |
|-----------------------------------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------------|------------|
| Mode                              | Notes | RST#            | CE#             | OE#             | WE#             | Address         | DQ <sub>15-0</sub> | RY/BY# (8) |
| Read Array                        | 6     | V <sub>IH</sub> | V <sub>IL</sub> | V <sub>IL</sub> | V <sub>IH</sub> | X               | D <sub>OUT</sub>   | High Z     |
| Output Disable                    |       | V <sub>IH</sub> | V <sub>IL</sub> | V <sub>IH</sub> | V <sub>IH</sub> | Х               | High Z             | X          |
| Standby                           |       | V <sub>IH</sub> | V <sub>IH</sub> | X               | X               | Х               | High Z             | X          |
| Reset                             | 3     | V <sub>IL</sub> | X               | X               | X               | X               | High Z             | High Z     |
| Read Identifier<br>Codes/OTP      | 6     | V <sub>IH</sub> | V <sub>IL</sub> | V <sub>IL</sub> | V <sub>IH</sub> | See<br>Table 2  | See<br>Table 2     | High Z     |
| Read Query                        | 6,7   | V <sub>IH</sub> | V <sub>IL</sub> | V <sub>IL</sub> | V <sub>IH</sub> | See<br>Appendix | See<br>Appendix    | High Z     |
| Read Status<br>Register           | 6     | V <sub>IH</sub> | V <sub>IL</sub> | V <sub>IL</sub> | V <sub>IH</sub> | X               | D <sub>OUT</sub>   | X          |
| Write                             | 4,5,6 | V <sub>IH</sub> | V <sub>IL</sub> | V <sub>IH</sub> | V <sub>IL</sub> | X               | D <sub>IN</sub>    | X          |

NOTES:

1. Refer to DC Characteristics for  $V_{IL}$  or  $V_{IH}$  voltages. 2. X can be  $V_{IL}$  or  $V_{IH}$  for control pins and addresses. 3. RST# at GND±0.2V ensures the lowest power consumption.

4. Command writes involving block erase, full chip erase, program or OTP program are reliably executed when  $V_{CC}=2.7V-3.6V$ .

5. Refer to Table 4 for valid D<sub>IN</sub> during a write operation.
6. Never hold OE# low and WE# low at the same timing.

7. Refer to Appendix of LHF00LXX series for more information about query code.

8. RY/BY# is V<sub>OL</sub> when the WSM (Write State Machine) is executing internal block erase, full chip erase, program or OTP program algorithms. It is High Z during when the WSM is not busy, in block erase suspend mode (with program inactive), program suspend mode, or reset mode.

|                                    | Bus             | Notes | First Bus Cycle     |                     |               | Second Bus Cycle    |                     |                     |
|------------------------------------|-----------------|-------|---------------------|---------------------|---------------|---------------------|---------------------|---------------------|
| Command                            | Cycles<br>Req'd |       | Oper <sup>(1)</sup> | Addr <sup>(2)</sup> | Data          | Oper <sup>(1)</sup> | Addr <sup>(2)</sup> | Data <sup>(3)</sup> |
| Read Array                         | 1               |       | Write               | Х                   | FFH           |                     |                     |                     |
| Read Identifier Codes/OTP          | ≥ 2             | 4     | Write               | Х                   | 90H           | Read                | IA or OA            | ID or OD            |
| Read Query                         | ≥ 2             | 4     | Write               | Х                   | 98H           | Read                | QA                  | QD                  |
| Read Status Register               | 2               |       | Write               | Х                   | 70H           | Read                | X                   | SRD                 |
| Clear Status Register              | 1               |       | Write               | Х                   | 50H           |                     |                     |                     |
| Block Erase                        | 2               | 5     | Write               | BA                  | 20H           | Write               | BA                  | D0H                 |
| Full Chip Erase                    | 2               | 5, 8  | Write               | Х                   | 30H           | Write               | X                   | D0H                 |
| Program                            | 2               | 5,6   | Write               | WA                  | 40H or<br>10H | Write               | WA                  | WD                  |
| Block Erase and<br>Program Suspend | 1               | 7, 8  | Write               | Х                   | B0H           |                     |                     |                     |
| Block Erase and<br>Program Resume  | 1               | 7, 8  | Write               | Х                   | D0H           |                     |                     |                     |
| Set Block Lock Bit                 | 2               |       | Write               | BA                  | 60H           | Write               | BA                  | 01H                 |
| Clear Block Lock Bit               | 2               | 9     | Write               | BA                  | 60H           | Write               | BA                  | D0H                 |
| Set Block Lock-down Bit            | 2               |       | Write               | BA                  | 60H           | Write               | BA                  | 2FH                 |
| OTP Program                        | 2               | 8     | Write               | OA                  | COH           | Write               | OA                  | OD                  |

#### NOTES:

HARP

- 1. Bus operations are defined in Table 3.
- 2. All addresses which are written at the first bus cycle should be the same as the addresses which are written at the second bus cycle.
  - X=Any valid address within the device.
  - IA=Identifier codes address (See Table 2).
  - QA=Query codes address. Refer to Appendix of LHF00LXX series for details.
  - BA=Address within the block being erased, set/cleared block lock bit or set block lock-down bit.
  - WA=Address of memory location for the Program command.
  - OA=Address of OTP block to be read or programmed (See Figure 3).
- 3. ID=Data read from identifier codes. (See Table 2).
  - QD=Data read from query database. Refer to Appendix of LHF00LXX series for details.
  - SRD=Data read from status register. See Table 8 for a description of the status register bits.
  - WD=Data to be programmed at location WA. Data is latched on the rising edge of WE# or CE# (whichever goes high first) during command write cycles.
  - OD=Data within OTP block. Data is latched on the rising edge of WE# or CE# (whichever goes high first) during command write cycles.
- 4. Following the Read Identifier Codes/OTP command, read operations access manufacturer code, device code, block lock configuration code and the data within OTP block (See Table 2).
  - The Read Query command is available for reading CFI (Common Flash Interface) information.
- 5. Block erase, full chip erase or program cannot be executed when the selected block is locked. Unlocked block can be erased or programmed when RST# is  $V_{IH}$ .
- 6. Either 40H or 10H are recognized by the CUI (Command User Interface) as the program setup.
- 7. If the program operation and the erase operation are both suspended, the suspended program operation will be resumed first.
- 8. Full chip erase and OTP program operations can not be suspended. The OTP Program command can not be accepted while the block erase operation is being suspended.



LHF00L14

- 9. Following the Clear Block Lock Bit command, block which is not locked-down is unlocked when WP#/ACC is  $V_{IL}$ . When WP#/ACC is  $V_{IH}$ , lock-down bit is disabled and the selected block is unlocked regardless of lock-down configuration.
- 10. Commands other than those shown above are reserved by SHARP for future device implementations and should not be used.

|                      |         | Curre              | ent State                      |                   |                                      |
|----------------------|---------|--------------------|--------------------------------|-------------------|--------------------------------------|
| State                | WP#/ACC | DQ1 <sup>(1)</sup> | DQ <sub>0</sub> <sup>(1)</sup> | State Name        | Erase/Program Allowed <sup>(2)</sup> |
| [000]                | 0       | 0                  | 0                              | Unlocked          | Yes                                  |
| [001] <sup>(3)</sup> | 0       | 0                  | 1                              | Locked            | No                                   |
| [011]                | 0       | 1                  | 1                              | Locked-down       | No                                   |
| [100]                | 1       | 0                  | 0                              | Unlocked          | Yes                                  |
| [101] <sup>(3)</sup> | 1       | 0                  | 1                              | Locked            | No                                   |
| [110] <sup>(4)</sup> | 1       | 1                  | 0                              | Lock-down Disable | Yes                                  |
| [111]                | 1       | 1                  | 1                              | Lock-down Disable | No                                   |

|          |              |         | (5)                                       |           |           |
|----------|--------------|---------|-------------------------------------------|-----------|-----------|
| Table 5  | Functions of | Block I | $\left[ \operatorname{ock}^{(3)} \right]$ | and Block | Lock-Down |
| rubic 5. | i uncuono oi | DIOCK   | LOCK 0                                    | und Dioek | LOCK DOWN |

NOTES:

1. DQ<sub>0</sub>=1: a block is locked; DQ<sub>0</sub>=0: a block is unlocked.

 $DQ_1=1$ : a block is locked-down;  $DQ_1=0$ : a block is not locked-down.

2. Erase and program are general terms, respectively, to express: block erase, full chip erase and program operations.

3. At power-up or device reset, all blocks default to locked state and are not locked-down, that is, [001] (WP#/ACC=0) or [101] (WP#/ACC=1), regardless of the states before power-off or reset operation.

4. When WP#/ACC is driven to  $V_{IL}$  in [110] state, the state changes to [011] and the blocks are automatically locked.

5. OTP (One Time Program) block has the lock function which is different from those described above.

|       | Current S | tate   |                 | Result after L           | ock Command Writte        | Command Written (Next State) |  |  |
|-------|-----------|--------|-----------------|--------------------------|---------------------------|------------------------------|--|--|
| State | WP#/ACC   | $DQ_1$ | DQ <sub>0</sub> | Set Lock <sup>(1)</sup>  | Clear Lock <sup>(1)</sup> | Set Lock-down <sup>(1)</sup> |  |  |
| [000] | 0         | 0      | 0               | [001]                    | No Change                 | [011] <sup>(2)</sup>         |  |  |
| [001] | 0         | 0      | 1               | No Change <sup>(3)</sup> | [000]                     | [011]                        |  |  |
| [011] | 0         | 1      | 1               | No Change                | No Change                 | No Change                    |  |  |
| [100] | 1         | 0      | 0               | [101]                    | No Change                 | [111] <sup>(2)</sup>         |  |  |
| [101] | 1         | 0      | 1               | No Change                | [100]                     | [111]                        |  |  |
| [110] | 1         | 1      | 0               | [111]                    | No Change                 | [111] <sup>(2)</sup>         |  |  |
| [111] | 1         | 1      | 1               | No Change                | [110]                     | No Change                    |  |  |

|  | Table 6. | Block Locking | State Transitions | upon Command Write <sup>(4)</sup> |
|--|----------|---------------|-------------------|-----------------------------------|
|--|----------|---------------|-------------------|-----------------------------------|

NOTES:

1. "Set Lock" means Set Block Lock Bit command, "Clear Lock" means Clear Block Lock Bit command and "Set Lock-down" means Set Block Lock-Down Bit command.

2. When the Set Block Lock-Down Bit command is written to the unlocked block (DQ<sub>0</sub>=0), the corresponding block is locked-down and automatically locked at the same time.

3. "No Change" means that the state remains unchanged after the command written.

4. In this state transitions table, assumes that WP#/ACC is not changed and fixed  $V_{IL}$  or  $V_{IH}$ .

### LHF00L14

| ]                        | Table 7. Bloo | ck Locking S | tate Tran | sitions u       | pon WP#/ACC Transition                       | $\operatorname{on}^{(4)}$        |  |
|--------------------------|---------------|--------------|-----------|-----------------|----------------------------------------------|----------------------------------|--|
| Durania State            |               | Current Sta  | ite       |                 | Result after WP#/ACC Transition (Next State) |                                  |  |
| Previous State           | State         | WP#/ACC      | $DQ_1$    | DQ <sub>0</sub> | WP#/ACC= $0 \rightarrow 1^{(1)}$             | WP#/ACC= $1 \rightarrow 0^{(1)}$ |  |
| -                        | [000]         | 0            | 0         | 0               | [100]                                        | -                                |  |
| -                        | [001]         | 0            | 0         | 1               | [101]                                        | -                                |  |
| [110] <sup>(2)</sup>     | [011]         | 0            | 1         | 1               | [110]                                        | -                                |  |
| Other than $[110]^{(2)}$ |               |              |           |                 | [111]                                        | -                                |  |
| -                        | [100]         | 1            | 0         | 0               | -                                            | [000]                            |  |
| -                        | [101]         | 1            | 0         | 1               | -                                            | [001]                            |  |
| _                        | [110]         | 1            | 1         | 0               | -                                            | [011] <sup>(3)</sup>             |  |
| -                        | [111]         | 1            | 1         | 1               | -                                            | [011]                            |  |

(4)

NOTES:

"WP#/ACC=0→1" means that WP#/ACC is driven to V<sub>IH</sub> and "WP#/ACC=1→0" means that WP#/ACC is driven to V<sub>IL</sub>.
 State transition from the current state [011] to the next state depends on the previous state.
 When WP#/ACC is driven to V<sub>IL</sub> in [110] state, the state changes to [011] and the blocks are outpendically looked.

automatically locked.

4. In this state transitions table, assumes that lock configuration commands are not written in previous, current and next state.

Γ

| R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R                                                                                                                                                                                                                                                         | R                                | R                                                                                                                                                                                                                                                                                                                                                                                                                    | R                                                                                                                                                                                                                                                                                                                    | R                                                                                                                                                                                                                                                                                                              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                                                                                                                                                                                                                                        | 12                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| WSMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BEFCES                                                                                                                                                                                                                                                    | POPS                             | WPACCS                                                                                                                                                                                                                                                                                                                                                                                                               | PSS                                                                                                                                                                                                                                                                                                                  | DPS                                                                                                                                                                                                                                                                                                            | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                         | 4                                | 3 2 1 0                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| $SR.7 = WRIT:$ $1 = Ready$ $0 = Busy$ $SR.6 = BLOO$ $1 = Block$ $0 = Block$ $SR.5 = BLOO$ $SR.5 = BLOO$ $T = Error$ $0 = Succe$ $SR.4 = PROO$ $OTP$ $1 = Error$ $0 = Succe$ $SR.3 = WP\#/2$ $1 = V_{CC}+1$ $Opera$ $0 = WP\#/2$ $SR.2 = PROO$ $SR$ | CK ERASE SUS<br>Erase Suspende<br>Erase in Progres<br>CK ERASE AND<br>TUS (BEFCES)<br>in Block Erase o<br>ssful Block Erase<br>GRAM AND<br>PROGRAM ST<br>in Program or O<br>ssful Program or O<br>ssful Program or O<br>ssful Program or O<br>state of the state<br>of the state of the state<br>ACC STATUS (10)<br>ACC STATUS (10)<br>ACC STATUS (10)<br>ACC STATUS (10)<br>ACC STATUS (10)<br>ACC OK<br>GRAM SUSPEN<br>TUS (PSS)<br>Im Suspended<br>Im in Progress/CC<br>CE PROTECT S<br>or Program Attes<br>of Block, Operat | PEND STATUS<br>d<br>ss/Completed<br>D FULL CHIP E<br>r Full Chip Eras<br>e or Full Chip Eras<br>e or Full Chip E<br>XATUS (POPS)<br>TP Program<br>OTP Program<br>OTP Program<br>WPACCS)<br>C < 11.7V Dete<br>D<br>Completed<br>STATUS (DPS)<br>mpted on a | G (BESS)<br>ERASE<br>Se<br>Erase | Status Register<br>Machine).<br>Check SR.7 or<br>erase, program<br>invalid while St<br>If both SR.5 ar<br>erase, program,<br>bit attempt, an i<br>SR.3 does not p<br>level. The WS<br>level only after<br>OTP Program c<br>report accurate<br>SR.1 does not p<br>bit. The WSM i<br>Erase, Full Chi<br>sequences. It in<br>operation, if the<br>configuration c<br>OTP command<br>SR.15 - SR.8 ar<br>be masked out of | RY/BY# to d<br>or OTP progra<br>R.7="0".<br>ad SR.4 are "1<br>set/clear bloc<br>improper comr<br>provide a cont<br>M interrogates<br>r Block Erase<br>ommand seque<br>feedback when<br>provide a cont<br>nterrogates the<br>p Erase, Progr<br>forms the syste<br>e block lock bi<br>odes after wri<br>indicates bloc | etermine block<br>am completion.<br>"s after a block<br>k lock bit, set b<br>nand sequence<br>inuous indicates<br>, Full Chip Era<br>ences. SR.3 is n<br>n WP#/ACC≠V<br>inuous indicate<br>e block lock bit<br>ram or OTP Pro<br>em, depending of<br>it is set. Readin<br>ting the Read I<br>k lock bit status | erase, full ch<br>SR.6 - SR.1 a<br>erase, full ch<br>lock lock-dov<br>was entered.<br>on of WP#/AC<br>the |  |  |  |

| <ol> <li>Electrical Specifications</li> <li>Absolute Maximum Ratings<sup>*</sup></li> <li>Operating Temperature</li> </ol> | *WARNING: Stressing the device beyond the "Absolute<br>Maximum Ratings" may cause permanent<br>damage. These are stress ratings only. Operation<br>beyond the "Operating Conditions" is not<br>recommended and extended exposure beyond the<br>"Operating Conditions" may affect device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| During Read, Erase and Program $40^{\circ}$ C to $+85^{\circ}$ C <sup>(1)</sup>                                            | reliability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Storage Temperature<br>During under Bias                                                                                   | <ol> <li>NOTES:</li> <li>Operating temperature is for extended temperature product defined by this specification.</li> <li>All specified voltages are with respect to GND. Minimum DC voltage is -0.5V on input/output pins and -0.2V on V<sub>CC</sub> and WP#/ACC pins. During transitions, this level may undershoot to -2.0V for periods &lt;20ns. Maximum DC voltage on input/output pins is V<sub>CC</sub>+0.5V which, during transitions, may overshoot to V<sub>CC</sub>+2.0V for periods &lt;20ns.</li> <li>Maximum DC voltage on WP#/ACC may overshoot to +13.0V for periods &lt;20ns.</li> <li>WP#/ACC erase/program voltage is normally 2.7V-3.6V. Applying 11.7V-12.3V to WP#/ACC during erase/program can be done for a maximum of 1,000 cycles on each block. WP#/ACC may be connected to 11.7V-12.3V for a total of 80 hours maximum.</li> </ol> |
| Output Short Circuit Current 100mA <sup>(5)</sup>                                                                          | <ol> <li>Output shorted for no more than one second. No more than one output shorted at a time.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

### 1.2 Operating Conditions

| Parameter                                                       | Symbol            | Min.    | Тур. | Max.                     | Unit   | Notes |
|-----------------------------------------------------------------|-------------------|---------|------|--------------------------|--------|-------|
| Operating Temperature                                           | T <sub>A</sub>    | -40     | +25  | +85                      | °C     |       |
| V <sub>CC</sub> Supply Voltage                                  | V <sub>CC</sub>   | 2.7     | 3.0  | 3.6                      | V      | 1     |
|                                                                 | V <sub>IL</sub>   | -0.2    |      | 0.4                      | V      |       |
| WP#/ACC Voltage when Used as a Logic Control                    | V <sub>IH</sub>   | 2.4     |      | V <sub>CC</sub><br>+ 0.4 | v      | 1     |
| WP#/ACC Supply Voltage                                          | V <sub>ACCH</sub> | 11.7    | 12.0 | 12.3                     | V      | 1, 2  |
| Block Erase Cycling: WP#/ACC=V <sub>IL</sub> or V <sub>IH</sub> |                   | 100,000 |      |                          | Cycles |       |
| Block Erase Cycling: WP#/ACC=V <sub>ACCH</sub> , 80 hrs.        |                   |         |      | 1,000                    | Cycles |       |
| Maximum WP#/ACC hours at VACCH                                  |                   |         |      | 80                       | Hours  |       |

NOTES:

1. See DC Characteristics tables for voltage range-specific specification.

2. Applying WP#/ACC=11.7V-12.3V during a erase or program can be done for a maximum of 1,000 cycles on each block. A permanent connection to WP#/ACC=11.7V-12.3V is not allowed and can cause damage to the device.

| Parameter                                              | Symbol                                                               | Condition                                                                                  | Min.                                 | Тур.                       | Max.          | Unit   |
|--------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------|----------------------------|---------------|--------|
| nput Capacitance                                       | C <sub>IN</sub>                                                      | V <sub>IN</sub> =0.0V                                                                      |                                      | 4                          | 7             | pF     |
| WP#/ACC Input Capacitance                              | C <sub>IN</sub>                                                      | V <sub>IN</sub> =0.0V                                                                      |                                      | 18                         | 22            | pF     |
| Dutput Capacitance                                     | C <sub>OUT</sub>                                                     | V <sub>OUT</sub> =0.0V                                                                     |                                      | 6                          | 10            | pF     |
| . Sampled, not 100% tested.<br>.2.2 AC Input/Output Te | est Condition                                                        | s                                                                                          |                                      |                            |               |        |
| V <sub>CC</sub> INPU                                   | JT V <sub>CC</sub> /2                                                | TEST POI                                                                                   | NTS                                  |                            | /2 OUTPUT     |        |
| Input timing begin                                     | driven at V <sub>CC</sub> (mas, and output time<br>conditions are wh | in) for a Logic "1" and 0<br>ing ends at $V_{CC}/2$ . Input<br>then $V_{CC}=V_{CC}(min)$ . | .0V for a Logic<br>trise and fall ti | e "0".<br>mes (10% to 90   | 0%) < 5ns.    |        |
| worst case speed                                       |                                                                      |                                                                                            |                                      |                            |               |        |
|                                                        |                                                                      | ut/Output Reference V                                                                      |                                      |                            |               |        |
| Figure 4                                               |                                                                      | ut/Output Reference V                                                                      | e 9. Test Cor                        | nfiguration Ca             | apacitance Lo | -      |
| Figure 4                                               | . Transient Inp                                                      | ut/Output Reference V                                                                      | e 9. Test Cor<br>Test Config         | nfiguration Ca<br>guration | apacitance Lo | _ (pF) |
| Figure 4                                               | . Transient Inp<br>                                                  | ut/Output Reference V Tabl                                                                 | e 9. Test Cor                        | nfiguration Ca<br>guration | apacitance Lo |        |

### Rev. 2.45 www.DataSheet4U.com

### 1.2.3 DC Characteristics

V<sub>CC</sub>=2.7V-3.6V

|                                        |                                                           | •00-    | 2.7 8-3.0 | •    |      |      | 1                                                                                            |
|----------------------------------------|-----------------------------------------------------------|---------|-----------|------|------|------|----------------------------------------------------------------------------------------------|
| Symbol                                 | Parameter                                                 | Notes   | Min.      | Тур. | Max. | Unit | Test Conditions                                                                              |
| I <sub>LI</sub>                        | Input Load Current                                        | 1       | -1.0      |      | +1.0 | μΑ   | V <sub>CC</sub> =V <sub>CC</sub> Max.,                                                       |
| I <sub>LO</sub>                        | Output Leakage Current                                    | 1       | -1.0      |      | +1.0 | μΑ   | $V_{IN}/V_{OUT} = V_{CC}$ or<br>GND                                                          |
| I <sub>CCS</sub>                       | V <sub>CC</sub> Standby Current                           | 1,6,7   |           | 4    | 10   | μΑ   | $V_{CC}=V_{CC}Max.,$ $CE\#=RST\#=$ $V_{CC}\pm0.2V,$ $WP\#/ACC=V_{CC} \text{ or }$ $GND$      |
| I <sub>CCAS</sub>                      | V <sub>CC</sub> Automatic Power Savings<br>Current        | 1,3,6   |           | 4    | 10   | μΑ   | V <sub>CC</sub> =V <sub>CC</sub> Max.,<br>CE#=GND±0.2V,<br>WP#/ACC=V <sub>CC</sub> or<br>GND |
| I <sub>CCD</sub>                       | V <sub>CC</sub> Reset Current                             | 1,6     |           | 4    | 10   | μΑ   | RST#=GND±0.2V                                                                                |
| I <sub>CCR</sub>                       | V <sub>CC</sub> Read Current                              | 1,6     |           |      | 17   | mA   | $V_{CC}=V_{CC}Max.,$ $CE\#=V_{IL},$ $OE\#=V_{IH},$ $f=5MHz$                                  |
| т                                      |                                                           | 1,4,6   |           | 20   | 60   | mA   | WP#/ACC=V <sub>IL</sub> or V <sub>IH</sub>                                                   |
| I <sub>CCW</sub>                       | V <sub>CC</sub> Program Current                           | 1,4,6   |           | 10   | 20   | mA   | WP#/ACC=V <sub>ACCH</sub>                                                                    |
| т                                      | V <sub>CC</sub> Block Erase,                              | 1,4,6   |           | 10   | 30   | mA   | WP#/ACC=V <sub>IL</sub> or V <sub>IH</sub>                                                   |
| I <sub>CCE</sub>                       | Full Chip Erase Current                                   | 1,4,6   |           | 4    | 10   | mA   | WP#/ACC=V <sub>ACCH</sub>                                                                    |
| I <sub>CCWS</sub><br>I <sub>CCES</sub> | V <sub>CC</sub> Program or<br>Block Erase Suspend Current | 1,2,6   |           | 10   | 200  | μΑ   | CE#=V <sub>IH</sub>                                                                          |
| I <sub>ACCS</sub><br>I <sub>ACCR</sub> | WP#/ACC Standby or Read Current                           | 1,5,6   |           | 2    | 5    | μΑ   | WP#/ACC≤V <sub>CC</sub>                                                                      |
| T                                      | WP#/ACC Program Current                                   | 1,4,5,6 |           | 2    | 5    | μΑ   | WP#/ACC=V <sub>IL</sub> or V <sub>IH</sub>                                                   |
| I <sub>ACCW</sub>                      | WP#/ACC Program Current                                   | 1,4,5,6 |           | 10   | 30   | mA   | WP#/ACC=V <sub>ACCH</sub>                                                                    |
| T                                      | WP#/ACC Block Erase,                                      | 1,4,5,6 |           | 2    | 5    | μΑ   | WP#/ACC=V <sub>IL</sub> or V <sub>IH</sub>                                                   |
| I <sub>ACCE</sub>                      | Full Chip Erase Current                                   | 1,4,5,6 |           | 5    | 15   | mA   | WP#/ACC=V <sub>ACCH</sub>                                                                    |
| I                                      | WP#/ACC Program                                           | 1,5,6   |           | 2    | 5    | μA   | WP#/ACC=V <sub>IL</sub> or V <sub>IH</sub>                                                   |
| I <sub>ACCWS</sub>                     | Suspend Current                                           | 1,5,6   |           | 10   | 200  | μΑ   | WP#/ACC=V <sub>ACCH</sub>                                                                    |
| Lace                                   | WP#/ACC Block Erase Suspend                               | 1,5,6   |           | 2    | 5    | μΑ   | WP#/ACC=V <sub>IL</sub> or V <sub>IH</sub>                                                   |
| I <sub>ACCES</sub>                     | Current                                                   | 1,5,6   |           | 10   | 200  | μΑ   | WP#/ACC=V <sub>ACCH</sub>                                                                    |

www.DataSheet4U.com

### DC Characteristics (Continued)

#### V<sub>CC</sub>=2.7V-3.6V

| Symbol            | Parameter                                                                            | Notes | Min.                    | Тур. | Max.                     | Unit | Test Conditions                                                   |
|-------------------|--------------------------------------------------------------------------------------|-------|-------------------------|------|--------------------------|------|-------------------------------------------------------------------|
| V <sub>IL</sub>   | Input Low Voltage                                                                    | 5     | -0.4                    |      | 0.4                      | V    |                                                                   |
| V <sub>IH</sub>   | Input High Voltage                                                                   | 4     | 2.4                     |      | V <sub>CC</sub><br>+ 0.4 | V    |                                                                   |
| V <sub>OL</sub>   | Output Low Voltage                                                                   | 4,7   |                         |      | 0.2                      | V    | V <sub>CC</sub> =V <sub>CC</sub> Min.,<br>I <sub>OL</sub> =100µA  |
| V <sub>OH</sub>   | Output High Voltage                                                                  | 4     | V <sub>CC</sub><br>-0.2 |      |                          | V    | V <sub>CC</sub> =V <sub>CC</sub> Min.,<br>I <sub>OH</sub> =-100µA |
| V <sub>ACCH</sub> | WP#/ACC during Block Erase, Full<br>Chip Erase, Program or OTP Program<br>Operations |       | 11.7                    | 12.0 | 12.3                     | V    |                                                                   |
| V <sub>LKO</sub>  | V <sub>CC</sub> Lockout Voltage                                                      |       | 1.5                     |      |                          | V    |                                                                   |

NOTES:

SHARP

1. All currents are in RMS unless otherwise noted. Typical values are the reference values at  $V_{CC}$ =3.0V and T<sub>A</sub>=+25°C unless V<sub>CC</sub> is specified.

2. I<sub>CCWS</sub> and I<sub>CCES</sub> are specified with the device de-selected. If read or program is executed while in block erase suspend mode, the device's current draw is the sum of I<sub>CCES</sub> and I<sub>CCR</sub> or I<sub>CCW</sub>. If read is executed while in program suspend mode, the device's current draw is the sum of I<sub>CCWS</sub> and I<sub>CCR</sub>. 3. The Automatic Power Savings (APS) feature automatically places the device in power save mode after read cycle

completion. Standard address access timings (tAVOV) provide new data when addresses are changed.

4. Sampled, not 100% tested.

5. Applying 12.0V±0.3V to WP#/ACC provides fast erasing or fast programming mode. In this mode, WP#/ACC is power supply pin and supplies the memory cell current for block erasing and programming. Use similar power supply trace widths and layout considerations given to the  $V_{CC}$  power bus.

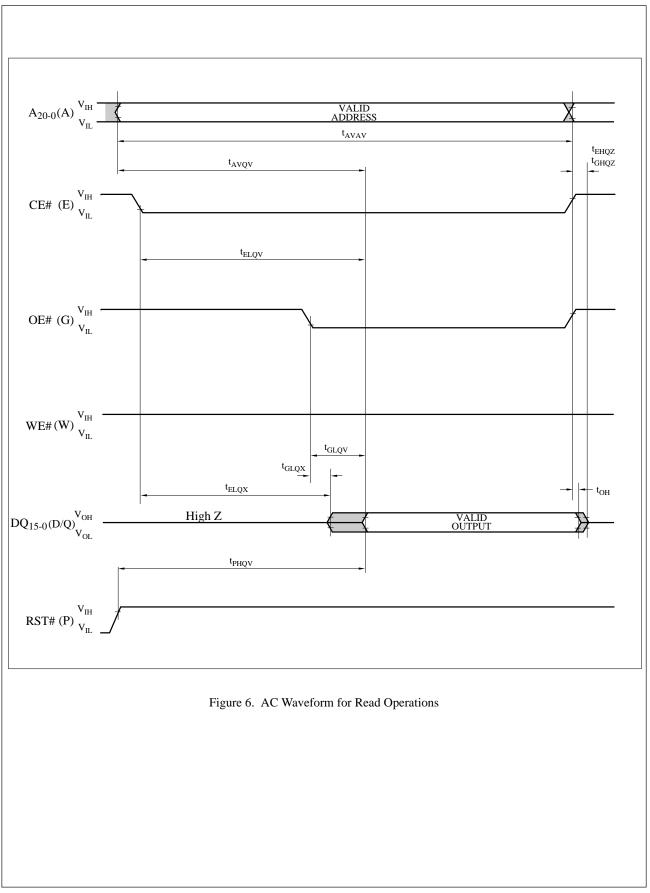
Applying 12.0V±0.3V to WP#/ACC during erase/program can only be done for a maximum of 1,000 cycles on each block. WP#/ACC may be connected to 12.0V±0.3V for a total of 80 hours maximum.

6. For all pins other than those shown in test conditions, input level is  $V_{CC}$  or GND.

7. Includes RY/BY#.

# 1.2.4 AC Characteristics - Read-Only Operations<sup>(1)</sup>

### $V_{CC}$ =2.7V-3.6V, $T_{A}$ =-40°C to +85°C


| Symbol                                | Parameter                                                   | Notes | Min. | Max. | Unit |
|---------------------------------------|-------------------------------------------------------------|-------|------|------|------|
| t <sub>AVAV</sub>                     | Read Cycle Time                                             |       | 90   |      | ns   |
| t <sub>AVQV</sub>                     | Address to Output Delay                                     |       |      | 90   | ns   |
| t <sub>ELQV</sub>                     | CE# to Output Delay                                         | 3     |      | 90   | ns   |
| t <sub>GLQV</sub>                     | OE# to Output Delay                                         | 3     |      | 20   | ns   |
| t <sub>PHQV</sub>                     | RST# High to Output Delay                                   |       |      | 150  | ns   |
| t <sub>EHQZ</sub> , t <sub>GHQZ</sub> | CE# or OE# to Output in High Z, Whichever Occurs First      | 2     |      | 20   | ns   |
| t <sub>ELQX</sub>                     | CE# to Output in Low Z                                      | 2     | 0    |      | ns   |
| t <sub>GLQX</sub>                     | OE# to Output in Low Z                                      | 2     | 0    |      | ns   |
| t <sub>OH</sub>                       | Output Hold from First Occurring Address, CE# or OE# change | 2     | 0    |      | ns   |

NOTES:

1. See AC input/output reference waveform for timing measurements and maximum allowable input slew rate.

2. Sampled, not 100% tested.

3. OE# may be delayed up to  $t_{ELQV}$  —  $t_{GLQV}$  after the falling edge of CE# without impact to  $t_{ELQV}$ .



### 1.2.5 AC Characteristics - Write Operations<sup>(1), (2)</sup>

| Symbol                                     | Parameter                                       | Notes | Min. | Max.                     | Unit |
|--------------------------------------------|-------------------------------------------------|-------|------|--------------------------|------|
| t <sub>AVAV</sub>                          | Write Cycle Time                                |       | 90   |                          | ns   |
| $t_{PHWL} (t_{PHEL})$                      | RST# High Recovery to WE# (CE#) Going Low       | 3     | 150  |                          | ns   |
| $t_{ELWL}\left(t_{WLEL}\right)$            | CE# (WE#) Setup to WE# (CE#) Going Low          |       | 0    |                          | ns   |
| $t_{WLWH}(t_{ELEH})$                       | WE# (CE#) Pulse Width                           | 4     | 60   |                          | ns   |
| t <sub>DVWH</sub> (t <sub>DVEH</sub> )     | Data Setup to WE# (CE#) Going High              | 7     | 40   |                          | ns   |
| $t_{AVWH} (t_{AVEH})$                      | Address Setup to WE# (CE#) Going High           | 7     | 50   |                          | ns   |
| $t_{\rm WHEH} \left( t_{\rm EHWH} \right)$ | CE# (WE#) Hold from WE# (CE#) High              |       | 0    |                          | ns   |
| $t_{WHDX} (t_{EHDX})$                      | Data Hold from WE# (CE#) High                   |       | 0    |                          | ns   |
| $t_{WHAX}$ ( $t_{EHAX}$ )                  | Address Hold from WE# (CE#) High                |       | 0    |                          | ns   |
| t <sub>WHWL</sub> (t <sub>EHEL</sub> )     | WE# (CE#) Pulse Width High                      |       | 30   |                          | ns   |
| t <sub>SHWH</sub> (t <sub>SHEH</sub> )     | WP#/ACC High Setup to WE# (CE#) WP#/ACC=VIH     | 3     | 0    |                          | ns   |
|                                            | Going High WP#/ACC=V <sub>ACCH</sub>            | 3     | 200  |                          |      |
| $t_{WHGL}(t_{EHGL})$                       | Write Recovery before Read                      |       | 30   |                          | ns   |
| t <sub>QVSL</sub>                          | WP#/ACC High Hold from Valid SRD, RY/BY# High Z |       | 0    |                          | ns   |
| t <sub>WHR0</sub> (t <sub>EHR0</sub> )     | WE# (CE#) High to SR.7 Going "0"                |       |      | t <sub>AVQV</sub><br>+50 | ns   |
| t <sub>WHRL</sub> (t <sub>EHRL</sub> )     | WE# (CE#) High to RY/BY# Going Low              | 3     |      | 100                      | ns   |

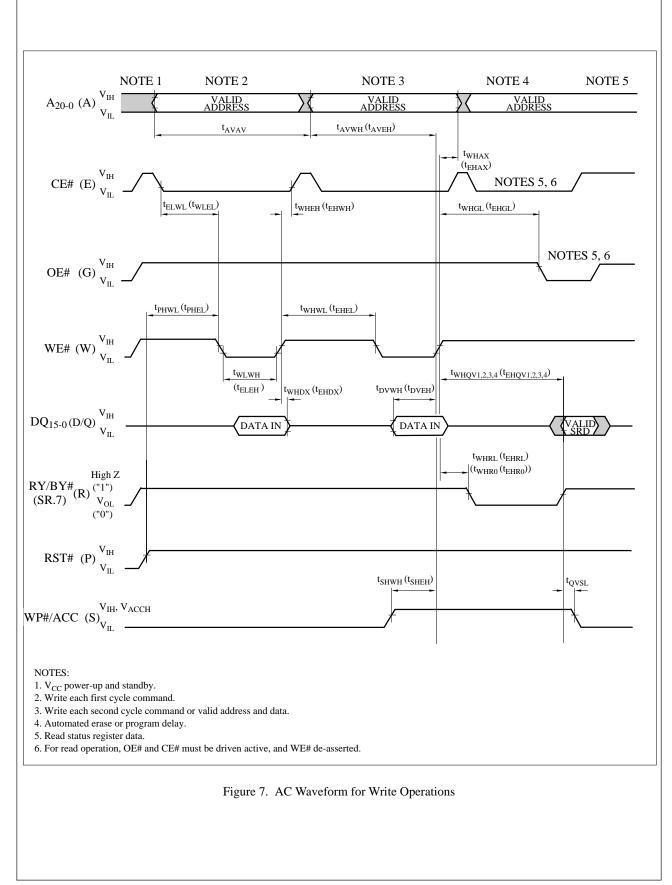
### $V_{CC}$ =2.7V-3.6V, $T_A$ =-40°C to +85°C

NOTES:

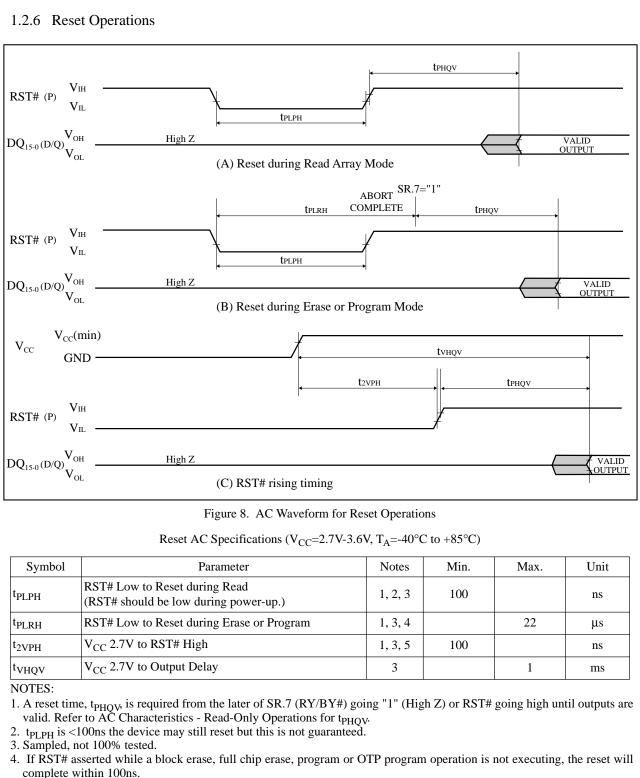
1. The timing characteristics for reading the status register during block erase, full chip erase, program and OTP program operations are the same as during read-only operations. Refer to AC Characteristics for read-only operations.

2. A write operation can be initiated and terminated with either CE# or WE#.

3. Sampled, not 100% tested.


4. Write pulse width  $(t_{WP})$  is defined from the falling edge of CE# or WE# (whichever goes low last) to the rising edge of

CE# or WE# (whichever goes high first). Hence,  $t_{WP}=t_{WLWH}=t_{ELEH}=t_{WLEH}=t_{ELWH}$ . 5. Write pulse width high ( $t_{WPH}$ ) is defined from the rising edge of CE# or WE# (whichever goes high first) to the falling edge of CE# or WE# (whichever goes low last). Hence,  $t_{WPH}=t_{WHWL}=t_{EHEL}=t_{WHEL}=t_{EHWL}$ . 6.  $t_{WHR0}$  ( $t_{EHR0}$ ) after the Read Query or Read Identifier Codes/OTP command= $t_{AVQV}+100$ ns.


7. Refer to Table 4 for valid address and data for block erase, full chip erase, program, OTP program or lock bit configuration.



LHF00L14



LHF00L14



5. When the device power-up, holding RST# low minimum 100ns is required after V<sub>CC</sub> has been in predefined range and also has been in stable there.

### 1.2.7 Block Erase, Full Chip Erase, Program and OTP Program Performance<sup>(3)</sup>

| Symbol                                     | Parameter                                                                         | Notes | WP#/ACC=V <sub>IL</sub> or V <sub>IH</sub><br>(In System) |                     | WP#/ACC=V <sub>ACCH</sub><br>(In Manufacturing) |      |                     | Unit                |    |
|--------------------------------------------|-----------------------------------------------------------------------------------|-------|-----------------------------------------------------------|---------------------|-------------------------------------------------|------|---------------------|---------------------|----|
| -                                          |                                                                                   |       | Min.                                                      | Typ. <sup>(1)</sup> | Max. <sup>(2)</sup>                             | Min. | Typ. <sup>(1)</sup> | Max. <sup>(2)</sup> |    |
| t <sub>WPB</sub>                           | 4-Kword Parameter Block<br>Program Time                                           | 2     |                                                           | 0.05                | 0.3                                             |      | 0.04                | 0.12                | 8  |
| t <sub>WMB1</sub>                          | 32-Kword Block<br>Program Time                                                    | 2     |                                                           | 0.34                | 2.4                                             |      | 0.31                | 1.0                 | s  |
| t <sub>WMB2</sub>                          | 64-Kword Block<br>Program Time                                                    | 2     |                                                           | 0.68                | 4.8                                             |      | 0.62                | 2.0                 | s  |
| t <sub>WHQV1</sub> /<br>t <sub>EHQV1</sub> | Word Program Time                                                                 | 2     |                                                           | 10                  | 200                                             |      | 9                   | 185                 | μs |
| t <sub>WHOV1</sub> /<br>t <sub>EHOV1</sub> | OTP Program Time                                                                  | 2     |                                                           | 36                  | 400                                             |      | 27                  | 185                 | μs |
| t <sub>WHQV2</sub> /<br>t <sub>EHQV2</sub> | 4-Kword Parameter Block<br>Erase Time                                             | 2     |                                                           | 0.26                | 4                                               |      | 0.2                 | 4                   | S  |
| t <sub>WHQV3</sub> /<br>t <sub>EHQV3</sub> | 32-Kword Block<br>Erase Time                                                      | 2     |                                                           | 0.51                | 5                                               |      | 0.5                 | 5                   | S  |
| t <sub>WHQV4</sub> /<br>t <sub>EHQV4</sub> | 64-Kword Block<br>Erase Time                                                      | 2     |                                                           | 0.82                | 8                                               |      | 0.8                 | 8                   | S  |
|                                            | Full Chip Erase Time                                                              | 2     |                                                           | 40                  | 350                                             |      | 33                  | 350                 | s  |
| t <sub>WHRH1</sub> /<br>t <sub>EHRH1</sub> | Program Suspend<br>Latency Time to Read                                           | 4     |                                                           | 5                   | 10                                              |      | 5                   | 10                  | μs |
| t <sub>WHRH2</sub> /<br>t <sub>EHRH2</sub> | Block Erase Suspend<br>Latency Time to Read                                       | 4     |                                                           | 5                   | 20                                              |      | 5                   | 20                  | μs |
| t <sub>ERES</sub>                          | Latency Time from Block Erase<br>Resume Command to Block<br>Erase Suspend Command | 5     | 500                                                       |                     |                                                 | 500  |                     |                     | μs |

### $V_{CC}$ =2.7V-3.6V, $T_A$ =-40°C to +85°C

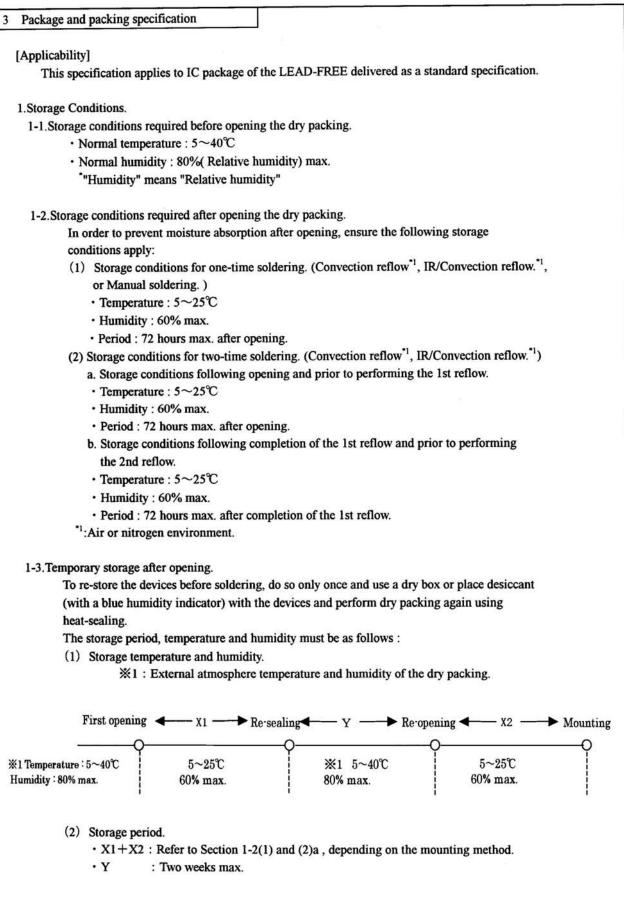
NOTES:

1. Typical values measured at  $V_{CC}$ =3.0V, WP#/ACC=3.0V or 12.0V, and  $T_A$ =+25°C. Assumes corresponding lock bits are not set. Subject to change based on device characterization.

2. Excludes external system-level overhead.

3. Sampled, but not 100% tested.

4. A latency time is required from writing suspend command (WE# or CE# going high) until SR.7 going "1" or RY/BY# going High Z.

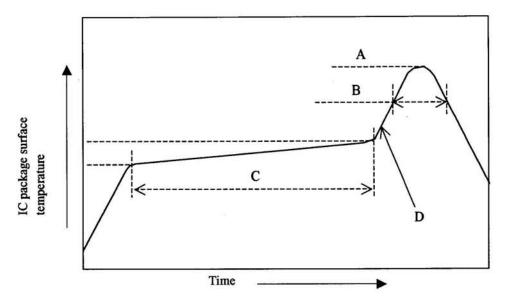

5. If the interval time from a Block Erase Resume command to a subsequent Block Erase Suspend command is shorter than t<sub>ERES</sub> and its sequence is repeated, the block erase operation may not be finished.

## 2 Related Document Information<sup>(1)</sup>

| Document No. | Document Name            |
|--------------|--------------------------|
| FUM03802     | LHF00LXX series Appendix |

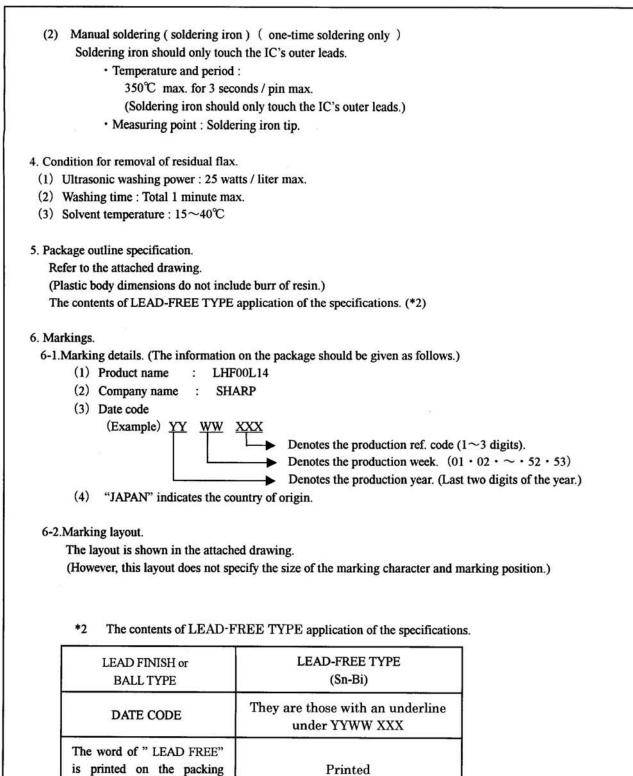
NOTE:

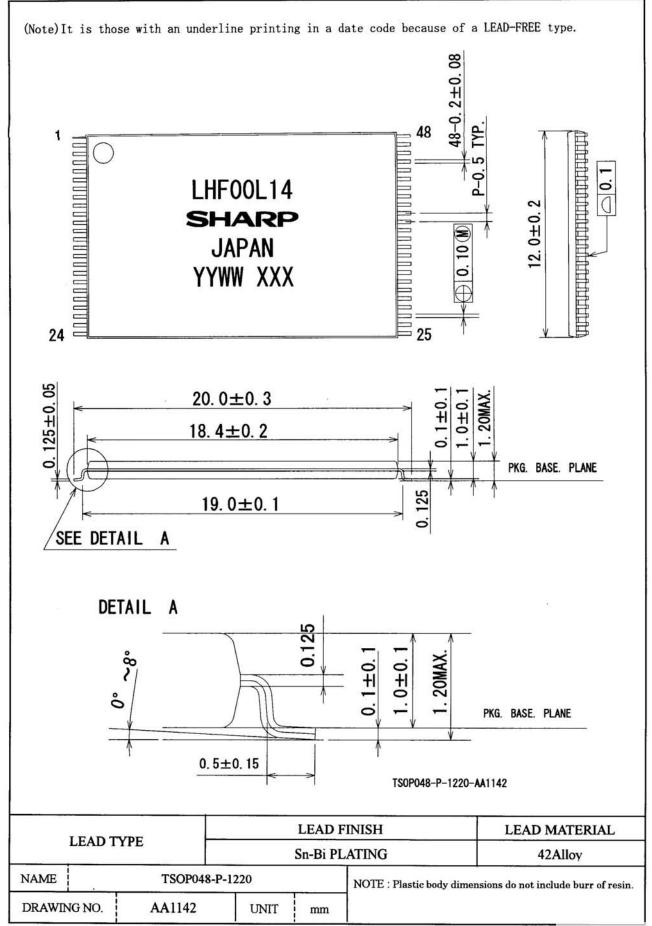
1. International customers should contact their local SHARP or distribution sales offices.




- 2. Baking Condition.
  - (1) Situations requiring baking before mounting.
    - Storage conditions exceed the limits specified in Section 1-2 or 1-3.
    - Humidity indicator in the desiccant was already red (pink) when opened. ( Also for re-opening.)
  - (2) Recommended baking conditions.
    - · Baking temperature and period :

120°C for 16~24 hours.


- · The above baking conditions apply since the trays are heat-resistant.
- (3) Storage after baking.
  - After baking, store the devices in the environment specified in Section 1-2 and mount immediately.
- 3. Surface mount conditions.
- The following soldering condition are recommended to ensure device quality.
- 3-1.Soldering.
- Convection reflow or IR/Convection. (one-time soldering or two-time soldering in air or nitrogen environment)
  - · Temperature and period :
    - A) Peak temperature.
    - B) Heating temperature.
    - C) Preheat temperature.
    - D) Temperature increase rate.
  - · Measuring point : IC package surface.
  - · Temperature profile:


250°C max. 40 to 60 seconds as 220°C It is 150 to 200°C, and is 120±30 seconds It is 1 to 3°C/seconds



SHARP

label





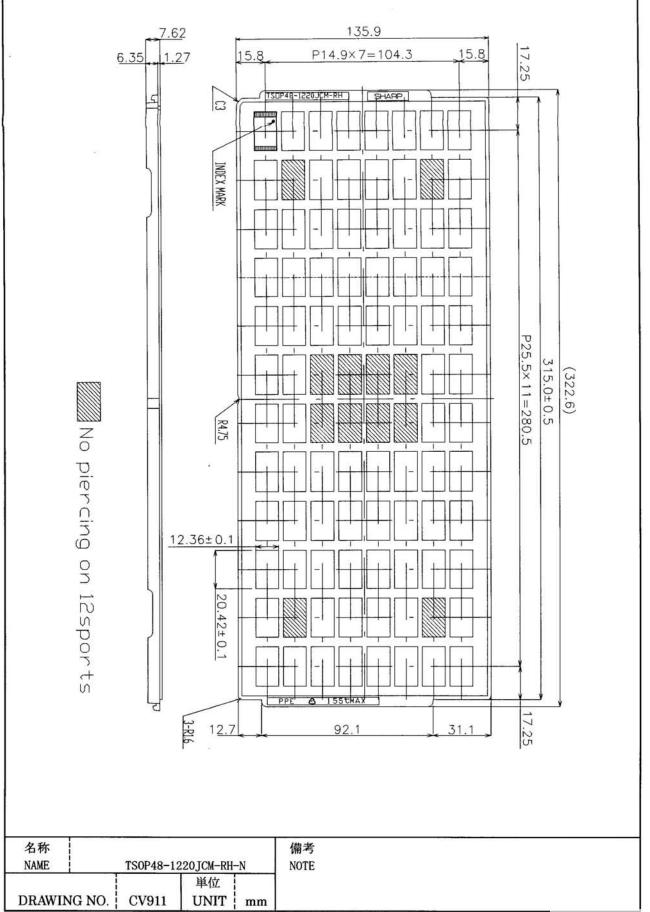
www.DataSheet4U.com

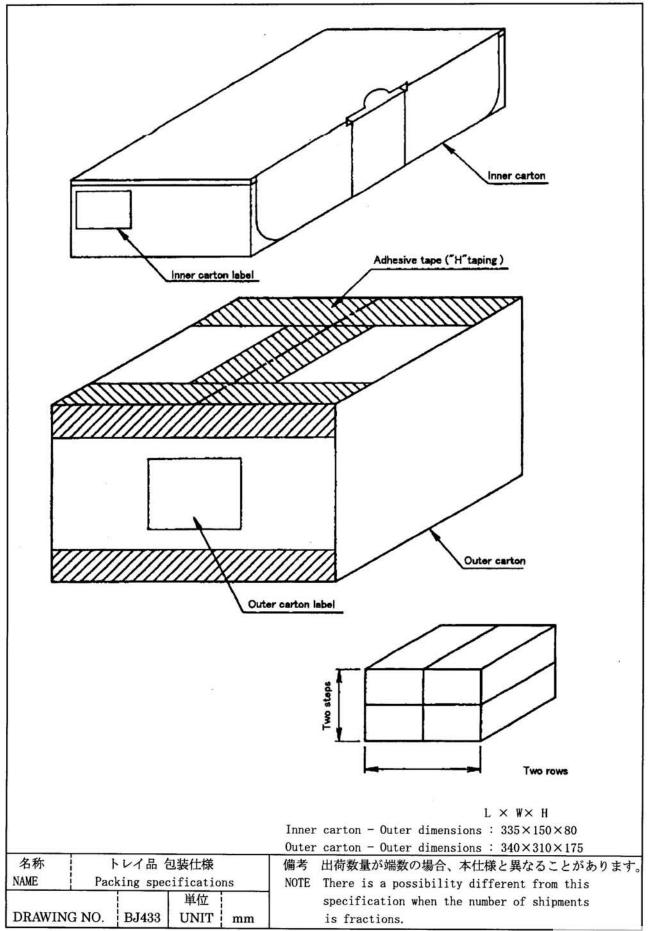
### 7.Packing Specifications (Dry packing for surface mount packages.) 7-1.Packing materials.

| Material specifications                                                | Purpose                                                                                                                                                                                                                                                                    |  |  |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Cardboard (960 devices / inner carton max.)                            | Packing the devices.<br>(10 trays / inner carton)                                                                                                                                                                                                                          |  |  |
| Conductive plastic (96 devices / tray)                                 | Securing the devices.                                                                                                                                                                                                                                                      |  |  |
| Conductive plastic (1 tray / inner carton)                             | Securing the devices.                                                                                                                                                                                                                                                      |  |  |
| Aluminum polyethylene                                                  | Keeping the devices dry.                                                                                                                                                                                                                                                   |  |  |
| Silica gel                                                             | Keeping the devices dry.                                                                                                                                                                                                                                                   |  |  |
| Label Paper                                                            |                                                                                                                                                                                                                                                                            |  |  |
| Polypropylene (3 pcs. / inner carton )                                 | Securing the devices.                                                                                                                                                                                                                                                      |  |  |
| Outer carton Cardboard (3840 devices / outer carton Outer packin max.) |                                                                                                                                                                                                                                                                            |  |  |
|                                                                        | Cardboard (960 devices / inner carton<br>max.)<br>Conductive plastic (96 devices / tray)<br>Conductive plastic (1 tray / inner carton)<br>Aluminum polyethylene<br>Silica gel<br>Paper<br>Polypropylene (3 pcs. / inner carton )<br>Cardboard (3840 devices / outer carton |  |  |

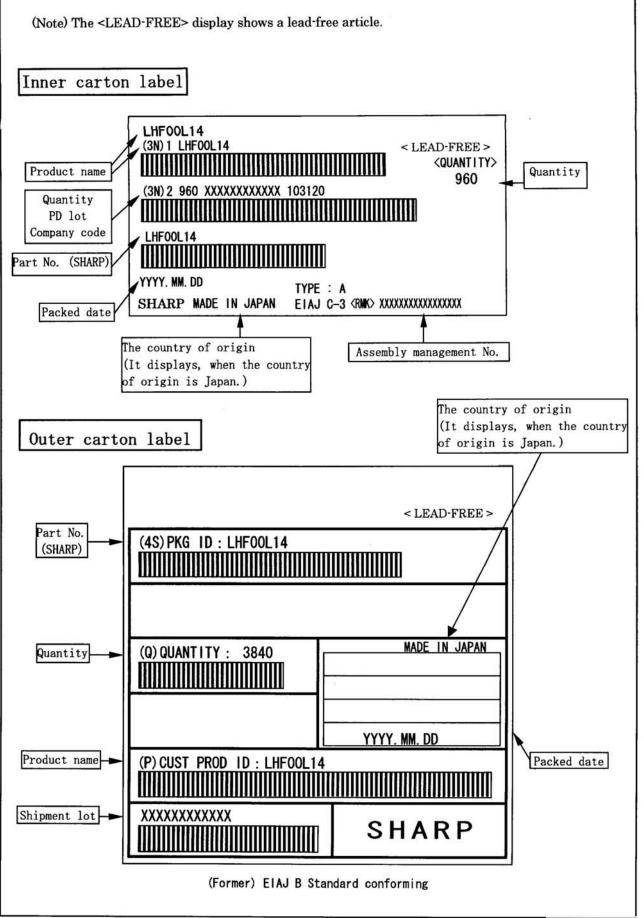
( Devices must be placed on the tray in the same direction.)

7-2.Outline dimension of tray.


Refer to the attached drawing.


7-3.Outline dimension of carton.

Refer to the attached drawing.


8. Precautions for use.

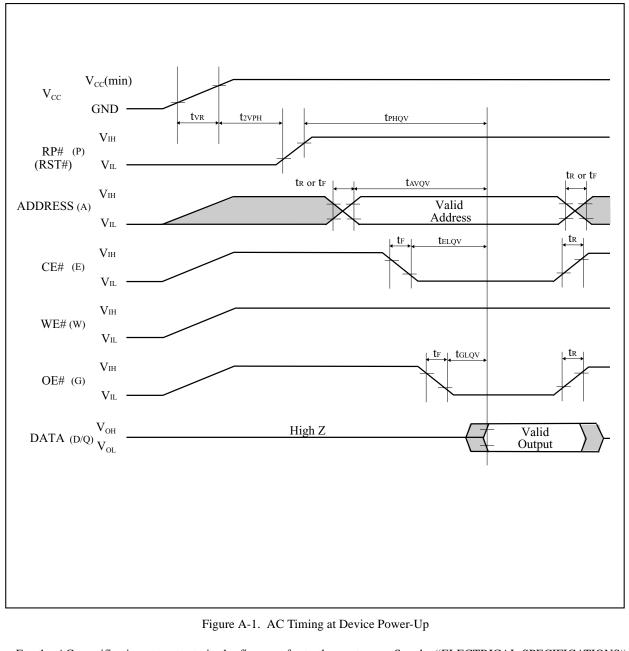
- (1) Opening must be done on an anti-ESD treated workbench. All workers must also have undergone anti-ESD treatment.
- (2) The trays have undergone either conductive or anti-ESD treatment. If another tray is used, make sure it has also undergone conductive or anti-ESD treatment.
- (3) The devices should be mounted the devices within one year of the date of delivery.





www.DataSheet4U.com




www.DataSheet4U.com

i

### A-1 RECOMMENDED OPERATING CONDITIONS

### A-1.1 At Device Power-Up

AC timing illustrated in Figure A-1 is recommended for the supply voltages and the control signals at device power-up. If the timing in the figure is ignored, the device may not operate correctly.

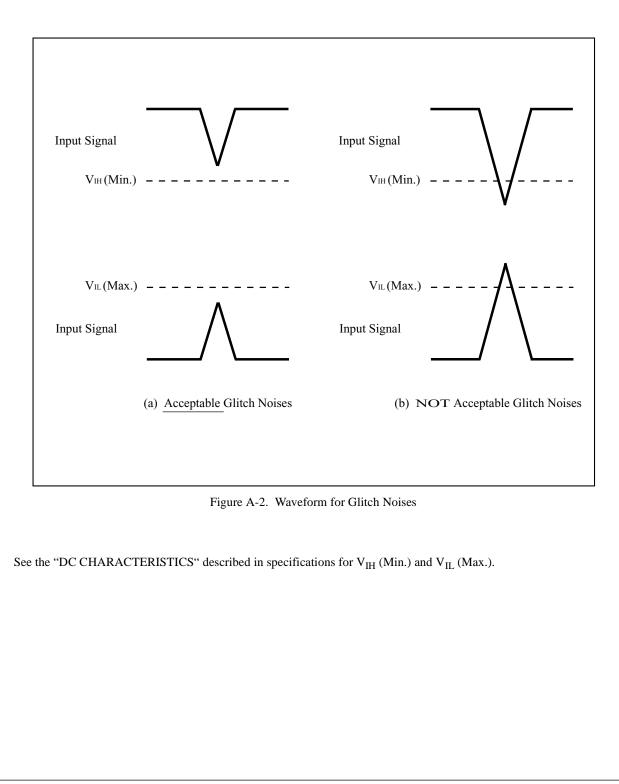


For the AC specifications  $t_{VR}$ ,  $t_R$ ,  $t_F$  in the figure, refer to the next page. See the "ELECTRICAL SPECIFICATIONS" described in specifications for the supply voltage range, the operating temperature and the AC specifications not shown in the next page.

### A-1.1.1 Rise and Fall Time

| Symbol          | Parameter                 | Notes | Min. | Max.  | Unit |
|-----------------|---------------------------|-------|------|-------|------|
| t <sub>VR</sub> | V <sub>CC</sub> Rise Time | 1     | 0.5  | 30000 | μs/V |
| t <sub>R</sub>  | Input Signal Rise Time    |       |      | 1     | μs/V |
| t <sub>F</sub>  | Input Signal Fall Time    | 1, 2  |      | 1     | μs/V |

### NOTES:


1. Sampled, not 100% tested.

2. This specification is applied for not only the device power-up but also the normal operations.



### A-1.2 Glitch Noises

Do not input the glitch noises which are below  $V_{IH}$  (Min.) or above  $V_{IL}$  (Max.) on address, data, reset, and control signals, as shown in Figure A-2 (b). The acceptable glitch noises are illustrated in Figure A-2 (a).



### A-2 RELATED DOCUMENT INFORMATION<sup>(1)</sup>

| Document No. | Document Name                                             |
|--------------|-----------------------------------------------------------|
| AP-001-SD-E  | Flash Memory Family Software Drivers                      |
| АР-006-РТ-Е  | Data Protection Method of SHARP Flash Memory              |
| AP-007-SW-E  | RP#, V <sub>PP</sub> Electric Potential Switching Circuit |

NOTE:

1. International customers should contact their local SHARP or distribution sales office.

#### SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible, for any incidental or consequential economic or property damage.

# **SHARP**®

#### NORTH AMERICA

SHARP Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (1) 360-834-2500 Fax: (1) 360-834-8903 Fast Info: (1) 800-833-9437 www.sharpsma.com

#### TAIWAN

SHARP Electronic Components (Taiwan) Corporation 8F-A, No. 16, Sec. 4, Nanking E. Rd. Taipei, Taiwan, Republic of China Phone: (886) 2-2577-7341 Fax: (886) 2-2577-7326/2-2577-7328

#### CHINA

SHARP Microelectronics of China (Shanghai) Co., Ltd. 28 Xin Jin Qiao Road King Tower 16F Pudong Shanghai, 201206 P.R. China Phone: (86) 21-5854-7710/21-5834-6056 Fax: (86) 21-5854-4340/21-5834-6057 Head Office:

#### No. 360, Bashen Road,

Xin Development Bldg. 22 Waigaoqiao Free Trade Zone Shanghai 200131 P.R. China Email: smc@china.global.sharp.co.jp

#### EUROPE

SHARP Microelectronics Europe Division of Sharp Electronics (Europe) GmbH Sonninstrasse 3 20097 Hamburg, Germany Phone: (49) 40-2376-2286 Fax: (49) 40-2376-2232 www.sharpsme.com

#### SINGAPORE

SHARP Electronics (Singapore) PTE., Ltd. 438A, Alexandra Road, #05-01/02 Alexandra Technopark, Singapore 119967 Phone: (65) 271-3566 Fax: (65) 271-3855

#### HONG KONG

SHARP-ROXY (Hong Kong) Ltd. 3rd Business Division, 17/F, Admiralty Centre, Tower 1 18 Harcourt Road, Hong Kong Phone: (852) 28229311 Fax: (852) 28660779 www.sharp.com.hk **Shenzhen Representative Office:** Room 13B1, Tower C, Electronics Science & Technology Building Shen Nan Zhong Road Shenzhen, P.R. China Phone: (86) 755-3273731 Fax: (86) 755-3273735

#### JAPAN

SHARP Corporation Electronic Components & Devices 22-22 Nagaike-cho, Abeno-Ku Osaka 545-8522, Japan Phone: (81) 6-6621-1221 Fax: (81) 6117-725300/6117-725301 www.sharp-world.com

#### KOREA

SHARP Electronic Components (Korea) Corporation RM 501 Geosung B/D, 541 Dohwa-dong, Mapo-ku Seoul 121-701, Korea Phone: (82) 2-711-5813 ~ 8 Fax: (82) 2-711-5819