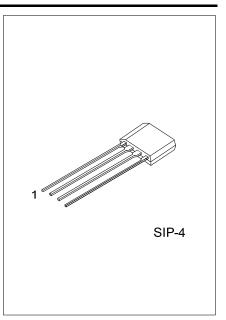
UTC UNISONIC TECHNOLOGIES CO., LTD

UH276

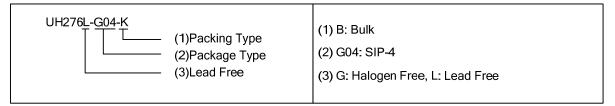
LINEAR INTEGRATED CIRCUIT

COMPLEMENTARY OUTPUTS HALL EFFECT LATCH IC


DESCRIPTION

The UTC UH276 is a Latch-Type Hall Effect sensor with built-in complementary output drivers. It's designed with internal temperature compensation circuit and built-in protection diode prevent reverse power fault. The application is aimed for brush-less DC Fan

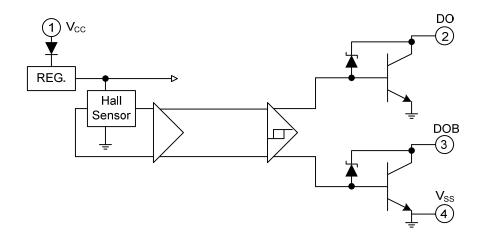
The UH276 Outputs operate as the Hysteresis Characteristics. The Outputs alternately ON and OFF when either the magnetic flux density larger than threshold BOP or the magnetic flux density lower than B_{RP}.


FEATURES

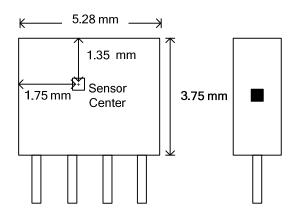
- * Widen Power Supply range from 3V ~ 20V.
- * On-chip Hall sensor with excellent hysteresis.
- * Open Collector outputs had the sinking capability up to 400mA.
- * Output Clamping Diodes reduce the peak output voltages during switching.
- * Build-in reverse protection diode.

ORDERING INFORMATION

Ordering	Number	Dookogo	Dooking
Lead Free Halogen Free		Package	Packing
UH276L-G04-K	Š		Bulk



PIN DESCRIPTION


PIN NO.	PIN NAME	P/I/O	DESCRIPTION
1	V_{CC}	Р	Positive Power Supply
2	DO	0	Output Pin
3	DOB	0	Output Pin
4	V_{SS}	Р	Ground

www.unisonic.com.tw 1 of 5

■ BLOCK DIAGRAM

■ SENSOR LOCATIONS

■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise specified)

PARAM	ETER	SYMBOL	RATINGS	UNIT	
Supply Voltage		V _{CC}	20	٧	
Reverse V _{CC} Polarity	Voltage	V_{RCC}	-25	V	
Output OFF Voltage		V_{CE}	32	٧	
Magnetic flux density		В	Unlimited		
	Continuous		0.4		
Output ON Current	Hold	Ic	0.5	Α	
	Peak (Start Up)		0.7		
Power Dissipation		P_{D}	500	mW	
Junction Temperature		T_J	+150	$^{\circ}\!\mathbb{C}$	
Operating Temperature		T_{OPR}	-20 ~ +85	$^{\circ}\!\mathbb{C}$	
Storage Temperature	;	T _{STG}	-65 ~ + 150	$^{\circ}$ C	

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ **ELECTRICAL CHARACTERISTICS** (T_A =25°C, unless otherwise specified)

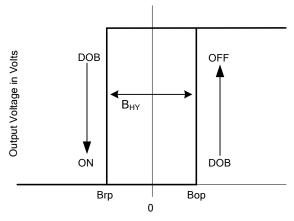
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Low Supply Voltage	V_{CE}	V _{CC} =3.5V, I _L =100mA			0.6	V
Supply Voltage	V _{CC}		3		20	V
Output Saturation Voltage	V _{CE(SAT)}	V _{CC} =14V, I _L =400mA		0.6	0.9	V
Output Leakage Current	I _{CEX}	V _{CE} =14V, V _{CC} =14V		<0.1	10	μΑ
Supply Current	I _{CC}	V _{CC} =20V, Output Open		15	25	mA
Output Rise Time	t _R	V _{CC} =14V, R _L =820Ω, C _L =20pF		0.3	3	μS
Output Falling Time	t _F	V _{CC} =14V, R _L =820Ω, C _L =20pF		0.04	1	μS
Switch Time Differential	Δt	V _{CC} =14V, R _L =820Ω, C _L =20pF		0.3	3	μS

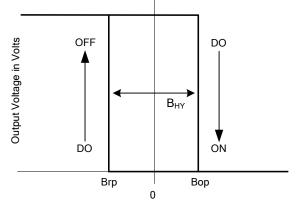
■ MAGNETIC CHARACTERISTICS

A grade

PARAMETR	SYMBOL	MIN	TYP	MAX	UNIT
Operate Point	B _{OP}	10		50	G
Release Point	B_RP	-50		-10	G
Hysteresis	B _{HYS}	20		100	G

B grade

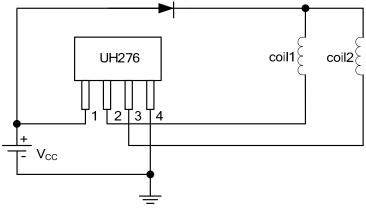

PARAMETR	SYMBOL	MIN	TYP	MAX	UNIT
Operate Point	B _{OP}	5		70	G
Release Point	B_RP	-70		-5	G
Hysteresis	B _{HYS}	20		140	G


C grade

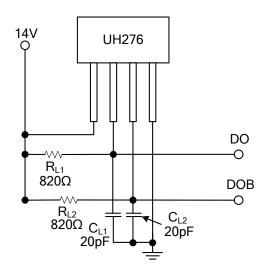
PARAMETR	SYMBOL	MIN	TYP	MAX	UNIT
Operate Point	B _{OP}			100	G
Release Point	B _{RP}	-100			G
Hysteresis	BHYS	20		200	G

^{2.} Output Zener protection voltage

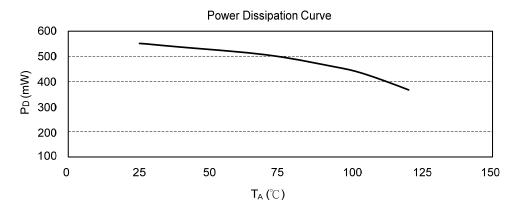
CHYSTERESIS CHARACTERISTICS



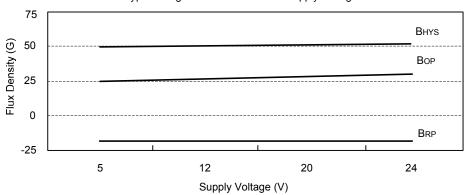
Magnetic Flux Density in Gauss

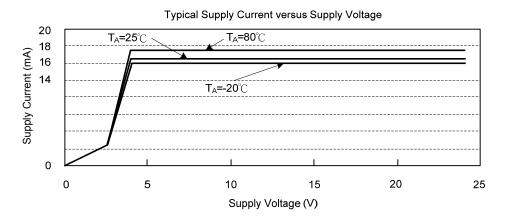

Magnetic Flux Density in Gauss

■ TYPICAL APPLICATION CIRCUIT


Brushless DC Fan

■ TEST CIRCUIT




PERFORMANCE CHARACTERISTICS

T _A (°C)	25	50	60	70	80	85	90	95	100	105	110	115	120
P _D (mW)	550	525	515	505	485	475	465	455	445	425	405	385	365

Typical Magnetic Switch Point VS. Supply Voltage

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.