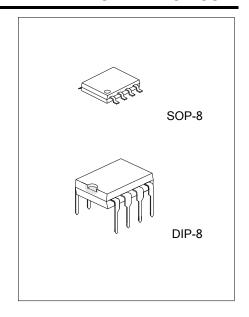
UNISONIC TECHNOLOGIES CO., LTD

M3366

Preliminary

LINEAR INTEGRATED CIRCUIT

3-INPUT VIDEO SWITCH WITH 75Ω DRIVER

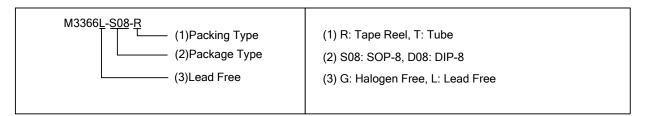

DESCRIPTION

The UTC M3366 is a three input integrated video switch selects one video or audio signal from three input signals.

It contains driver circuit for 75Ω load and is able to connect to TV monitor.

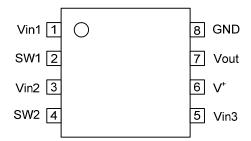
Its operating supply voltage range is 5 ~ 12V and bandwidth is 10MHz. Crosstalk is 70dB (at 4.43MHz).

The UTC M3366 contains clamp function and it can be operated while setting DC level fixed in position of the video signal.

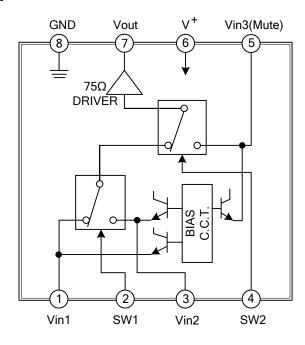


FEATURES

- * Operating Voltage 4.75 ~ 13V
- * 3 Input- 1 Output
- * Internal Driver Circuit for 75Ω Impedance
- * Muting Function available
- * Internal Clamp Function
- * Low power Dissipation 16.5mA
- * Cross-talk 70dB (at 4.43MHz)
- * Wide Frequency Range 10MHz (2Vp-p Input)


ORDERING INFORMATION

Ordering	Number	Dookogo	Packing	
Lead Free	Halogen Free	Package		
M3366L-S08-R	M3366G-S08-R	SOP-8	Tape Reel	
M3366L-S08-T	M3366G-S08-T	SOP-8	Tube	
M3366L-D08-T	M3366G-D08-T	DIP-8	Tube	



www.unisonic.com.tw 1 of 6 QW-R124-002.Ba

■ PIN CONFIGURATION

■ BLOCK DIAGRAM

■ PIN DESCRIPTION

PIN NO.	PIN NAME	INSIDE EQUIVALENT CIRCUIT	PIN NO.	PIN NAME	INSIDE EQUIVALENT CIRCUIT
1	VIN1	V ⁺ 200Ω 200Ω	5	VIN3 (Mute)	V ⁺
2	SW1	$\begin{array}{c} \text{SW1} \\ \\ 2k\Omega \\ \\ 13k\Omega \\ \\ \end{array}$	6	V ⁺	-
3	VIN2	V ⁺ 200Ω 200Ω	7	VOUT	200Ω O Vout
4	SW2	$\begin{array}{c} \text{SW2} \\ \\ \\ \\ \\ \\ \\ \end{array}$	8	GND	-

■ INPUT CONTROL SIGNAL-OUTPUT SIGNAL

SW1	SW2	OUTPUT SIGNAL
L	L	Vin 1
Н	L	Vin 2
L/H	Н	Vin 3

Note: Input clamp voltage is about 2/5 of supply voltage

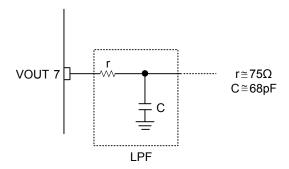
■ ABSOLUTE MAXIMUM RATING (T_A=25°C)

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage		V ⁺	15	V
Power Dissipation	DIP-8	D	500	mW
	SOP-8	P _D	300	rnvv
Operating Temperature		T _{OPR}	-20∼ + 75	°C
Storage Temperature		T _{STG}	-40∼+125	°C

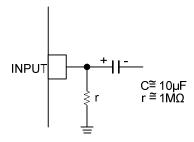
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (V⁺=5V,T_A=25°C)

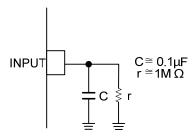
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Recommended Supply Voltage	V ⁺		4.75		13.0	V
Operating Current	I _{CC}	S1=S2=S3=S4=S5=2	11.5	16.5	22.0	mA
Voltage Gain	Gv	Vin=2.0Vp-p, 100kHz, Vo/Vi, R_L =150 Ω	-0.8	-0.3	+0.2	dB
Frequency Characteristic	Gf	Vin=2.0Vp-p, Vo(10MHz)/Vo(100kHz), R _L =150Ω	-1.0		+1.0	dB
Differential Gain	DG	Vin=2.0Vp-p, staircase, R _L =150Ω		0.3		%
Differential Phase	DP	Vin=2.0Vp-p, staircase, R _L =150Ω		0.3		deg.
Output Offset Voltage	Voff	S1=S2=S3=2, S5=1→2 Vo: voltage change		0	±30	mV
Crosstalk	СТ	Vin=2.0Vp-p, 4.43MHz, Vo/Vi -70			dB	
Switch Change Voltage	V _{CH}	All inside SW: ON All inside SW: OFF	2.4		0.8	٧

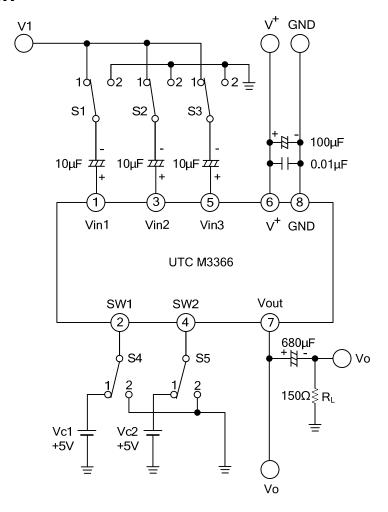

Note: Unless specified, tested with three mode below.

(a) S1=1, S2=S3=S4=S5=2 (b) S2=S4=1, S1=S3=S5=2 (c) S1=S2=2, S3=S5=1, S4=1 or 2


■ APPLICATION

Oscillation Prevention on light loading conditions recommended under circuit


This IC requires $1M\Omega$ resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.


This IC requires $1M\Omega$ resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.

This IC requires $0.1\mu F$ capacitor between INPUT and GND ,1M Ω resistance between INPUT and GND for clamp type input at mute mode.

■ TEST CIRCUIT

■ **DC VOLTAGE EACH TERMINAL** (Typ. on Test Circuit T_A=25°C)

Terminal Name	VIN1	SW1	VIN2	SW2	VIN3	V ⁺	VOUT	GND
DC Voltage	$\frac{2}{5}V^+$		$\frac{2}{5}V^+$		$\frac{2}{5}V^+$		$\frac{2}{5}V^{+}-0.7$	

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.