74LVC2G66

Bilateral switch

1. General description

The 74LVC2G66 is a low-power, low-voltage, high-speed Si-gate CMOS device.
The 74LVC2G66 provides two single pole, single-throw analog switch functions. Each switch has two input/output terminals (nY and nZ) and an active HIGH enable input (nE). When nE is LOW, the analog switch is turned off.

Schmitt-trigger action at the enable inputs makes the circuit tolerant of slower input rise and fall times across the entire V_{CC} range from 1.65 V to 5.5 V .

2. Features

■ Wide supply voltage range from 1.65 V to 5.5 V

- Very low ON resistance:
- 7.5Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
- 6.5Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- 6Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- Switch current capability of 32 mA
- High noise immunity
- CMOS low power consumption
- TTL interface compatibility at 3.3 V
- Latch-up performance meets requirements of JESD78 Class I
- ESD protection:
- HBM JESD22-A114E exceeds 2000 V
- MM JESD22-A115-A exceeds 200 V
- Enable input accepts voltages up to 5.5 V
- Multiple package options
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

3. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
$74 \mathrm{LVC2G66DP}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP8	plastic thin shrink small outline package; 8 leads; body width 3 mm ; lead length 0.5 mm	SOT505-2
$74 \mathrm{LVC2G66DC}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1
$74 \mathrm{LVC2G66GT}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body $1 \times 1.95 \times 0.5 \mathrm{~mm}$	SOT833-1
$74 \mathrm{LVC2G66GD}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	XSON8U	plastic extremely thin small outline package; no leads; 8 terminals; UTLP based; body $3 \times 2 \times 0.5 \mathrm{~mm}$	SOT996-2
$74 \mathrm{LVC2G66GM}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	XQFN8U	plastic extremely thin quad flat package; noleads; 8 terminals; UTLP based; body $1.6 \times 1.6 \times 0.5 \mathrm{~mm}$	SOT902-1

4. Marking

Table 2. Marking codes

Type number	Marking code
74 LVC2G66DP	V66
74 LVC2G66DC	V66
74 LVC2G66GT	V66
74 LVC2G66GD	V66
74 LVC2G66GM	V66

5. Functional diagram

Fig 1. Logic symbol

Fig 2. IEC logic symbol

Fig 3. Logic diagram (one switch)

6. Pinning information

6.1 Pinning

Fig 4. Pin configuration SOT505-2 (TSSOP8) and SOT765-1 (VSSOP8)

Fig 5. Pin configuration SOT833-1 (XSON8)

Fig 6. Pin configuration SOT996-2 (XSON8U)

Fig 7. Pin configuration SOT902-1 (XQFN8U)

6.2 Pin description

Table 3. Pin description

Symbol	Pin		Description
	SOT505-2, SOT765-1, SOT833-1 and SOT996-2	SOT902-1	
1 Y	1	7	independent input or output
$1 Z$	2	6	independent input or output
2 E	3	5	enable input (active HIGH)
GND	4	4	ground (0 V)
2 Y	5	3	independent input or output
$2 Z$	6	2	independent input or output
1 E	7	1	enable input (active HIGH)
V_{CC}	8	8	supply voltage

7. Functional description

Table 4. Function table[1]

Input $\mathbf{n E}$	Switch
L	OFF-state
H	ON-state

[1] $H=$ HIGH voltage level; $L=$ LOW voltage level.

8. Limiting values

Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+6.5	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		[1]	-0.5	+6.5
I_{IK}	input clamping current	$\mathrm{V}_{\mathrm{I}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-50	-	V
I_{SK}	switch clamping current	$\mathrm{V}_{\mathrm{I}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 50	mA
$\mathrm{~V}_{\mathrm{SW}}$	switch voltage	enable and disable mode	[2]	-0.5	$\mathrm{~V}_{\mathrm{CC}}+0.5$
I_{SW}	switch current	$\mathrm{V}_{\mathrm{SW}}>-0.5 \mathrm{~V}$ or	V		
		$\mathrm{V}_{\mathrm{SW}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 50	mA
I_{CC}	supply current		-	100	mA
$\mathrm{I}_{\mathrm{GND}}$	ground current	storage temperature		-100	-
$\mathrm{T}_{\text {Stg }}$	total power dissipation	$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	[3] -	250	mA
$\mathrm{P}_{\text {tot }}$		-65	+150	${ }^{\circ} \mathrm{C}$	

[1] The minimum input voltage rating may be exceeded if the input current rating is observed.
[2] The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed.
[3] For TSSOP8 package: above $55^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $2.5 \mathrm{~mW} / \mathrm{K}$. For VSSOP8 package: above $110^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$.
For XSON8, XSON8U and XQFN8U packages: above $45^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $2.4 \mathrm{~mW} / \mathrm{K}$.

9. Recommended operating conditions

Table 6. Operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		1.65	5.5	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		0	5.5	V
$\mathrm{~V}_{\mathrm{SW}}$	switch voltage		$\underline{[1][2]}$	0	$\mathrm{~V}_{\mathrm{CC}}$
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature	-40	+125	${ }^{\circ} \mathrm{C}$	
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.7 V	[3] -	20	$\mathrm{~ns} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V	[3] -	10	$\mathrm{~ns} / \mathrm{V}$

[1] To avoid sinking GND current from terminal $n Z$ when switch current flows in terminal $n Y$, the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminal nZ , no GND current will flow from terminal nY . In this case, there is no limit for the voltage drop across the switch.
[2] For overvoltage tolerant switch voltage capability, refer to 74LVCV2G66.
[3] Applies to control signal levels.

10. Static characteristics

Table 7. Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
				Min	Typ[1]	Max	Min	Max	
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V		$0.65 \times \mathrm{V}_{\mathrm{CC}}$	-	-	$0.65 \times \mathrm{V}_{\mathrm{CC}}$	-	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		1.7	-	-	1.7	-	V
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 3.6 V		2.0	-	-	2.0	-	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V		$0.7 \times \mathrm{V}_{\text {cc }}$	-	-	$0.7 \times \mathrm{V}_{\text {c }}$	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V		-	-	$0.35 \times \mathrm{V}_{\mathrm{CC}}$	-	$0.35 \times \mathrm{V}_{\text {CC }}$	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		-	-	0.7	-	0.7	V
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 3.6 V		-	-	0.8	-	0.8	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		-	-	$0.3 \times \mathrm{V}_{\mathrm{CC}}$	-	$0.3 \times \mathrm{V}_{\mathrm{CC}}$	V
I_{1}	input leakage current	$\begin{aligned} & \text { pin } \mathrm{nE} ; \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V} \text { or } \mathrm{GND} ; \\ & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	[2]	-	± 0.1	± 5	-	± 100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; see Figure } 8 \end{aligned}$	[2]	-	± 0.1	± 5	-	± 200	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; see Figure } 9 \end{aligned}$	[2]	-	± 0.1	± 5	-	± 200	$\mu \mathrm{A}$
$I_{\text {cc }}$	supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V} \text { or } \mathrm{GND} ; \\ & \mathrm{V}_{\mathrm{SW}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	[2]	-	0.1	10	-	200	$\mu \mathrm{A}$
$\Delta l_{\text {CC }}$	additional supply current	$\begin{aligned} & \operatorname{pin} n E ; V_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{SW}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	[2]	-	5	500	-	5000	$\mu \mathrm{A}$

Table 7. Static characteristics ...continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Min	Typ [1]	Max	Min	Max	
C_{1}	input capacitance		-	2.0	-	-	-	pF
$\mathrm{C}_{\text {S(OFF) }}$	OFF-state capacitance		-	5.0	-	-	-	pF
$\mathrm{C}_{\text {S(ON) }}$	ON-state capacitance		-	9.5	-	-	-	pF

[1] All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
[2] These typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.

10.1 Test circuits

$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND and $\mathrm{V}_{\mathrm{O}}=\mathrm{GND}$ or V_{CC}.
Fig 8. Test circuit for measuring OFF-state leakage current

$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND and $\mathrm{V}_{\mathrm{O}}=$ open circuit.
Fig 9. Test circuit for measuring ON -state leakage current

10.2 ON resistance

Table 8. ON resistance
At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graphs see Figure 11 to Figure 16.

Symbol	Parameter	Conditions	$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Min	Typ[]]	Max	Min	Max	
$\mathrm{R}_{\text {ON(peak) }}$	ON resistance (peak)	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}; see Figure 10						
		$\begin{aligned} & \mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{aligned}$	-	34.0	130	-	195	Ω
		$\mathrm{I}_{\mathrm{SW}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	12.0	30	-	45	Ω
		$\mathrm{I}_{\mathrm{SW}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	10.4	25	-	38	Ω
		$\mathrm{I}_{\text {SW }}=24 \mathrm{~mA} ; \mathrm{V}_{\text {CC }}=3.0 \mathrm{~V}$ to 3.6 V	-	7.8	20	-	30	Ω
		$\mathrm{I}_{\mathrm{SW}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	6.2	15	-	23	Ω
$\mathrm{R}_{\mathrm{ON}(\text { rail }}$	ON resistance (rail)	$V_{1}=$ GND; see Figure 10						
		$\begin{aligned} & \mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{aligned}$	-	8.2	18	-	27	Ω
		$\mathrm{I}_{\mathrm{SW}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	7.1	16	-	24	Ω
		$\mathrm{I}_{\mathrm{SW}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	6.9	14	-	21	Ω
		$\mathrm{I}_{\mathrm{SW}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	6.5	12	-	18	Ω
		$\mathrm{I}_{\mathrm{SW}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	5.8	10	-	15	Ω
		$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$; see Figure 10						
		$\begin{aligned} & \mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{aligned}$	-	10.4	30	-	45	Ω
		$\mathrm{I}_{\mathrm{SW}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	7.6	20	-	30	Ω
		$\mathrm{I}_{\mathrm{SW}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	7.0	18	-	27	Ω
		$\mathrm{I}_{\mathrm{SW}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	6.1	15	-	23	Ω
		$\mathrm{I}_{\mathrm{SW}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	4.9	10	-	15	Ω
$\mathrm{R}_{\text {ON(flat) }}$	ON resistance (flatness)	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}						
		$\begin{aligned} & \mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{aligned}$	-	26.0	-	-	-	Ω
		$\mathrm{I}_{\mathrm{SW}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	5.0	-	-	-	Ω
		$\mathrm{I}_{\text {SW }}=12 \mathrm{~mA} ; \mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$	-	3.5	-	-	-	Ω
		$\mathrm{I}_{\mathrm{SW}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	2.0	-	-	-	Ω
		$\mathrm{I}_{\mathrm{SW}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	1.5	-	-	-	Ω

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and nominal V_{CC}.
[2] Flatness is defined as the difference between the maximum and minimum value of ON resistance measured at identical V_{CC} and temperature

10.3 ON resistance test circuit and graphs

$\mathrm{R}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{SW}} / \mathrm{l}_{\mathrm{SW}}$.

Fig 10. Test circuit for measuring ON resistance

(1) $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$.
(2) $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$.
(3) $\mathrm{V}_{\mathrm{C}}=2.7 \mathrm{~V}$.
(4) $\mathrm{V}_{\mathrm{C}}=3.3 \mathrm{~V}$.
(5) $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

Fig 11. Typical ON resistance as a function of input voltage; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

(1) $\mathrm{T}_{\text {amb }}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.

Fig 12. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{cc}}=1.8 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.

Fig 13. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{cc}}=2.5 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$.

Fig 14. ON resistance as a function of input voltage; $V_{c c}=2.7 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.

Fig 15. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.

Fig 16. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

11. Dynamic characteristics

Table 9. Dynamic characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit see Figure 19.

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and nominal V_{CC}.
[2] $t_{p d}$ is the same as $t_{\text {PLH }}$ and $t_{\text {PHL }}$.
[3] Propagation delay is the calculated RC time constant of the typical ON resistance of the switch and the specified capacitance when driven by an ideal voltage source (zero output impedance).
[4] $t_{e n}$ is the same as $t_{\text {PzH }}$ and $t_{\text {PzL }}$.
[5] $t_{\text {dis }}$ is the same as tpLZ and tPHZ.
[6] $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left\{\left(C_{L}+C_{S(O N)}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{S}(\mathrm{ON})}=$ maximum ON -state switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$\mathrm{N}=$ number of inputs switching;
$\Sigma\left\{\left(\mathrm{C}_{\mathrm{L}}+\mathrm{C}_{\mathrm{S}(\mathrm{ON})}\right) \times \mathrm{V}_{\mathrm{CC}}{ }^{2} \times \mathrm{f}_{\mathrm{O}}\right\}=$ sum of the outputs.

11.1 Waveforms and test circuit

Measurement points are given in Table 10.
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.
Fig 17. Input ($\mathrm{n} Y$ or nZ) to output (nZ or nY) propagation delays

Measurement points are given in Table 10.
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.
Fig 18. Enable and disable times

Table 10. Measurement points

Supply voltage	Input	Output		
$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{X}}$	$\mathbf{V}_{\mathbf{Y}}$
1.65 V to 1.95 V	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$
2.3 V to 2.7 V	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$
2.7 V	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$
3.0 V to 3.6 V	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$
4.5 V to 5.5 V	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$

Test data is given in Table 11.
Definitions test circuit
$R_{T}=$ Termination resistance should be equal to output impedance Z_{o} of the pulse generator.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$R_{\mathrm{L}}=$ Load resistance.
$\mathrm{V}_{\mathrm{EXT}}=$ External voltage for measuring switching times.
Fig 19. Test circuit for measuring switching times

Table 11. Test data

Supply voltage	Input		Load		$\mathrm{V}_{\text {EXT }}$		
$V_{\text {cc }}$	V_{1}	$\mathbf{t r}_{\mathrm{r}}, \mathbf{t}_{\text {f }}$	C_{L}	\mathbf{R}_{L}	$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	$\mathrm{t}_{\text {PZH, }} \mathrm{t}_{\text {PHZ }}$	$t_{\text {PZL, }} \mathrm{t}_{\text {PLZ }}$
1.65 V to 1.95 V	$\mathrm{V}_{\text {CC }}$	$\leq 2.0 \mathrm{~ns}$	30 pF	$1 \mathrm{k} \Omega$	open	GND	$2 \times V_{C C}$
2.3 V to 2.7 V	$\mathrm{V}_{\text {cc }}$	$\leq 2.0 \mathrm{~ns}$	30 pF	500Ω	open	GND	$2 \times \mathrm{V}_{\mathrm{CC}}$
2.7 V	2.7 V	$\leq 2.5 \mathrm{~ns}$	50 pF	500Ω	open	GND	6 V
3.0 V to 3.6 V	2.7 V	$\leq 2.5 \mathrm{~ns}$	50 pF	500Ω	open	GND	6 V
4.5 V to 5.5 V	V_{CC}	$\leq 2.5 \mathrm{~ns}$	50 pF	500Ω	open	GND	$2 \times \mathrm{V}_{\mathrm{CC}}$

11.2 Additional dynamic characteristics

Table 12. Additional dynamic characteristics
At recommended operating conditions; voltages are referenced to GND (ground $=0 \mathrm{~V}$); $T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
THD	total harmonic distortion	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$; C_{L}				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	0.032	-	\%
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	0.008	-	\%
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	0.006	-	\%
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	0.005	-	\%
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}$				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$		0.068	-	\%
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	0.009	-	\%
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		0.008	-	\%
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	0.006	-	\%

Table 12. Additional dynamic characteristics ...continued At recommended operating conditions; voltages are referenced to GND (ground $=0 \mathrm{~V}$); $T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{f}_{(-3 \mathrm{~dB})}$	-3 dB frequency response	$\mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; see Figure 21				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	135	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	145	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	150	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	155	-	MHz
		$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$; see Figure 21				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	200	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	350	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	410	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	440	-	MHz
		$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 21				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	> 500	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	> 500	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	> 500	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	> 500	-	MHz
$\alpha_{\text {iso }}$	isolation (OFF-state)	$\mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz}$; see $\underline{\text { Figure } 22}$				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	-46	-	dB
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	-46	-	dB
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-46	-	dB
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-46	-	dB
		$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz}$; see Figure 22				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	-37	-	dB
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$	-	-37	-	dB
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-37	-	dB
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-37	-	dB
$\mathrm{V}_{\text {ct }}$	crosstalk voltage	between digital inputs and switch; $\mathrm{R}_{\mathrm{L}}=600 \Omega$; $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2 \mathrm{~ns}$; see Figure 23				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	-	-	mV
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	91	-	mV
		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$	-	119	-	mV
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	205	-	mV

Table 12. Additional dynamic characteristics ...continued At recommended operating conditions; voltages are referenced to GND (ground $=0 \mathrm{~V}$); $T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Xtalk	crosstalk	between switches; $R_{L}=600 \Omega ; C_{L}=50 \mathrm{pF}$; $\mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz}$; see Figure 24				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	-	-	dB
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	-56	-	dB
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	-	-56	-	dB
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-56	-	dB
		between switches; $\mathrm{R}_{\mathrm{L}}=50 \Omega$; $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; $\mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz}$; see Figure 24				
		$\mathrm{V}_{\text {CC }}=1.65 \mathrm{~V}$	-	-	-	dB
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$	-	-29	-	dB
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	-	-28	-	dB
		$V_{C C}=4.5 \mathrm{~V}$	-	-28	-	dB
$Q_{\text {inj }}$	charge injection	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF} ; \mathrm{V}_{\text {gen }}=0 \mathrm{~V} ; \mathrm{R}_{\text {gen }}=0 \Omega ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \text { see Figure } 25 \end{aligned}$				
		$\mathrm{V}_{C C}=1.8 \mathrm{~V}$	-	3.3	-	pC
		$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	-	4.1	-	pC
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	-	5.0	-	pC
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	6.4	-	pC
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	7.5	-	pC

11.3 Test circuits

Test conditions:

$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}: \mathrm{V}_{\mathrm{i}}=1.4 \mathrm{~V}(\mathrm{p}-\mathrm{p})$.
$V_{C C}=2.3 \mathrm{~V}: V_{i}=2 V(p-p)$.
$V_{C C}=3 \mathrm{~V}: \mathrm{V}_{\mathrm{i}}=2.5 \mathrm{~V}(\mathrm{p}-\mathrm{p})$.
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}: \mathrm{V}_{\mathrm{i}}=4 \mathrm{~V}(\mathrm{p}-\mathrm{p})$.
Fig 20. Test circuit for measuring total harmonic distortion

Adjust f_{i} voltage to obtain 0 dBm level at output. Increase f_{i} frequency until dB meter reads -3 dB .
Fig 21. Test circuit for measuring the frequency response when switch is in ON-state

Adjust f_{i} voltage to obtain 0 dBm level at input.
Fig 22. Test circuit for measuring isolation (OFF-state)

Fig 23. Test circuit for measuring crosstalk voltage (between digital inputs and switch)

$20 \log _{10}\left(\mathrm{~V}_{\mathrm{O} 2} / \mathrm{V}_{\mathrm{O} 1}\right)$ or $20 \log _{10}\left(\mathrm{~V}_{\mathrm{O} 1} / \mathrm{V}_{\mathrm{O} 2}\right)$.
Fig 24. Test circuit for measuring crosstalk between switches

a. Test circuit

V_{O}

b. Input and output pulse definitions
$\mathrm{Q}_{\mathrm{inj}}=\Delta \mathrm{V}_{\mathrm{O}} \times \mathrm{C}_{\mathrm{L}}$.
$\Delta \mathrm{V}_{\mathrm{O}}=$ output voltage variation.
$\mathrm{R}_{\text {gen }}=$ generator resistance.
$\mathrm{V}_{\text {gen }}=$ generator voltage.
Fig 25. Test circuit for measuring charge injection

12. Package outline

TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm ; lead length 0.5 mm SOT505-2
DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(\mathbf{1})}$	$\boldsymbol{\theta}$
mm	1.1	0.15	0.95	0.25	0.38	0.18	3.1	3.1	0.65	4.1	0.5	0.47	0	0.2	0.13	0.1	0.70
	0.00	0.75	0.2	0.22	0.08	2.9	2.9	8°									

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT505-2		--		\square (¢)	02-01-16

Fig 26. Package outline SOT505-2 (TSSOP8)
DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(2)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1	$\begin{aligned} & 0.15 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.85 \\ & 0.60 \end{aligned}$	0.12	$\begin{aligned} & 0.27 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.2 \end{aligned}$	0.5	$\begin{aligned} & 3.2 \\ & 3.0 \end{aligned}$	0.4	$\begin{aligned} & 0.40 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 0.21 \\ & 0.19 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 0.4 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

Fig 27. Package outline SOT765-1 (VSSOP8)

DIMENSIONS (mm are the original dimensions)

UNIT	$\mathbf{A}^{(1)}$ $\mathbf{m a x}$	$\mathbf{A}_{\mathbf{1}}$ $\mathbf{m a x}$	\mathbf{b}	\mathbf{D}	\mathbf{E}	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{1}}$
mm	0.5	0.04	0.25 0.17	2.0 1.9	1.05 0.95	0.6	0.5	0.35 0.27	0.40 0.32

Notes

1. Including plating thickness.
2. Can be visible in some manufacturing processes.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			

Fig 28. Package outline SOT833-1 (XSON8)

DIMENSIONS (mm are the original dimensions)

| UNIT | \mathbf{A} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{m a x}$ | | $\mathbf{A}_{\mathbf{1}}$

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT996-2	---		---	\square (¢)	$\begin{aligned} & 07-12-18 \\ & 07-12-21 \end{aligned}$

Fig 29. Package outline SOT996-2 (XSON8U)

XQFN8U: plastic extremely thin quad flat package; no leads;
8 terminals; UTLP based; body $1.6 \times 1.6 \times 0.5 \mathrm{~mm}$

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\boldsymbol{m a x}$	$\mathbf{A}_{\mathbf{1}}$	\mathbf{b}	\mathbf{D}	\mathbf{E}	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{1}}$	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{y}_{\mathbf{1}}$
mm	0.5	0.05	0.25	1.65	1.65	0.55	0.5	0.35 0.00	0.15 0.05	0.1	0.05	0.05	0.05

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT902-1	---	MO-255	--	\square (®)	$\begin{aligned} & 05-11-25 \\ & 07-11-14 \end{aligned}$

Fig 30. Package outline SOT902-1 (XQFN8U)

13. Abbreviations

Table 13. Abbreviations

Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
TTL	Transistor-Transistor Logic
HBM	Human Body Model
ESD	ElectroStatic Discharge
MM	Machine Model
DUT	Device Under Test

14. Revision history

Table 14. Revision history

| Document ID | Release date | Data sheet status | Change notice | Supersedes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 74LVC2G66_4 | 20080701 | Product data sheet | - | 74LVC2G66_3 |
| Modifications: | - Section 8: derating factor for TSSOP8 package corrected. | | | |
| - | Added type number 74LVC2G66GD (XSON8U package). | | | |
| 74LVC2G66_3 | 20080310 | Product data sheet | - | 74LVC2G66_2 |
| 74LVC2G66_2 | 20070828 | Product data sheet | - | 74LVC2G66_1 |
| 74LVC2G66_1 | 20040629 | Product data sheet | - | - |

15. Legal information

15.1 Data sheet status

Document status $[\underline{[1][2]}$	Product status $[3]$	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

15.3 Disclaimers

General - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof
Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.
Terms and conditions of sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.
No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

17. Contents

1 General description 1
2 Features 1
3 Ordering information 2
4 Marking 2
5 Functional diagram 2
6 Pinning information 3
6.1 Pinning 3
6.2 Pin description 4
7 Functional description 4
8 Limiting values 4
9 Recommended operating conditions. 5
10 Static characteristics 5
10.1 Test circuits 6
10.2 ON resistance 7
10.3 ON resistance test circuit and graphs 8
11 Dynamic characteristics 10
11.1 Waveforms and test circuit 11
11.2 Additional dynamic characteristics 12
11.3 Test circuits 14
12 Package outline 17
13 Abbreviations 22
14 Revision history 22
15 Legal information 23
15.1 Data sheet status 23
15.2 Definitions 23
15.3 Disclaimers 23
15.4 Trademarks 23
16 Contact information 23
17 Contents 24
founded by

