8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89810A Series

MB89816A/P817A

■ DESCRIPTION

The MB89810A series is a line of single-chip microcontrollers based on the F²MC*-8L CPU core which can operate at low voltage but at high speed. The microcontrollers contain peripheral function such as timer, serial interface, a UART, and an external interrupt. The MB89810A series is applicable to a wide range of applications from welfare products to industrial equipment, including portable devices.

*: F2MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

High speed processing at low voltage Minimum execution time: 0.8 μ s/3.0 V, 1.33 μ s/2.2 V

• F2MC-8L family CPU core

Instruction set optimized for controllers

Multiplication and division instructions 16-bit arithmetic operations Test and branch instructions Bit manipulation instructions, etc.

· Four types of timers

8-bit PWM timer: 2 channels (also serve as reload timers)

16-bit timer/counter

21-bit time-base timer

Two serial interface

8-bit synchronous serial (Switchable transfer direction allows communication with various equipment.) UART (5-, 7-, or 8-bit transfer capable)

(Continued)

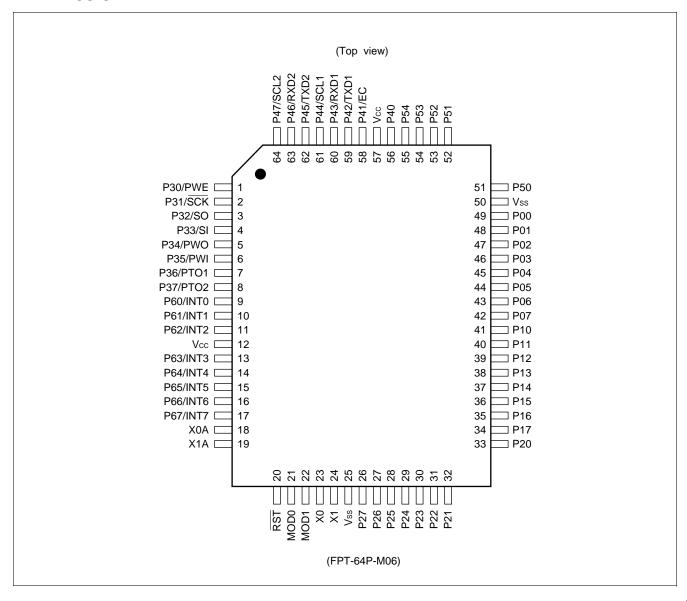
■ PACKAGE

(Continued)

- External interrupt: 8 channels
 Eight channels are independent and capable of wake-up from low-power consumption modes (with an edge detection function).
- Low-power consumption modes
 Stop mode (Oscillation stops to minimize the current consumption)
 Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal)

■ PRODUCT LINEUP

Part number Parameter	MB89816A	MB89P817A			
Classification	Mass-production product (mask ROM products)	One-time PROM product (for evaluation and development)			
ROM size	24 K × 8 bits (internal mask ROM)	32 K × 8 bits (internal PROM, programming with general-purpose EPROM programmer)			
RAM size	2048 >	< 8 bits			
CPU functions	Number of instructions: 136 Instruction bit length: 8 bits Instruction length: 1 to 3 by Data bit length: 1, 8, 16 Minimum execution time: 0.8 μs/5 Interrupt processing time: 7.2 μs/5	bits MHz			
Ports	Input ports: 8 (All also serve as peripherals.) Output ports: 8 I/O ports (N-ch open-drain): 5 (for LED driving) I/O ports (CMOS): 32 (14 ports also serve as peripherals.) Total: 53				
8-bit PWM timer	Two internal channels 8-bit reload timer operation (toggled output capable, operating clock cycle: 3 different cycles) 8-bit resolution PWM operation (conversion cycle: 3 different cycles)				
8-bit timer/counter	16-bit timer operation 16-bit event counter operation				
UART	5-, 7-, or 8-bit transfer capable Built-in baud rate generator Clock synchronous/asynchronous data transfer capable				
8-bit Serial I/O	8-bits LSB-first/MSB first selectability One clock selectable from four transfer clocks (one external shift clock, three internal shift clocks)				
External interrupt	8 independent channels (edge selection, interrupt vector, source flag) 4 channels: Level detection (level selectable) 4 channels: Edge detection (edge selectable) Used also for wake-up from the stop/sleep mode. (Edge detection is also permitted in stop mode.)				


(Continued)

(Continued)

Part number Parameter	MB89816A	MB89P817A			
Watch interrupt	Interrupt cycles: 4 diffe	erent cycles (subclock)			
Watchdog timer reset	Reset occurrence cycle: 839 ms/5 MHz				
Standby mode	Sleep mode, stop mode				
Process	CM	CMOS			
Package	FPT-64	FPT-64P-M06			
Operating voltage	2.2 V to 6.0 V* 2.7 V to 6.0 V*				

^{*:} Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.")

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin no.	Pin name	Circuit type	Function	
23	X0	А	Main clock oscillator pins	
24	X1			
18	X0A	1	Subclock crystal oscillator pins	
19	X1A			
21	MOD0	В	Operating mode selection pins	
22	MOD1		Connect directly these pins directly to Vss.	
20	RST	С	Reset I/O pin This pin is an N-ch open-drain output type with a pull-up resistor and a hysteresis input type. "L" is output from this pin by an internal reset source. The internal circuit is initialized by the input of "L".	
49 to 42	P00 to P07	D	General-purpose I/O ports A pull-up resistor option is provided. These ports have the port output inverting function.	
41 to 34	P10 to P17	D	General-purpose I/O ports A pull-up resistor option is provided. These ports have the port output inverting function.	
33 to 30	P20 to P23	F	General-purpose output ports These ports have the port output inverting function.	
29 to 26	P24 to P27	F	General-purpose output ports	
1	P30 /PWE	Е	General-purpose I/O port A pull-up resistor option is provided. Also serves as a pulse width detection enable input (PWE). PWE input is hysteresis input.	
2	P31/SCK	Е	General-purpose I/O port A pull-up resistor option is provided. Also serves as the clock I/O for the 8-bit serial I/O (SCK). SCK input is hysteresis input.	
3	P32/SO	D	General-purpose I/O port A pull-up resistor option is provided. Also serves as the data output for the 8-bit serial I/O (SO).	
4	P33/SI	Е	General-purpose I/O port A pull-up resistor option is provided. Also serves as the data input for the 8-bit serial I/O (SI). SI input is hysteresis input.	
5	P34/PWO	D	General-purpose I/O port A pull-up resistor option is provided. Also serves as a pulse width detection output (PWO).	
6	P35/PWI	Е	General-purpose I/O port A pull-up resistor option is provided. Also serves as a pulse width detection input (PWI). PWI input is hysteresis input.	
7	P36/PTO1	D	General-purpose I/O port A pull-up resistor option is provided. Also serves as the toggle output for the 8-bit PWM timer 1 (PTO1).	

(Continued)

Pin no.	Pin name	Circuit type	Function		
8	P37/PTO2	D	General-purpose I/O port A pull-up resistor option is provided. Also serves as the toggle output for the 8-bit PWM timer 2 (PTO2).		
56	P40	D	General-purpose I/O port A pull-up resistor option is provided.		
58	P41/EC	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as a 16-bit timer/counter input (EC). EC input is hysteresis input.		
59	P42/TXD1	D	General-purpose I/O port A pull-up resistor option is provided. Also serves as the data output 1 for the UART (TXD1).		
60	P43/RXD1	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as the data input 1 for the UART (RXD1). RXD1 input is hysteresis input.		
61	P44/SCL1	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as the clock I/O 1 for the UART (SCL1). SCL1 input is hysteresis input.		
62	P45/TXD2	D	General-purpose I/O port A pull-up resistor option is provided. Also serves as the data output 2 for the UART (TXD2).		
63	P46/RXD2	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as the data input 2 for the UART (RXD2). RXD2 input is hysteresis input.		
64	P47/SCL2	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as the clock I/O 2 for the UART (SCL2). SCL2 input is hysteresis input.		
51 to 55	P50 to P54	G	N-channel open-drain I/O ports A pull-up resistor option is provided only for the MB89816A.		
9 to 11	P60/INT0 to P62/INT2	Н	General-purpose I/O ports A pull-up resistor option is provided. Also serve as an external interrupt input (INT0 to INT2). These ports are a hysteresis input type.		
13 to 17	P63/INT3 to P67/INT7	Н	General-purpose I/O ports A pull-up resistor option is provided. Also serve as an external interrupt input (INT3 to INT7). These ports are a hysteresis input type.		
12, 57	Vcc	_	Power supply pin		
25, 50	Vss	_	Power supply (GND) pin		

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
A	X1 X0 X0 X0 X1 X0 X1 X0 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1	 Main clock At an oscillation feedback resistor of approximately 2 MΩ (1 to 5 MHz) CR oscillator circuit selectability
В		
С	R P-ch N-ch	 At an output pull-up resistor (P-ch) of approximately 50 kΩ/5.0 V Hysteresis input
D	R P-ch N-ch	CMOS output CMOS input Pull-up resistor optional
E	R P-ch N-ch	 CMOS output CMOS input Hysteresis input (resource input) Pull-up resistor optional

(Continued)

Туре	Circuit	Remarks
F	P-ch N-ch	CMOS output
G	R P-ch N-ch	 N-ch open-drain output CMOS input Pull-up resistor optional (only for the MB89816A)
Н		Hysteresis input Pull-up resistor optional
I	X1A X0A	 Subclock (30 to 40 kHz) At an oscillation feedback resistor of approximately 4.5 MΩ

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between Vcc and Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Power Supply Voltage Fluctuations

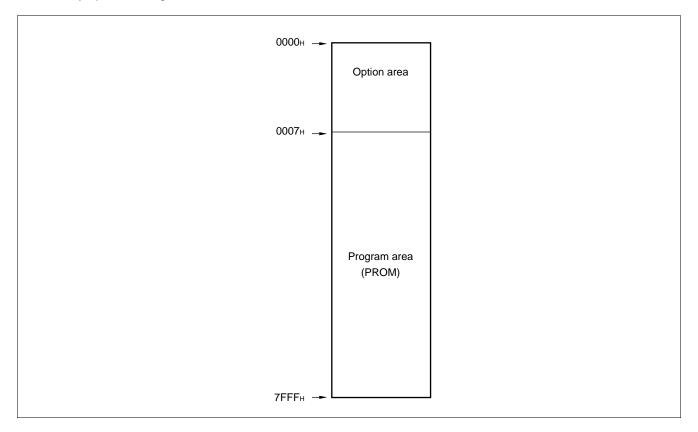
Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard Vcc value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.

4. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.

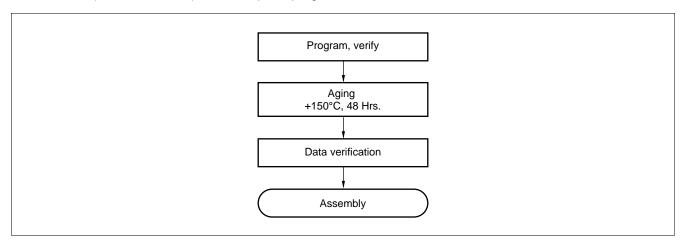
■ PROGRAMMING TO THE EPROM ON THE MB89P817A

In EPROM mode, the MB89P817A functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.


• Writing Procedure

- (1) Set the EPROM programmer to the MBM27C256A.
- (2) Load program data into the EPROM programmer at 0007_H to 7FFF_H (note that addresses 8007_H to FFFF_H while operating as operating mode assign to 0007_H to 7FFF_H in EPROM mode).

 Load option data into addresses 0000_H to 0006_H of the EPROM programmer. (For information about each corresponding option, see "• Setting OTPROM Option Bit Map.")
- (3) Program with the EPROM programmer.


Memory Space

Memory space is diagrammed below.

• Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM (one-time PROM) microcomputer program.

• Programming Yield

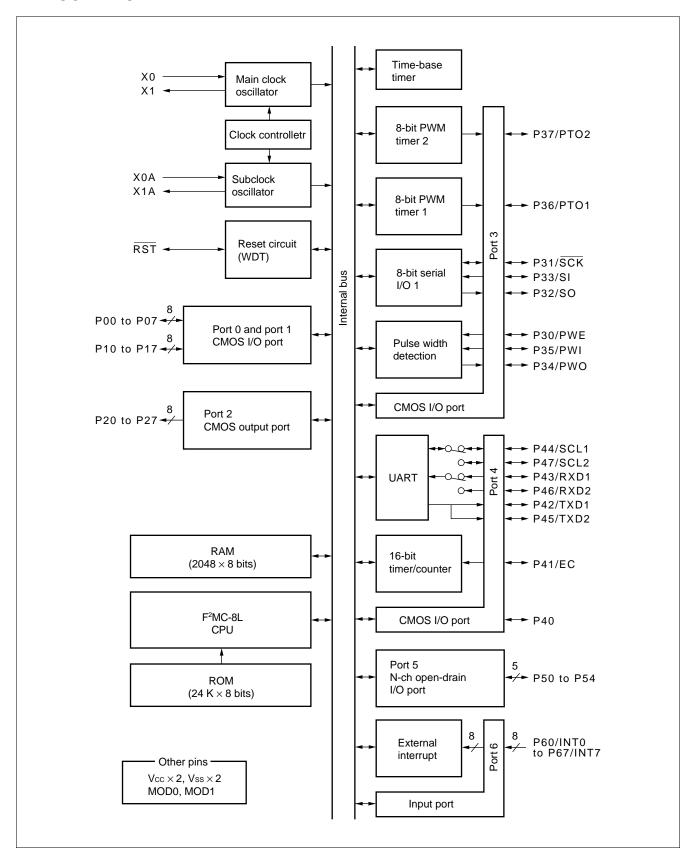
All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

• EPROM Programmer Socket Adapter

Package	Compatible socket adapter	
FPT-64P-M06	ROM-64QF-28DP-8L	

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

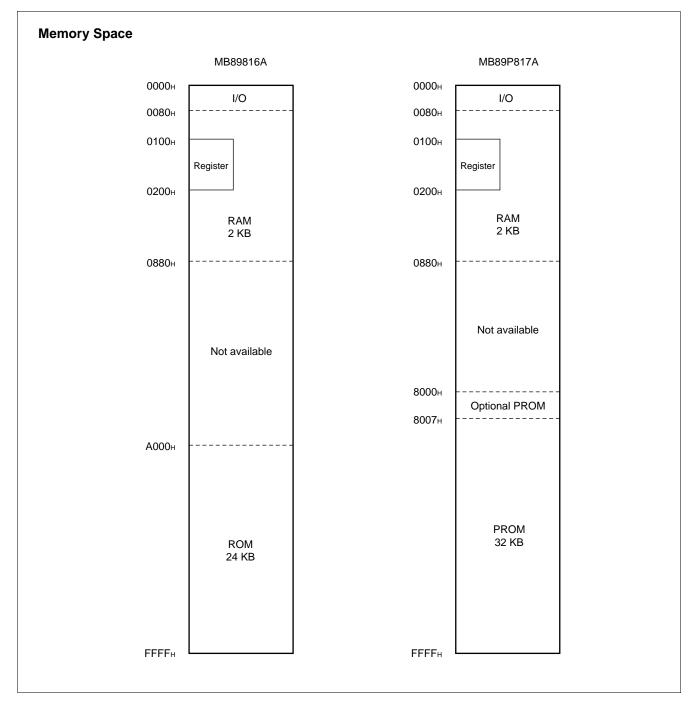
Note: Connect the jumper pin to Vss when using.


Depending on the EPROM programmer, inserting a capacitor of approx. 0.1 μ F between V_{PP} and V_{SS} or V_{CC} and V_{SS} can stabilize programming operations.

• OTPROM Option Bit Map

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0000н	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Single-clock setting 1: Dual-clock 0: Single-clock	Reset pin output 1: Enabled 0: Disabled	Power-on reset 1: Enabled 0: Disabled	Oscillation sta 00 2 ⁴ /F _{CH} 10 2 ¹⁷ /F _{CH}	abilization time 01 2 ¹⁴ /Fсн 11 2 ¹⁸ /Fсн
0001н	P07	P06	P05	P04	P03	P02	P01	P00
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
0002н	P17	P16	P15	P14	P13	P12	P11	P10
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
0003н	P37	P36	P35	P34	P33	P32	P31	P30
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
0004н	P47	P46	P45	P44	P43	P42	P41	P40
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
0005н	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	P64 Pull-up 1: No 0: Yes	P63 Pull-up 1: No 0: Yes	P62 Pull-up 1: No 0: Yes	P61 Pull-up 1: No 0: Yes	P60 Pull-up 1: No 0: Yes
0006н	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writables	Oscillator type 1: Crystal 0: CR	P67 Pull-up 1: No 0: Yes	P66 Pull-up 1: No 0: Yes	P65 Pull-up 1: No 0: Yes

Note: Each bit defaults to 1.


■ BLOCK DIAGRAM

■ CPU CORE

1. Memory Space

The microcontrollers of the MB89810A series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89810A series is structured as illustrated below.

2. Registers

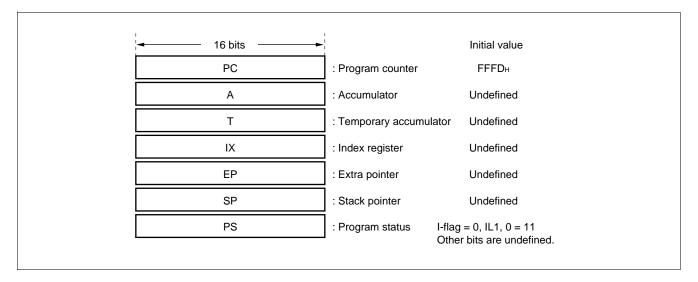
The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions

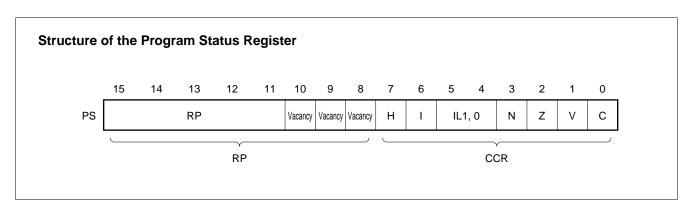
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the

instruction is an 8-bit data processing instruction, the lower byte is used.

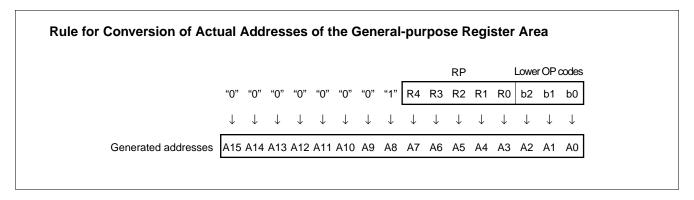
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator


When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification


Extra pointer (EP): A 16-bit pointer for indicating a memory address

Stack pointer (SP): A 16-bit register for indicating a stack area


Program status (PS): A 16-bit register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0 when reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	IL0	Interrupt level	High-low
0	0	1	High
0	1	l	1
1	0	2	
1	1	3	Low = no interrupt

N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0.

Z-flag: Set when an arithmetic operation results in 0. Cleared otherwise.

V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.

C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: An 8-bit register for storing data

The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 32 banks can be used on the MB89816A. The bank currently in use is indicated by the register bank pointer (RP).

■ I/O MAP

Address	Read/write	Register name	Register description	
00н	(R/W)	PDR0	Port 0 data register	
01н	(W)	DDR0	Port 0 data direction register	
02н	(R/W)	PDR1	Port 1 data register	
03н	(W)	DDR1	Port 1 data direction register	
04н	(R/W)	PDR2	Port 2 data register	
05н			Vacancy	
06н			Vacancy	
07н	(R/W)	SYCC	System clock control register	
08н	(R/W)	STBC	Standby control register	
09н	(R/W)	WDTC	Watchdog timer control register	
0Ан	(R/W)	TBCR	Time-base timer control register	
0Вн	(R/W)	WPCR	Watch prescaler control register	
0Сн	(R/W)	PDR3	Port 3 data register	
0Dн	(W)	DDR3	Port 3 data direction register	
0Ен	(R/W)	PDR4	Port 4 data register	
0Fн	(W)	DDR4	Port 4 data direction register	
10н	(R/W)	PDR5	Port 5 data register	
11н	(R)	PDR6	Port 6 data register	
12н			Vacancy	
13н		Vacancy		
14н			Vacancy	
15н			Vacancy	
16н			Vacancy	
17н	(R/W)	PIVE	Port inverting operation enable register	
18н	(R/W)	TMCR	16-bit timer count register	
19н	(R/W)	TCHR	16-bit timer count register (H)	
1Ан	(R/W)	TCLR	16-bit timer count register (L)	
1Вн		•	Vacancy	
1Сн	(R/W)	SMR	Serial I/O mode register	
1Dн	(R/W)	SDR Serial I/O data register		
1Ен		1	Vacancy	
1F _H			Vacancy	

(Continued)

(Continued)

Address	Read/write	Register name Register description		
20н	(R/W)	SMC1	UART serial I/O mode control register 1	
21н	(R/W)	SRC	UART serial I/O rate control register	
22н	(R/W)	SSD	UART serial I/O status/data control register	
23н	(R/W)	SIDR/SODR	UART serial I/O data control register	
24н	(R/W)	SMC2	UART serial I/O mode control register 2	
25н			Vacancy	
26н			Vacancy	
27н			Vacancy	
28н	(R/W)	CNTR1	PWM timer control register 1	
29н	(R/W)	CNTR2	PWM timer control register 2	
2Ан	(R/W)	CNTR3	PWM timer control register 3	
2Вн	(W)	COMR2	PWM timer compare register 2	
2Сн	(W)	COMR1	PWM timer compare register 1	
2Dн		Vacancy		
2Ен			Vacancy	
2Fн	(R/W)	PWCR	Pulse width detection control register	
30н	(R/W)	EIC1	External interrupt 1 control register 1	
31н	(R/W)	EIC2	External interrupt 1 control register 2	
32н	(R/W)	EI2E	External interrupt 2 enable register	
33н	(R/W)	El2F	External interrupt 2 flag register	
34н		1	Vacancy	
35н to 7Ан			Vacancy	
7Вн		Vacancy		
7Сн	(W)	ILR1	Interrupt level register 1	
7Dн	(W)	ILR2 Interrupt level register 2		
7Ен	(W)	ILR3 Interrupt level register 3		
7F _H	Not available	ITR Interrupt test register		

Note: Do not use vacancies.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(Vss = 0.0 V)

Poromotor	Symbol	Va	lue	Unit	Remarks
Parameter	Symbol	Min.	Max.	Unit	
Power supply voltage	Vcc	Vss-0.3	Vss + 7.0	V	
Input voltage	V _{I1}	Vss-0.3	Vcc + 0.3	V	Except P50 to P54
Input voltage	V _{I2}	Vss-0.3	Vss + 7.0	V	P50 to P54
Output voltage	V _{O1}	Vss-0.3	Vcc + 0.3	V	Except P50 to P54
Output voltage	V _{O2}	Vss-0.3	Vss + 7.0	V	P50 to P54
"L" level maximum output current	loL	_	20	mA	Peak value
"L" level average output current	lolav1	_	4	mA	Average value except pins other than P50 to P54
	lolav2	_	10	mA	Average value for P50 to P54
"L" level total maximum output current	∑lo∟	_	100	mA	Peak value
"L" level total average output current	Σ lolav	_	40	mA	Average value
"H" level maximum output current	Іон	_	-20	mA	Peak value
"H" level average output current	Іонач	_	-4	mA	Average value
"H" level total maximum output current	∑Іон	_	-50	mA	Peak value
"H" level total average output current	∑Iohav	_	-20	mA	Average value
Power consumption	PD	_	300	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	- 55	+150	°C	

Precautions: Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. Recommended Operating Conditions

(Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
Parameter	Symbol	Min.	Max.	Unit	Kemarks
		2.2*	6.0	V	Normal operation assurance range MB89816A
Power supply voltage	Vcc	2.7*	6.0	V	Normal operation assurance range MB89P817A
		1.5	6.0	V	Retains the RAM state in stop mode
	VIH	0.7 Vcc	Vcc + 0.3	V	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P54 (with pull-up resistor)
"H" level voltage	Vihs	0.8 Vcc	Vcc + 0.3	V	RST, MOD0, MOD1, P60 to P67, Pheripheral input for port 3 and port 4
	V _{IHS2}	0.8 Vcc	Vss + 6.0	V	P50 to P54 (without pull-up resistor)
"I " lovel veltege	VIL	Vss - 0.3	0.3 Vcc	V	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P54
"L" level voltage	VILS	Vss - 0.3	0.2 Vcc	V	RST, MOD0, MOD1, P60 to P67, Pheripheral input for port 3 and port4
Open-drain output pin application voltage	VD	Vss - 0.3	Vss + 6.0	V	P50 to P54 (without pull-up resistor)
Operating temperature	TA	-40	+85	°C	

^{*:} These values vary with the operating frequency. See Figure 1.

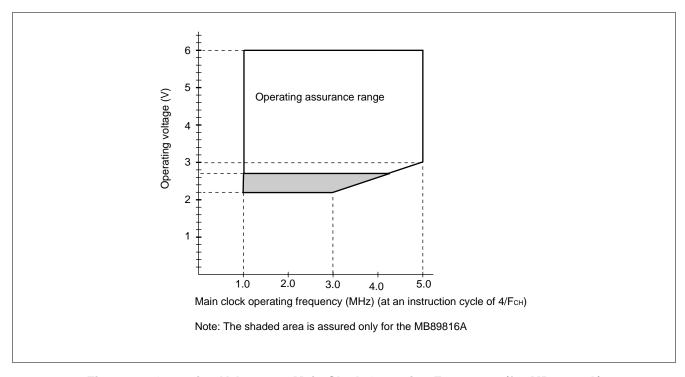


Figure 1 Operating Voltage vs. Main Clock Operating Frequency (for MB89816A)

3. DC Characteristics

 $(Vcc = +5.0 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Davamatav	0	Dia	Condition		Value	, vss = 0.0		Domonico
Parameter	Symbol	Pin	Condition	Min.	Тур.	Max.	Unit	Remarks
"H" level output voltage	Vон	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47	Iон = −2.0 mA	2.4	_	_	V	
"L" level output voltage	V _{OL1}	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P54 P60 to P67	loL = 1.8 mA	_	_	0.4	V	
	V _{OL2}	P50 to P54	IoL = 6 mA Vcc = 3 V	_	_	0.5	V	
	V _{OL3}	RST	IoL = 4.0 mA	_	_	0.4	V	
Input leakage current (Hi-z output leakage current)	Іш	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P54, P60 to P67, MOD0, MOD1	0.45 V < Vı < Vcc	_	_	±5	μΑ	Without pull-up resistor
Pull-up resistance	Rpull	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P54, P60 to P67, RST	V _I = 0.0 V	25	50	100	kΩ	With pull-up resistor
			Fch = 5 MHz	_	4	6	mA	MB89816A
	Icc1		$Vcc = 5.0 \text{ V}$ $t_{inst} = 0.8 \mu\text{s}$	_	4.8	7.5	mA	MB89P817A
			Fch = 5 MHz	_	0.4	0.6	mA	MB89816A
	Icc2		$V_{CC} = 3.0 \text{ V}$ $t_{inst} = 6.4 \mu\text{s}$	_	1.0	1.5	mA	MB89P817A
Power supply current*	Iccs ₁	Vcc	F _{CH} = 5 MHz V _{CC} = 5.0 V t _{inst} = 0.8 μs	_	1.2	1.8	mA	Class souls
	Iccs2		F _{CH} = 5 MHz V _{CC} = 3.0 V t _{inst} = 12.8 μs	_	0.3	0.5	mA	- Sleep mode
	loo		FcL = 32.768 kHz	_	50	100	μΑ	Subclock mode
	ICCL		Vcc = 3.0 V	_	500	700	μΑ	MB89P817A

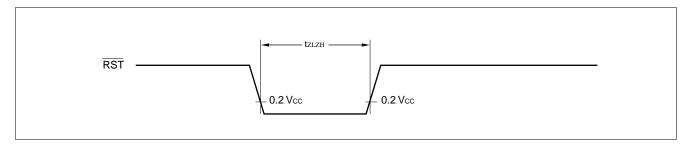
(Continued)

(Continued)

 $(V_{CC} = +5.0 \text{ V}, V_{SS} = 0.0 \text{ V}, T_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Cumbal	Pin	Condition		Value		Unit	Remarks	
Parameter	Symbol	FIII	Condition	Min.	Тур.	Max.	Onit	Romanio	
Power supply current*	Iccls		FcL = 32.768 kHz Vcc = 3.0 V	_	15	50	μΑ	Subclock sleep mode	
	Ісст	Vcc	FcL = 32.768 kHz Vcc = 3.0 V	_	_	15	μΑ	Watch mode Main clock stop mode at dual- clock system	
	Іссн		FcL = 32.768 kHz Vcc = 3.0 V	_	_	10	μΑ	Subclock stop mode Main clock stop mode at single-clock system	
Input capacitance	Cin	Other than Vcc and Vss	f= 1 MHz	_	10	_	pF		

^{*:} The measurement conditions of power supply current are as follows: the external clock and $T_A = +25$ °C.

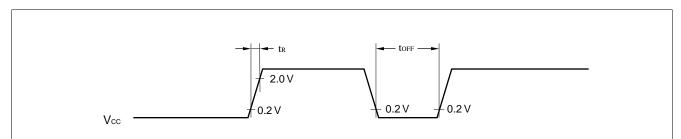

4. AC Characteristics

(1) Reset Timing

 $(Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Condition	Valu	ne	Unit	Remarks
Parameter	Syllibol	Condition	Min.	Max.	Oilit	Remarks
RST "L" pulse width	t zlzh	_	16 t сн		ns	

Note: tch is the cycle time of the main clock.

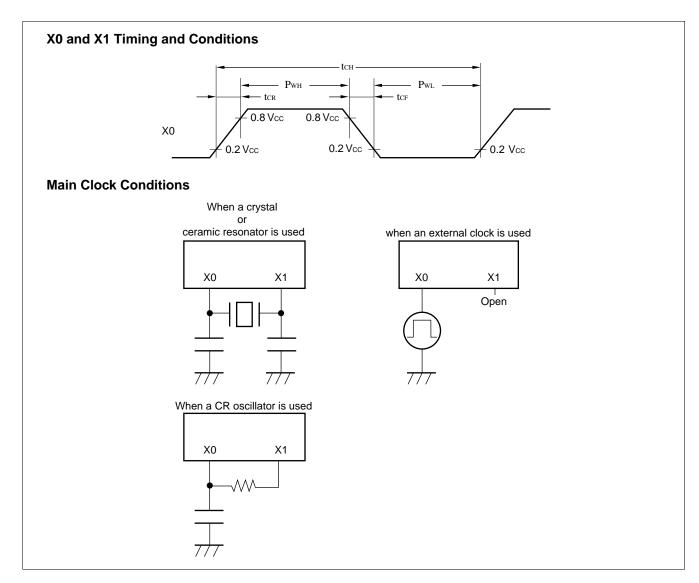

(2) Power-on Reset

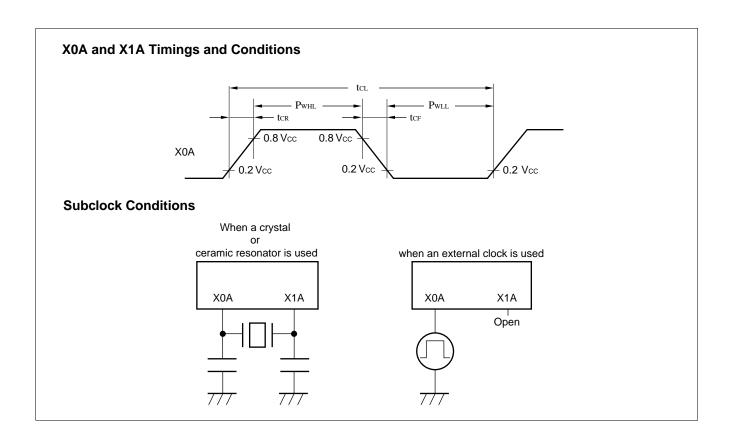
 $(AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Condition	Val	ue	Unit	Remarks	
Farameter	Syllibol	Condition	Min.	Max.	Ollit	iveillat k2	
Power supply rising time	t R		_	50	ms	Power-on reset function only	
Power supply cut-off time	toff		1	_	ms	Due to repeated operations	

Note: Make sure that power supply rises within the selected oscillation stabilization time.

If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.


Note that a sudden increase in supply voltage may result in a power-on reset.


When increasing the supply voltage during operation, voltage variation should be within twice the intended increment so that the voltage rises as smoothly as possible.

(3) Clock Timing

 $(AVss = Vss = 0.0 V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

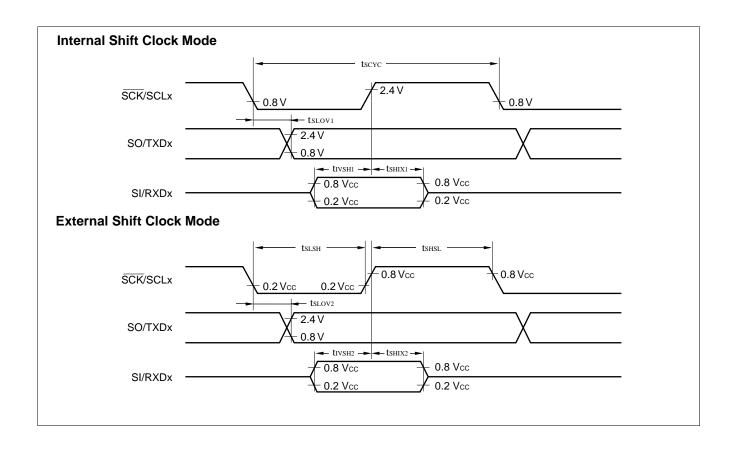
Parameter	Symbol	Pin	Condition		Value		Unit	Remarks	
Parameter	Syllibol	FIII	Condition	Min.	Тур.	Max.	Oilit	Remarks	
Clock frequency	Fсн	X0, X1		1	_	5	MHz		
Clock frequency	FcL	X0A, X1A		_	32.768		kHz		
Clock cycle time	t cH	X0, X1		200	_	1000	ns		
	t CL	X0A, X1A			30.5		μs		
Input clock pulse width	Pwh PwL	X0	_	20	_	_	ns	External clock	
Input clock pulse width	P _{WHL} P _{WLL}	X0A		_	15.2	_	μs		
Input clock rising/falling time	tcr tcr	X0		_	_	10	ns	External clock	

(4) Serial I/O Timings

 $(Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Doromotor	Symbol	Pin	Condition	Valu	ıe	Unit	Remarks
Parameter	Symbol	FIII	Condition		Max.	Offic	Remarks
Serial clock cycle time	tscyc1	SCK		2 tinst	_	ns	
$\overline{SCK} \downarrow \to SO$ time	tsLov1	SCK, SO	Internal shift	-200	200	ns	
Valid SI \rightarrow \overline{SCK} \uparrow	tivsH1	SI, SCK	clock mode	1/2 t _{inst}	_	ns	
$\overline{SCK} \uparrow \to valid \; SI \; hold \; time$	tsHIX1	SCK, SI		1/2 t _{inst}	_	ns	
Serial clock "H" pulse width	tshsl	SCK		1 tinst	_	ns	
Serial clock "L" pulse width	tslsh	SUN		1 tinst	_	ns	
$SCK \downarrow \to SO$ time	tsLOV2	SCK, SO	External shift clock mode	0	200	ns	
Valid SI \rightarrow SCK ↑	tivsh2	SI, SCK		1/2 tinst	_	ns	
$\overline{SCK} \uparrow \to valid \; SI \; hold \; time$	tsHIX2	SCK, SI		1/2 t _{inst}	_	ns	

^{*:} t_{inst} represents the minimum instruction execution time. It varies with the selected system clock and operating mode.

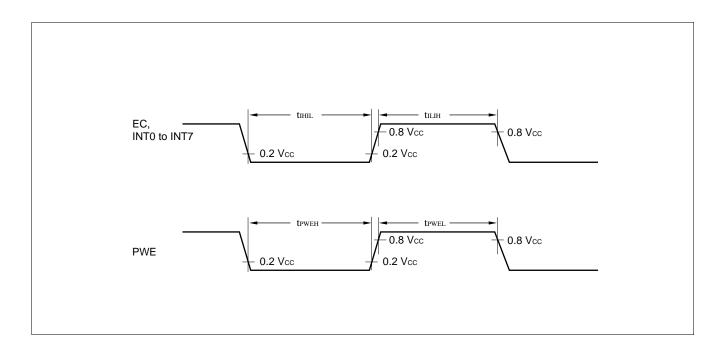

(5) UART Timings

 $(Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Din	Pin Condition		ıe	Unit	Remarks
Farameter	Syllibol	FIII	Condition	Min.	Max.	Oilit	Kemarks
Serial clock cycle time	tscyc	SCL1, SCL2		2 tinst	_	ns	
$SCL \downarrow \rightarrow TXDx$ time	t sLov1	SCLx, TXDx	Internal shift	-200	200	ns	
Valid RXDx → SCLx \uparrow	t IVSH1	RXDx, SCLx	clock mode	1/2 t inst		ns	
$SCLx \uparrow \to valid \; RXDx \; hold \; time$	t sHIX1	SCL1, RXD2		1/2 t _{inst}	_	ns	
Serial clock "H" pulse width	t shsl	SCL1, SCL2		1 tinst	_	ns	
Serial clock "L" pulse width	t slsh	30L1, 30L2		1 tinst	_	ns	
$SCLx \downarrow \rightarrow TXDx$ time	tsLov2	SCLx, TXDx	External shift clock mode	0	200	ns	
Valid RXDx → SCLx \uparrow	tivsh2	RXDx, SCLx		1/2 t inst	_	ns	
$SCLx \uparrow \rightarrow valid RXDx hold time$	tsHIX2	SCL1, RXD2		1/2 t inst		ns	

Notes: • t_{inst} represents the minimum instruction execution time. It varies with the selected system clock and operating mode.

• The edge polarity for the SLCx input is assumed when LSEL bit = 0 for SMC2. The polarity is inverted when LSEL = 1.


(6) Peripheral Input Timings

 $(Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin	Condition	Val	lue	Unit	Remarks
Parameter	Symbol	FIII	Condition	Min.	Max.	Oiiit	
Peripheral input "H" pulse width	tішн	EC, INT0 to INT7	_	2 t _{inst}	_	ns	
Peripheral input "L" pulse width	tıнıL	EC, INT0 to INT7	_	2 t _{inst}	_	ns	
"H" input pulse width of pulse width detection enable signal	t PWEH	PWE	_	512 tcl + 200 or 480 tcl + 200	_	ns	
"L" input pulse width of pulse width detection enable signal	t PWEL	I VVL	_	512 tcl + 200 or 480 tcl + 200	_	ns	

Notes: • t_{inst} represents the minimum instruction execution time. It varies with the selected system clock and operating mode.

- tcl represents the subclock cycle time.
- The PWE pulse width value varies with the first divider selection bit of the watch prescaler. The pulse width is "512 tcl + 200" when divide by 16 is selected; or "480 tcl + 200" when divide by 15 is selected.

■ INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.

Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
#vct	Vector table number (3 bits)
#d8	Immediate data (8 bits)
#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
А	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
Т	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)

(Continued)

Symbol	Meaning
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, i = 0 to 7)
×	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(×)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
((×))	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic: Assembler notation of an instruction

~: Number of instructions

#: Number of bytes

Operation: Operation of an instruction

TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in

the column indicate the following:

• "-" indicates no change.

• dH is the 8 upper bits of operation description data.

AL and AH must become the contents of AL and AH immediately before the instruction

is executed.

• 00 becomes 00.

N, Z, V, C: An instruction of which the corresponding flag will change. If + is written in this column,

the relevant instruction will change its corresponding flag.

OP code: Code of an instruction. If an instruction is more than one code, it is written according to

the following rule:

Example: 48 to 4F \leftarrow This indicates 48, 49, ... 4F.

Table 2 Transfer Instructions (48 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
MOV dir,A	3	2	$(dir) \leftarrow (A)$	-	_	_		45
MOV @IX +off,A	4	2	$((IX) + off) \leftarrow (A)$	_	_	_		46
MOV ext,A	4	3	$(ext) \leftarrow (A)$	_	_	_		61
MOV @EP,A	3	1	((EP)) ← (A)	_	_	_		47
MOV Ri,A	3	1	$(Ri) \leftarrow (A)$	_	_	_		48 to 4F
MOV A,#d8	2	2	(A) ← d8	AL	_	_	++	04
MOV A,dir	3	2	$(A) \leftarrow (dir)$	AL	_	_	++	05
MOV A,@IX +off	4	2	$(A) \leftarrow ((IX) + off)$	AL	_	_	++	06
MOV A,ext	4	3	$(A) \leftarrow (ext)$	AL	_	_	++	60
MOV A,@A	3	1	$(A) \leftarrow (A)$	AL	_	_	++	92
MOV A,@EP	3	1	$(A) \leftarrow ((EP))$	AL	_	_	++	07
MOV A,Ri	3	1	$(A) \leftarrow (Ri)$	AL	_	_	++	08 to 0F
MOV dir,#d8	4	3	$(dir) \leftarrow d8$	_	_	_		85
MOV @IX +off,#d8	5	3	((IX) +off) ← d8	_	_	_		86
MOV @EP,#d8	4	2	((EP)) ← d8	_	_	_		87
MOV Ri,#d8	4	2	((Ei) ← d8	_	_	_		88 to 8F
MOVW dir,A	4	2	$(dir) \leftarrow (AH), (dir + 1) \leftarrow (AL)$	_	_	_		D5
MOVW @IX +off,A	5	2	$((IX) + off) \leftarrow (AH),$	_	_	_		D6
WOVW GIX TOIL,A		_	$((IX) + off + 1) \leftarrow (AL)$					50
MOVW ext,A	5	3	$(ext) \leftarrow (AH), (ext + 1) \leftarrow (AL)$	-	_	_		D4
MOVW ext,A	4	1	$(ER) \leftarrow (AH), (ER) + 1) \leftarrow (AL)$	_	_	_		D4 D7
MOVW @EF,A	2	1	$(EP) \leftarrow (AI), (EP) + I) \leftarrow (AL)$	_	_	_		E3
MOVW A,#d16	3	3		AL	AH	dH		E4
MOVW A,#d16	4	2	$(A) \leftarrow d16$	AL	AH	dH	++	C5
	5	2	$(AH) \leftarrow (dir), (AL) \leftarrow (dir + 1)$	AL	AH		++	C5 C6
MOVW A,@IX +off	Э		$(AH) \leftarrow ((IX) + off),$	AL	ΑП	dH	++	Co
MOVW A,ext	_	2	$(AL) \leftarrow ((IX) + off + 1)$	Λ1	A 1 1	الم		C4
	5	3	$(AH) \leftarrow (ext), (AL) \leftarrow (ext + 1)$	AL	AH	dH	++	C4
MOVW A,@A	4	1	$(AH) \leftarrow ((A)), (AL) \leftarrow ((A)) + 1)$	AL	AH	dH	++	93
MOVW A,@EP	4	1	$(AH) \leftarrow ((EP)), (AL) \leftarrow ((EP) + 1)$	AL	AH	dH	++	C7
MOVW A,EP	2	1	(A) ← (EP)	_	_	dH		F3
MOVW EP,#d16	3	3	(EP) ← d16	_	_	_		E7
MOVW IX,A	2	1	$(IX) \leftarrow (A)$	_	_			E2
MOVW A,IX	2	1	$(A) \leftarrow (IX)$	_	_	dH		F2
MOVW SP,A	2	1	(SP) ← (A)	_	_			E1
MOVW A,SP	2	1	$(A) \leftarrow (SP)$	_	_	dH		F1
MOV @A,T	3	1	$((A)) \leftarrow (T)$	_	_	_		82
MOVW @A,T	4	1	$((A)) \leftarrow (TH), ((A) + 1) \leftarrow (TL)$	_	_	_		83
MOVW IX,#d16	3	3	(IX) ← d16	_	_	_		E6
MOVW A,PS	2	1	(A) ← (PS)	_	_	dH		70
MOVW PS,A	2	1	(PS) ← (A)	_	_	_	++++	71
MOVW SP,#d16	3	3	(SP) ← d16	_	_	_		E5
SWAP	2	1	$(AH) \leftrightarrow (AL)$	_	_	AL		10
SETB dir: b	4	2	(dir): b ← 1	_	_	_		A8 to AF
CLRB dir: b	4	2	(dir): b ← 0	_	_	_		A0 to A7
XCH A,T	2	1	$(AL) \leftrightarrow (TL)$	AL	_	_		42
XCHW A,T	3	1	$(A) \leftrightarrow (T)$	AL	AH	dH		43
XCHW A,EP	3	1	$(A) \leftrightarrow (EP)$	_	_	dΗ		F7
XCHW A,IX	3	1	$(A) \leftrightarrow (IX)$	_	_	dH		F6
XCHW A,SP	3	1	$(A) \leftrightarrow (SP)$	_	_	dΗ		F5
MOVW A,PC	2	1	$(A) \leftarrow (PC)$	_	_	dH		F0
,			` ' ' '					

Notes: • During byte transfer to A, $T \leftarrow A$ is restricted to low bytes. •Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of F²MC-8 family)

 Table 3
 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
ADDC A,Ri	3	1	$(A) \leftarrow (A) + (Ri) + C$	_	_	_	++++	28 to 2F
ADDC A,#d8	2	2	$(A) \leftarrow (A) + d8 + C$	_	_	_	++++	24
ADDC A,dir	3	2	$(A) \leftarrow (A) + (dir) + C$	_	_	_	++++	25
ADDC A,@IX +off	4	2	$(A) \leftarrow (A) + ((IX) + off) + C$	_	_	_	++++	26
ADDC A,@EP	3	1	$(A) \leftarrow (A) + ((EP)) + C$	_	_		++++	27
ADDCW A	3	1	$(A) \leftarrow (A) + (T) + C$	_	_	dH	++++	23
ADDC A	2	1	$(AL) \leftarrow (AL) + (TL) + C$	_	_	_	++++	22
SUBC A,Ri	3	1	$(A) \leftarrow (A) - (Ri) - C$	_	_	_	++++	38 to 3F
SUBC A,#d8	2	2	$(A) \leftarrow (A) - d8 - C$	_	_	_	++++	34
SUBC A,dir	3	2	$(A) \leftarrow (A) - (dir) - C$	_	_	_	++++	35
SUBC A,@IX +off	4	2	$(A) \leftarrow (A) - ((IX) + off) - C$	_	_	_	++++	36
SUBC A,@EP	3	1	$(A) \leftarrow (A) - ((EP)) - C$	_	_	- -	++++	37
SUBCW A	2	1	$(A) \leftarrow (T) - (A) - C$	_	_	dH	++++	33 32
SUBC A INC Ri	4	1	$(AL) \leftarrow (TL) - (AL) - C$	_	_	_	++++	C8 to CF
INC KI INCW EP	3	1 1	$(Ri) \leftarrow (Ri) + 1$	_	_	_	+++-	C8 t0 CF
INCW IX	3	1	$(EP) \leftarrow (EP) + 1$	_	_	_		C3
INCW A	3	1	$(IX) \leftarrow (IX) + 1$ $(A) \leftarrow (A) + 1$	_	_	dH		C2 C0
DEC Ri	4	1	$(R) \leftarrow (R) + 1$ $(Ri) \leftarrow (Ri) - 1$	_	_	<u>и</u> п	+++-	D8 to DF
DECW EP	3	1	$(KI) \leftarrow (KI) - I$ $(EP) \leftarrow (EP) - 1$	_		_	+++	D8 10 DF
DECW LF	3	1	$(IX) \leftarrow (IX) - 1$	_				D3
DECW A	3	1	$(A) \leftarrow (A) - 1$ $(A) \leftarrow (A) - 1$		_	dH		D0
MULU A	19	1	$(A) \leftarrow (A) - 1$ $(A) \leftarrow (AL) \times (TL)$	_	_	dH		01
DIVU A	21	1	$(A) \leftarrow (AL) \wedge (TL)$ $(A) \leftarrow (T) / (AL), MOD \rightarrow (T)$	dL	00	00		11
ANDW A	3	1	$(A) \leftarrow (1) / (A2), MOD \rightarrow (1)$ $(A) \leftarrow (A) \land (T)$	_	_	dH	+ + R –	63
ORW A	3	1	$(A) \leftarrow (A) \lor (T)$	_	_	dH	+ + R -	73
XORW A	3	1	$(A) \leftarrow (A) \forall (T)$	_	_	dH	+ + R -	53
CMP A	2	1	(TL) – (AL)	_	_	_	++++	12
CMPW A	3	1	(T) - (A)	_	_	_	++++	13
RORC A	2	1	ightharpoonup C ightharpoonup A ightharpoonup	_	_	_	++-+	03
			_ C ← A ←					
ROLC A	2	1		_	_	_	++-+	02
CMP A,#d8	2	2	(A) – d8	_	_	_	++++	14
CMP A,dir	3	2	(A) – (dir)	_	_	_	++++	15
CMP A,@EP	3	1	(A) – ((EP))	_	_	_	++++	17
CMP A,@IX +off	4	2	(A) - ((IX) + off)	_	_	_	++++	16
CMP A,Ri	3	1	(A) – (Ri)	_	_	_	++++	18 to 1F
DAA	2	1	Decimal adjust for addition	_	_	_	++++	84
DAS	2	1	Decimal adjust for subtraction	_	_	_	++++	94
XOR A	2	1	$(A) \leftarrow (AL) \ \forall \ (TL)$	-	_	_	++R-	52
XOR A,#d8	2	2	$(A) \leftarrow (AL) \ \forall \ d8$	-	_	_	+ + R -	54
XOR A,dir	3	2	$(A) \leftarrow (AL) \ \forall \ (dir)$	-	_	_	+ + R -	55
XOR A,@EP	3	1	$(A) \leftarrow (AL) \ \forall \ ((EP))$	-	_	_	+ + R -	57
XOR A,@IX +off	4	2	$(A) \leftarrow (AL) \ \forall \ (IX) + off)$	-	_	_	++R-	56
XOR A,Ri	3	1	$(A) \leftarrow (AL) \ \forall \ (Ri)$	-	_	_	++R-	58 to 5F
AND A	2	1	$(A) \leftarrow (AL) \land (TL)$	-	_	_	+ + R -	62
AND A,#d8	2	2	$(A) \leftarrow (AL) \land d8$	-	_	_	++R-	64
AND A,dir	3	2	$(A) \leftarrow (AL) \land (dir)$	_	-	-	+ + R –	65

(Continued)

(Continued)

Mnemonic	1	#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(A) \leftarrow (AL) \land ((EP))$	_	_	_	+ + R -	67
AND A,@IX +off	4	2	$(A) \leftarrow (AL) \land ((IX) + off)$	_	_	_	+ + R -	66
AND A,Ri	3	1	$(A) \leftarrow (AL) \wedge (Ri)$	_	_	_	+ + R -	68 to 6F
OR A	2	1	$(A) \leftarrow (AL) \lor (TL)$	_	_	_	+ + R -	72
OR A,#d8	2	2	$(A) \leftarrow (AL) \lor d8$	_	_	_	+ + R -	74
OR A,dir	3	2	$(A) \leftarrow (AL) \lor (dir)$	_	_	_	+ + R -	75
OR A,@EP	3	1	$(A) \leftarrow (AL) \lor ((EP))$	_	_	_	+ + R -	77
OR A,@IX +off	4	2	$(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	+ + R -	76
OR A,Ri	3	1	$(A) \leftarrow (AL) \lor (Ri)$	_	_	_	+ + R -	78 to 7F
CMP dir,#d8	5	3	(dir) – d8	_	_	_	++++	95
CMP @EP,#d8	4	2	((EP)) – d8	_	_	_	++++	97
CMP @IX +off,#d8	5	3	((IX) + off) - d8	_	_	_	++++	96
CMP Ri,#d8	4	2	(Ri) – d8	_	_	_	++++	98 to 9F
INCW SP	3	1	(SP) ← (SP) + 1	_	_	_		C1
DECW SP	3	1	(SP) ← (SP) – 1	_	_	_		D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
BZ/BEQ rel	3	2	If $Z = 1$ then $PC \leftarrow PC + rel$	-	_	-		FD
BNZ/BNE rel	3	2	If $Z = 0$ then $PC \leftarrow PC + rel$	_	_	_		FC
BC/BLO rel	3	2	If $C = 1$ then $PC \leftarrow PC + rel$	_	_	_		F9
BNC/BHS rel	3	2	If $C = 0$ then $PC \leftarrow PC + rel$	_	_	_		F8
BN rel	3	2	If N = 1 then PC \leftarrow PC + rel	_	_	_		FB
BP rel	3	2	If N = 0 then PC \leftarrow PC + rel	_	_	_		FA
BLT rel	3	2	If $V \forall N = 1$ then $PC \leftarrow PC + rel$	_	_	_		FF
BGE rel	3	2	If $V \forall N = 0$ then $PC \leftarrow PC + rel$	_	_	_		FE
BBC dir: b,rel	5	3	If (dir: b) = 0 then $PC \leftarrow PC + rel$	_	_	_	-+	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) = 1 then $PC \leftarrow PC + rel$	_	_	_	-+	B8 to BF
JMP @A	2	1	(PC) ← (A)	_	_	_		E0
JMP ext	3	3	(PC) ← ext	_	_	_		21
CALLV #vct	6	1	Vector call	_	_	_		E8 to EF
CALL ext	6	3	Subroutine call	_	_	_		31
XCHW A,PC	3	1	$(PC) \leftarrow (A), (A) \leftarrow (PC) + 1$	_	_	dΗ		F4
RET	4	1	Return from subrountine	_	_	_		20
RETI	6	1	Return form interrupt	ı	_	1	Restore	30

Table 5 Other Instructions (9 instructions)

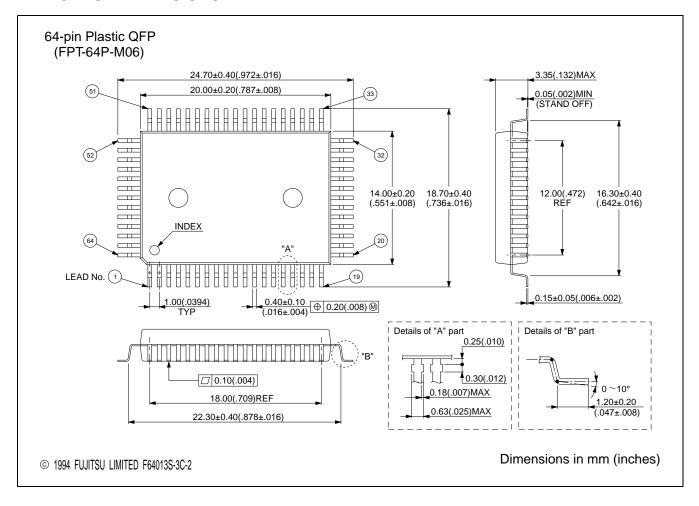
Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
PUSHW A	4	1		_	_	_		40
POPW A	4	1		_	_	dΗ		50
PUSHW IX	4	1		_	_	_		41
POPW IX	4	1		_	_	_		51
NOP	1	1		_	_	_		00
CLRC	1	1		_	_	_	R	81
SETC	1	1		_	_	_	S	91
CLRI	1	1		_	_	_		80
SETI	1	1		_	_	_		90

■ INSTRUCTION MAP

ш	MOVW A,PC	MOVW A,SP	MOVW A,IX	MOVW A,EP	XCHW A,PC	XCHW A,SP	XCHW A,IX	XCHW A,EP	BNC rel	O <u>a</u>	P ē	<u>e</u>	BNZ rel	Z rel	BGE rel	BLT rel
		_								BC	В	Z m		BZ		
ш	JMP @A	MOVW SP,A	MOVW IX,A	MOVW EP,A	MOVW A,#d16	MOVW SP,#d16	MOVW IX,#d16	MOVW EP,#d16	CALLV #0	CALLV #1	CALLV #2	CALLV #3	CALLV #4	CALLV #5	CALLV #6	CALLV #7
۵	DECW	DECW	DECW	DECW	MOVW ext,A	MOVW dir,A	MOVW @IX+d,A	MOVW @EP,A	DEC R0	DEC R1	DEC R2	DEC R3	DEC R4	DEC R5	DEC R6	DEC R7
ပ	INCW A	INCW	INCW IX	INCW	MOVW A,ext	MOVW A,dir	MOVW A,@IX +d	MOVW A,@EP	INC R0	INC R1	INC R2	INC R3	INC R4	INC R5	INC R6	INC R7
а	BBC dir: 0,rel	BBC dir: 1,rel	BBC dir: 2,rel	BBC dir: 3,rel	BBC dir: 4,rel	BBC dir: 5,rel	BBC dir: 6,rel	BBC dir: 7,rel	BBS dir: 0,rel	BBS dir: 1,rel	BBS dir: 2,rel	BBS dir: 3,rel	BBS dir: 4,rel	BBS dir: 5,rel	BBS dir: 6,rel	BBS dir: 7,rel
A	CLRB dir: 0	CLRB dir: 1	CLRB dir: 2	CLRB dir: 3	CLRB dir: 4	CLRB dir: 5	CLRB dir: 6	CLRB dir: 7	SETB dir: 0	SETB dir: 1	SETB dir: 2	SETB dir: 3	SETB dir: 4	SETB dir: 5	SETB dir: 6	SETB dir: 7
6	SETI	SETC	MOV A,@A	MOVW A,@A	DAS	CMP dir,#d8	CMP @IX +d,#d8	CMP @EP;#d8	CMP R0,#d8	CMP R1,#d8	CMP R2,#d8	CMP R3,#d8	CMP R4,#d8	CMP R5,#d8	CMP R6,#d8	CMP R7,#d8
8	CLRI	CLRC	MOV @A,T	MOVW @A,T	DAA	MOV dir,#d8	MOV @IX+d,#d8	MOV @EP;#d8	MOV R0,#d8	MOV R1,#d8	MOV R2,#d8	MOV R3,#d8	MOV R4,#d8	MOV R5,#d8	MOV R6,#d8	MOV R7,#d8
7	MOVW A,PS	MOVW PS,A	OR A	ORW A	OR A,#d8	OR A,dir	OR A,@IX +d	OR A,@EP	OR A,R0	OR A,R1	OR A,R2	OR A,R3	OR A,R4	OR A,R5	OR A,R6	OR A,R7
9	MOV A,ext	MOV ext,A	AND A	ANDW	AND A,#d8	AND A,dir	AND A,@IX +d	AND A,@EP	AND A,R0	AND A,R1	AND A,R2	AND A,R3	AND A,R4	AND A,R5	AND A,R6	AND A,R7
2	POPW A	POPW IX	XOR	XORW	XOR A,#d8	XOR A,dir	XOR A,@IX +d	XOR A,@EP	XOR A,R0	XOR A,R1	XOR A,R2	XOR A,R3	XOR A,R4	XOR A,R5	XOR A,R6	XOR A,R7
4	PUSHW A	PUSHW IX	XCH A, T	XCHW A, T		MOV dir,A	MOV @IX +d,A	MOV @EP,A	MOV R0,A	MOV R1,A	MOV R2,A	MOV R3,A	MOV R4,A	MOV R5,A	MOV R6,A	MOV R7,A
က	RETI	CALL addr16	SUBC	SUBCW	SUBC A,#d8	SUBC A,dir	SUBC A,@IX +d	SUBC A,@EP	SUBC A,R0	SUBC A,R1	SUBC A,R2	SUBC A,R3	SUBC A,R4	SUBC A,R5	SUBC A,R6	SUBC A,R7
2	RET	JMP addr16	ADDC A	ADDCW	ADDC A,#d8	ADDC A,dir	ADDC A,@IX +d	ADDC A,@EP	ADDC A,R0	ADDC A,R1	ADDC A,R2	ADDC A,R3	ADDC A,R4	ADDC A,R5	ADDC A,R6	ADDC A,R7
-	SWAP	DIVU A	CMP A	CMPW	CMP A,#d8	CMP A,dir	CMP A,@IX +d	CMP A,@EP	CMP A,R0	CMP A,R1	CMP A,R2	CMP A,R3	CMP A,R4	CMP A,R5	CMP A,R6	CMP A,R7
0	NOP	MULU	ROLC A	RORC	MOV A,#d8	MOV A,dir	MOV A,@IX +d	MOV A,@EP	MOV A,R0	MOV A,R1	MOV A,R2	MOV A,R3	MOV A,R4	MOV A,R5	MOV A,R6	MOV A,R7
H/ -	0	-	2	က	4	2	9	7	ω	6	∢	ω	ပ	۵	ш	ш

■ MASK OPTIONS

No.	Part number	MB89816A	MB89P817A			
NO.	Specifying procedure	Specify when ordering masking	Set with EPROM programmer			
1	Pull-up resistors P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P54, P60 to P67	P00 to P07, P10 to P17, P30 to P37, P40 to P47, Specify by pin				
2	Power-on reset selection With power-on reset Without power-on reset	Selectable	Setting possible			
3	Main clock oscillation (5 MHz) stabilization time selection approx. 218/FcH (approx. 52.4 ms) approx. 217/FcH (approx. 26.2 ms) approx. 214/FcH (approx. 3.2 ms) approx. 24/FcH (approx. 0 ms)	Abilization time selection approx. 218/FcH (approx. 52.4 ms) approx. 217/FcH (approx. 26.2 ms) approx. 214/FcH (approx. 3.2 ms)				
4	Reset pin ouotput selection With reset output Without reset output	Selectable	Setting possible			
5	Selection either single- or dual- clock system Single clock Dual clock	Selectable	Setting possible			
6	Main clock oscillator type selection Crystal or ceramic oscillator CR	Selectable	Setting possible			


Fcн: Main clock frequency

■ ORDERING INFORMATION

Part number	Package	Remarks
MB89816APF MB89P817APF	64-pin Plastic QFP (FPT-64P-M06)	

^{* :} The main clock oscillation setting time is generated by dividing the main clock frequency. Note that the oscillation cycle is not stable immediately after oscillation is started. The settling time value in this data sheet should be used as a reference.

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 1015, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211, Japan

Tel: (044) 754-3753 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A.

Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag German

Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED No. 51 Bras Basah Road, Plaza By The Park, #06-04 to #06-07

Tel: 336-1600 Fax: 336-1609

Singapore 189554

All Rights Reserved.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

The information contained in this document are not intended for use with equipments which require extremely high reliability such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support.

F9606

© FUJITSU LIMITED Printed in Japan