LTC2859/LTC2861

20Mbps RS485 Transceivers with Integrated Switchable Termination

features

- Integrated, Logic-Selectable 120Ω Termination Resistor
- 20Mbps Max Data Rate
- No Damage or Latchup to ESD: $\pm 15 \mathrm{kV}$ HBM
- High Input Impedance Supports 256 Nodes (C-, I-Grades)
- Operation Up to $105^{\circ} \mathrm{C}$ (LTC2859H)
- 250kbps Low-EMI Mode
- Guaranteed Failsafe Receiver Operation Over the Entire Common Mode Range
- Current Limited Drivers and Thermal Shutdown
- Delayed Micropower Shutdown (5 5 A Max)
- Power Up/Down Glitch-Free Driver Outputs
- Low Operating Current ($900 \mu \mathrm{~A}$ Max in Receive Mode)
- Meets All TIA/EIA-485-A Specifications
- Available in 10 -Pin $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN, 12 -Pin $4 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN and 16-Pin SSOP Packages

APPLICATIONS

- Low Power RS485/RS422 Transceiver
- Level Translator
- Backplane Transceiver

DESCRIPTIOn

The LTC®2859 and LTC2861 are low power, 20Mbps RS485/422 transceivers operating on 5 V supplies. The receiver includes a logic-selectable 120Ω termination, one-eighth unit load supporting up to 256 nodes per bus (C-, I-grades), and a failsafe feature that guarantees a high output state under conditions of floating or shorted inputs.
The driver features a logic-selectable low-EMI 250kbps operating mode, and maintains a high output impedance over the entire common mode range when disabled or when the supply is removed. Excessive power dissipation caused by bus contention or a fault is prevented by current limiting all outputs and by a thermal shutdown.
Enhanced ESD protectionallows the LTC2859 and LTC2861 to withstand $\pm 15 \mathrm{kV}$ (human body model) on the transceiver interface pins without latchup or damage.

PRODUCT SELECTION GUIDE

PART NUMBER	DUPLEX	PACKAGE
LTC2859	Half	DFN-10
LTC2861	Full	SSOP-16, DFN-12

$\boldsymbol{\boxed { \top }}$, LT, LTC, LTM, Linear Technology, the Linear logo and μ Module are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATIO

LTC2859 at 20Mbps

LTC2859/LTC2861

ABSOLUTG MAXIMUUM RATINGS (Noie 1)

Supply Voltage (V_{CC}) \qquad . 0.3 V to 7 V Logic Input Voltages ($\overline{\mathrm{RE}}, \mathrm{DE}, \mathrm{DI}, \mathrm{TE}, \overline{\mathrm{SLO}}$).... -0.3 V to 7 V Interface I/O:

$$
\mathrm{A}, \mathrm{~B}, \mathrm{Y}, \mathrm{Z} \ldots \ldots \ldots \ldots \ldots . ~\left(V_{C C}-15 \mathrm{~V}\right) \text { to }+15 \mathrm{~V}
$$

Operating Temperature (Note 4) LTC2859C, LTC2861C $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ LTC2859I, LTC2861I $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC2859H. $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
(A-B) or (B-A) with Terminator Enabled6V

Storage Temperature Range
 \qquad $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

 Lead Temperature (Soldering, 10 sec)GN Package

PIn CONFIGURATIOn

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC2861CDE\#PBF	LTC2861CDE\#TRPBF	2861	$12-$ Lead $(4 \mathrm{~mm} \times 3 \mathrm{~mm})$ Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC2861IDE\#PBF	LTC2861IDE\#TRPBF	2861	$12-$ Lead ($4 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC2861CGN\#PBF	LTC2861CGN\#TRPBF	2861	16 -Lead Plastic SSOP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC2861IGN\#PBF	LTC2861IGN\#TRPBF	28611	16 -Lead Plastic SSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC2859CDD\#PBF	LTC2859CDD\#TRPBF	LBNX	$10-$ Lead ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC2859IDD\#PBF	LTC2859IDD\#TRPBF	LBNX	$10-$ Lead $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$ Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC2859HDD\#PBF	LTC2859HDD\#TRPBF	LBNX	$10-$ Lead ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ unless otherwise noted (Note 2).

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Driver							
$\left\|\mathrm{V}_{\text {OD }}\right\|$	Differential Driver Output Voltage	$\begin{aligned} & \mathrm{R}=\infty, \mathrm{I}_{0}=0 \mathrm{~mA}, \mathrm{~V}_{C C}=4.5 \mathrm{~V} \text { (Figure 1) } \\ & \mathrm{R}=27 \Omega \text { (RS485), } V_{C C}=4.5 \mathrm{~V} \text { (Figure 1) } \\ & \mathrm{R}=50 \Omega \text { (RS422), } \mathrm{V}_{C C}=4.5 \mathrm{~V} \text { (Figure 1) } \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$		$V_{C C}$ $V_{\text {CC }}$ VCC	V V V
$\Delta\left\|V_{00}\right\|$	Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	$\mathrm{R}=27 \Omega$ or $\mathrm{R}=50 \Omega$ (Figure 1)	\bullet			0.2	V
V_{0}	Driver Common Mode Output Voltage	$\mathrm{R}=27 \Omega$ or $\mathrm{R}=50 \Omega$ (Figure 1)	\bullet			3.0	V
$\Delta\left\|\mathrm{V}_{\text {OC }}\right\|$	Change in Magnitude of Driver Common Mode Output Voltage for Complementary Output States	$\mathrm{R}=27 \Omega$ or $\mathrm{R}=50 \Omega$ (Figure 1)	\bullet			0.2	V
IOZD	Driver Three-State (High Impedance) Output Current on Y and Z	$D E=O V, V_{0}=-7 \mathrm{~V},+12 \mathrm{~V}$ (LTC2861 Only)	\bullet			± 10	$\mu \mathrm{A}$
IOSD	Maximum Driver Short-Circuit Current	$-7 \mathrm{~V} \leq$ (Y or Z$) \leq 12$ (Figure 2)	\bullet		± 120	± 250	mA

Receiver

IIN2	Receiver Input Current (A, B)	$\mathrm{DE}=\mathrm{TE}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}} \text { or } \mathrm{V}_{\mathrm{B}}=12 \mathrm{~V} \text {, }$ Other at OV (H-Grade) $D E=T E=0 V, V_{C C}=0 \mathrm{~V} \text { or } 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}} \text { or } \mathrm{V}_{\mathrm{B}}=-7 \mathrm{~V} \text {, }$ Other at OV (H-Grade)	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \end{aligned}$	$\begin{aligned} & -100 \\ & -145 \end{aligned}$		$\begin{aligned} & 125 \\ & 250 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ A
$\overline{V_{T H}}$	Receiver Differential Input Threshold Voltage	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 12$	\bullet			± 0.2	V
$\Delta \mathrm{V}_{\mathrm{TH}}$	Receiver Input Hysteresis	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$			25		mV
V_{OH}	Receiver Output HIGH Voltage	$\mathrm{I}_{0}=-4 \mathrm{~mA}, \mathrm{~V}_{\text {ID }}=200 \mathrm{mV}, \mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$	\bullet	2.4			V
$\mathrm{V}_{\text {OL }}$	Receiver Output LOW Voltage	$\mathrm{I}_{0}=4 \mathrm{~mA}, \mathrm{~V}_{\text {ID }}=-200 \mathrm{mV}, \mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$	\bullet			0.4	V
$\mathrm{I}_{\text {OZR }}$	Receiver Three-State (High Impedance) Output Current on RO	$\overline{\mathrm{RE}}=5 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\mathrm{CC}}$	\bullet			± 1	$\mu \mathrm{A}$
$\overline{R_{\text {IN }}}$	Receiver Input Resistance	$\begin{aligned} & \overline{\mathrm{RE}}=5 \mathrm{~V} \text { or } 0 \mathrm{~V}, \mathrm{DE}=\mathrm{TE}=0 \mathrm{~V} \\ & -7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}} \leq 12 \mathrm{~V} \\ & \text { (H-Grade) } \end{aligned}$	\bullet	$\begin{aligned} & 96 \\ & 48 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$		$k \Omega$ $k \Omega$
$\mathrm{R}_{\text {TERM }}$	Receiver Input Terminating Resistor	$T E=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{AB}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=-7,0,10 \mathrm{~V}$ (Figure 7)	\bullet	108	120	156	Ω

Logic

$\mathrm{V}_{\text {IH }}$	Logic Input High Voltage	DE, DI, $\overline{\mathrm{RE}}, \mathrm{TE}, \overline{\mathrm{SLO}}, \mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$	\bullet	2		V
$\mathrm{V}_{\text {IL }}$	Logic Input Low Voltage	DE, DI, $\overline{\mathrm{RE}}, \mathrm{TE}, \overline{\mathrm{SLO}}, \mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$	\bullet		0.8	V
IN1	Logic Input Current	DE, DI, $\overline{\mathrm{RE}}, \mathrm{TE}, \overline{\mathrm{SLO}}$	\bullet	0	± 10	$\mu \mathrm{A}$

Supplies

ISHDN	Supply Current in Shutdown Mode	$D E=0 \mathrm{~V}, \overline{\mathrm{RE}}=\mathrm{V}_{C C}, \mathrm{TE}=0 \mathrm{~V}$	\bullet	0	5	$\mu \mathrm{A}$
$I_{\text {CCR }}$	Supply Current in Receive Mode	No Load, $\mathrm{DE}=0 \mathrm{~V}, \overline{\mathrm{RE}}=0 \mathrm{~V}, \mathrm{TE}=0 \mathrm{~V}$	\bullet	540	900	$\mu \mathrm{A}$
${ }_{\text {CCT }}$	Supply Current in Transmit Mode	No Load, $\mathrm{DE}=\mathrm{V}_{\text {CC }}, \overline{\mathrm{RE}}=\mathrm{V}_{\text {CC }}, \overline{\mathrm{SLO}}=\mathrm{V}_{C C}, \mathrm{TE}=0 \mathrm{~V}$	\bullet	630	1000	$\mu \mathrm{A}$
${ }^{\text {CCTS }}$	Supply Current in Transmit SLO Mode	No Load, $\mathrm{DE}=\mathrm{V}_{\text {CC }}, \overline{\mathrm{RE}}=\mathrm{V}_{C C}, \overline{\mathrm{SLO}}=0 \mathrm{~V}, \mathrm{TE}=0 \mathrm{~V}$	\bullet	670	1100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CLL }}$	Supply Current in Loopback Mode (Both Driver and Receiver Enabled)	No Load, $\mathrm{DE}=\mathrm{V}_{\text {CC }}, \overline{\mathrm{RE}}=0 \mathrm{~V}, \overline{\mathrm{SLO}}=\mathrm{V}_{\text {CC }}, \mathrm{TE}=0 \mathrm{~V}$	\bullet	660	1100	$\mu \mathrm{A}$
$I_{\text {CCRT }}$	Supply Current in Termination Mode	$\mathrm{DE}=0 \mathrm{~V}, \overline{\mathrm{RE}}=\mathrm{V}_{C C}, \mathrm{TE}=\mathrm{V}_{C C}, \overline{\mathrm{SLO}}=\mathrm{V}_{C C}$	\bullet	640	1180	$\mu \mathrm{A}$

LTC2859/LTC2861

SWITCHING CHARACTERISTICS The odenties ste speacifiations which paply veret the will operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{E}}=0$ unless otherwise noted (Note 2).

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS	
Driver in Normal Mode ($\overline{\text { SLO }}$ HIGH)								
$\mathrm{f}_{\text {MAX }}$	Maximum Data Rate	Note 3	\bullet	20			Mbps	
$\mathrm{t}_{\text {PLHD }}$, $\mathrm{t}_{\text {PHLD }}$	Driver Input to Output	$\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figure 3)	\bullet		10	50	ns	
$\Delta t_{\text {PD }}$	Driver Input to Output Difference \|tpLhD-TpHLD		$\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figure 3)	\bullet		1	6	ns
tSkEWD	Driver Output Y to Output Z	$\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figure 3)	\bullet		1	± 6	ns	
$\mathrm{t}_{\mathrm{RD},} \mathrm{t}_{\text {f }}$	Driver Rise or Fall Time	$\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figure 3)	\bullet		4	12.5	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{ZLD}}, \mathrm{t}_{\mathrm{ZHD}}, \mathrm{t}_{\mathrm{LZD}}, \\ & \mathrm{t}_{\mathrm{HZD}} \end{aligned}$	Driver Enable or Disable Time	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{L}=50 \mathrm{pF}, \overline{\mathrm{RE}}=0$ (Figure 4)	\bullet			70	ns	
tzHSD, tzLSD	Driver Enable from Shutdown	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \overline{\mathrm{RE}}=\mathrm{V}_{\text {CC }}$ (Figure 4)	\bullet			8	$\mu \mathrm{S}$	
$\mathrm{t}_{\text {SHDN }}$	Time to Shutdown	($\mathrm{DE}=\downarrow, \overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{CC}}$) or ($\mathrm{DE}=0, \overline{\mathrm{RE}} \uparrow$) (Figure 4)	\bullet			100	ns	

Driver in SLO Mode (SLO LOW)

$\mathrm{f}_{\text {MAXS }}$	Maximum Data Rate	Note 3	\bullet	250		kbps
$\mathrm{tpLHDS}^{\text {P }}$ tPHLDS	Driver Input to Output	$\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figure 3)	\bullet	0.95	1.5	$\mu \mathrm{S}$
$\Delta t_{\text {PDS }}$	Driver Input to Output Difference $\left\|t_{\text {PLHR }}-t_{\text {PHLR }}\right\|$	$\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figure 3)	\bullet	50	500	ns
$\mathrm{t}_{\text {SKEWDS }}$	Driver Output A to Output B	$R_{\text {DIFF }}=54 \Omega, C_{L}=100 \mathrm{pF}$ (Figure 3) (H-Grade)	\bullet	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & \pm 500 \\ & \pm 750 \end{aligned}$	ns
$\mathrm{t}_{\text {RDS }} \mathrm{t}_{\text {FDS }}$	Driver Rise or Fall Time	$\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figure 3)	\bullet	0.9	1.5	$\mu \mathrm{S}$
tzHDS, tzLDS	Driver Enable Time	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{L}=50 \mathrm{pF}, \overline{\mathrm{RE}}=0$ (Figure 4)	\bullet		300	ns
tLZDS, ${ }_{\text {thZDS }}$	Driver Disable Time	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{L}=50 \mathrm{pF}, \overline{\mathrm{RE}}=0$ (Figure 4)	\bullet		70	ns
$\mathrm{t}_{\text {ZHSDS }}$, tzLSDS	Driver Enable from Shutdown	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{L}=50 \mathrm{pF}, \overline{\mathrm{RE}}=\mathrm{V}_{\text {CC }}$ (Figure 4)	\bullet		8	$\mu \mathrm{S}$
$\mathrm{t}_{\text {SHDNS }}$	Time to Shutdown	$\left(\mathrm{DE}=0, \overline{\mathrm{RE}}=\uparrow\right.$) or $\left(\mathrm{DE}=\downarrow, \overline{\mathrm{RE}}=\mathrm{V}_{\text {CC }}\right)($ Figure 4)	\bullet		500	ns

Receiver

$t_{\text {PLHR }}, t_{\text {PHLR }}$	Receiver Input to Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V},\left\|\mathrm{~V}_{\mathrm{AB}}\right\|=1.5 \mathrm{~V}, \mathrm{t}_{\mathrm{R}} \text { and } \mathrm{t}_{\mathrm{F}}< \\ & 4 \mathrm{~ns} \text { (Figure } 5 \text {) } \end{aligned}$	\bullet	50	70	ns
$\dagger_{\text {SkEWR }}$	Differential Receiver Skew \mid tpLhr $^{-1}$ tphLR \mid	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (Figure 5)	\bullet	1	6	ns
$\mathrm{t}_{\mathrm{RR}}, \mathrm{t}_{\text {fR }}$	Receiver Output Rise or Fall Time	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (Figure 5)	\bullet	3	12.5	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{ZLR}}, \mathrm{t}_{\mathrm{ZHR}}, \mathrm{t}_{\mathrm{LZR}}, \\ & \mathrm{t}_{\mathrm{HzR}} \\ & \hline \end{aligned}$	Receiver Enable/Disable	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{DE}=\mathrm{V}_{\text {CC }} \text { (Figure 6) } \\ & \mathrm{DI}=0 \text { or } V_{\mathrm{CC}} \end{aligned}$	\bullet		50	ns
$\mathrm{t}_{\text {ZHSR }}$, tzLSR	Receiver Enable from Shutdown	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}, \mathrm{DE}=0 \mathrm{~V} \text { (Figure 6) } \\ & \mathrm{DI}=0 \text { or } V_{C C} \end{aligned}$	\bullet		8	$\mu \mathrm{S}$
trten, trtz	Termination Enable or Disable Time	$\mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AB}}=2 \mathrm{~V}, \overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{DE}=0 \mathrm{~V}$ (Figure 7)	\bullet		100	$\mu \mathrm{S}$

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime..
Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.

Note 3: Maximum data rate is guaranteed by other measured parameters and is not tested directly.
Note 4: This IC includes overtemperature protection that is intended to protect the device during momentary overload conditions. Junction temperature will exceed $125^{\circ} \mathrm{C}$ when overtemperature protection is active. Continuous operation above the specified maximum operating junction temperature may result in device degradation or failure.

TEST CIRCUITS

Figure 1. Driver DC Characteristics

Figure 2. Driver Output Short-Circuit Current

Figure 3. Driver Timing Measurement

Figure 4. Driver Enable and Disable Timing Measurement

LTC2859/LTC2861

TEST CIRCUITS

Figure 5. Receiver Propagation Delay Measurements

Figure 6. Receiver Enable/Disable Time Measurements

2859/61 F07

Figure 7. Termination Resistance and Timing Measurements

TYPICAL PERFORMANCE CHARACTERISTICS
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise noted.

$\mathrm{R}_{\text {TERM }}$ vs Temperature

Receiver Output Voltage vs
Output Current (Source and Sink)

Driver Skew vs Temperature

Driver Output Low/High Voltage vs Output Current

Receiver Propagation Delay

 vs Temperature

Driver Propagation Delay vs Temperature

Driver Differential Output Voltage vs Temperature

Supply Current vs Data Rate

LTC2859/LTC2861

PIN FUNCTIONS (DD/DE/GN)

R0 (Pin 1): Receiver Output. Ifthe receiver output is enabled ($\overline{\mathrm{RE}}$ low) and $\mathrm{A}>\mathrm{B}$ by 200 mV , then $R 0$ will be high. If A < B by 200 mV , then R0 will be low. If the receiver inputs are open, shorted, or terminated without a valid signal, RO will be high.
$\overline{\mathrm{RE}}$ (Pin 2): Receiver Enable. A low enables the receiver. A high input forces the receiver output into a high impedance state.

DE (Pin 3): Driver Enable. A high on DE enables the driver. A low input will force the driver outputs into a high impedance. If $\overline{R E}$ is high with $D E$ and TE LOW, the part will enter a low power shutdown state.

DI (Pin 4): Driver Input. If the driver outputs are enabled (DE HIGH), then a low on DI forces the driver positive output LOW and negative output HIGH. A high on DI, with the driver outputs enabled, forces the driver positive output HIGH and negative output LOW.

TE (Pin 5): Internal Termination Resistance Enable. A high input will connect a termination resistor (120 2 typical) between pins A and B.
GND (Pins 6,11/6,13/6): Ground. Pins 11 and 13 are backside thermal pad, connected to Ground.
SLO (Pins 7/7/11): Driver Slew Rate Control. A low input will force the driver into a reduced slew rate mode.

Y (Pins -/8/12): Positive Driver Output for LTC2861.
Z (Pins -/9/13): Negative Driver Output for LTC2861.
B (Pins 9/10/14): Negative Receiver Input (and Negative Driver Output for LTC2859).
A (Pins 8/11/15): Positive Receiver Input (and Positive Driver Output for LTC2859).

VCC (Pins 10/12/16): Positive Supply. $4.5 \mathrm{~V}<\mathrm{V}_{\text {CC }}<5.5 \mathrm{~V}$. Bypass with $0.1 \mu \mathrm{~F}$ ceramic capacitor.

function tables

LTC2859

LOGIC INPUTS			MODE	A, B	R0	TERMINATOR
DE	$\overline{\mathrm{RE}}$	TE				
0	0	0	Receive	RIN	Enabled	Off
0	0	1	Receive with Term	RIN	Enabled	On
0	1	0	Shutdown	RIN	Hi-Z	Off
0	1	1	Term Only	RIN	Hi-Z	On
1	0	0	Transmit with Receive	Driven	Enabled	Off
1	0	1	Transmit with Receive and Term	Driven	Enabled	On
1	1	0	Transmit	Driven	Hi-Z	Off
1	1	1	Transmit with Term	Driven	Hi-Z	On

LTC2861

LOGIC INPUTS			MODE	A, B	Y, Z	RO	TERMINATOR
DE	$\overline{\mathrm{RE}}$	TE					
0	0	0	Receive	$\mathrm{R}_{\text {IN }}$	Hi-Z	Enabled	Off
0	0	1	Receive with Term	$\mathrm{R}_{\text {IN }}$	Hi-Z	Enabled	On
0	1	0	Shutdown	RIN	Hi-Z	Hi-Z	Off
0	1	1	Term Only	RIN	Hi-Z	Hi-Z	On
1	0	0	Transmit with Receive	RIN	Driven	Enabled	Off
1	0	1	Transmit with Receive and Term	$\mathrm{R}_{\text {IN }}$	Driven	Enabled	On
1	1	0	Transmit	RIN	Driven	Hi-Z	Off
1	1	1	Transmit with Term	$\mathrm{R}_{\text {IN }}$	Driven	Hi-Z	On

BLOCK DIAGRAMS

LTC2861

LTC2859/LTC2861

APPLICATIONS InFORMATION

Driver

The driver provides full RS485 and RS422 compatibility. When enabled, if DI is high, $\mathrm{Y}-\mathrm{Z}$ is positive for the full duplex device (LTC2861) and A-B is positive for the halfduplex device (LTC2859).

When the driver is disabled, both outputs are highimpedance. For the full duplex LTC2861, the leakage on the driver output pins is guaranteed to be less than $10 \mu \mathrm{~A}$ over the entire common mode range of -7 V to +12 V . On the half-duplex LTC2859, the impedance is dominated by the receiver input resistance, R_{IN}.

Driver Overvoltage and Overcurrent Protection

The driver outputs are protected from short circuits to any voltage within the Absolute Maximum range of (VCC -15 V) to +15 V . The maximum current in this condition is 250 mA . If the pin voltage exceeds about $\pm 10 \mathrm{~V}$, current limit folds back to about half of the peak value to reduce overall power dissipation and avoid damaging the part.

The LTC2859/LTC2861 also feature thermal shutdown protection that disables the driver, terminator, and receiver in case of excessive power dissipation.

$\overline{\text { SLO }}$ Mode: Slew Limiting for EMI Emissions Control

 The LTC2859/LTC2861 feature a logic-selectable reducedslew mode ($\overline{\mathrm{SLO}}$ mode) that softens the driver output edges to control the high frequency EMI emissions from equipment and data cables. The reduced slew rate mode is entered by taking the $\overline{\mathrm{SLO}}$ pin low, where the data rate is limited to about 250kbps. Slew limiting also mitigates the adverse effects of imperfect transmission line termination caused by stubs or mismatched cables.Figures 8a and 8b show the LTC2861 driver outputs in normal and $\overline{\mathrm{SLO}}$ mode with their corresponding frequency spectrums operating at 250 kbps . SLO mode significantly reduces the high frequency harmonics.

Driver Output at 125 kHz into 100Ω Resistor

Frequency Spectrum of the Same Signal

Figure 8a. Driver Output in Normal Mode

Figure 8b. Driver Output in $\overline{\text { SLO }}$ Mode

APPLICATIONS INFORMATION

Receiver and Failsafe

With the receiver enabled, when the absolute value of the differential voltage between the A and B pins is greater than 200 mV , the state of $R O$ will reflect the polarity of $(A-B)$.

The LTC2859/LTC2861 have a failsafe feature that guarantees the receiver output to be in a logic HIGH state when the inputs are either shorted, left open, or terminated (externally or internally), but not driven for more than about $3 \mu \mathrm{~s}$. The delay prevents signal zero crossings from being interpreted as shorted inputs and causing RO to go high inadvertently. This failsafe feature is guaranteed to work for inputs spanning the entire common mode range of -7 V to +12 V .

The receiver output is internally driven high (to V_{CC}) or low (to ground) with no external pull-up needed. When the receiver is disabled the RO pin becomes $\mathrm{Hi}-\mathrm{Z}$ with leakage of less than $\pm 1 \mu \mathrm{~A}$ for voltages within the supply range.

Receiver Input Resistance

The receiver input resistance from A or B to ground is greater than 96 k permitting up to a total of 256 receivers per system without exceeding the RS485 receiver load-

Figure 9. Equivalent Input Resistance into A and B (on the LTC2859, Valid if Driver is Disabled)
ing specification. High temperature H-Grade operation reduces the minimum input resistance to 48 k permitting 128 receivers on the bus. The input resistance of the receiver is unaffected by enabling/disabling the receiver or by powering/unpowering the part. The equivalent input resistance looking into A and B is shown in Figure 9.

Switchable Termination

Proper cable termination is very important for good signal fidelity. If the cable is not terminated with its characteristic impedance, reflections will result in distorted waveforms.

The LTC2859/LTC2861 are the first RS485 transceivers to offer integrated switchable termination resistors on the receiver input pins. This provides the tremendous advantage of being able to easily change, through logic control, the proper line termination for optimal performance when configuring transceiver networks.
When the TE pin is high, the termination resistor is enabled and the differential resistance from A to B is 120Ω. Figure 10 shows the I / V characteristics between pins A and B with the termination resistor enabled and disabled. The resistance is maintained over the entire RS485 common mode range of -7 V to +12 V as shown in Figure 11.

Figure 10. Curve Trace Between \mathbf{A} and B with Termination Enabled and Disabled

LTC2859/LTC2861

APPLICATIONS InFORMATION

The integrated termination resistor has a high frequency response which does not limit performance at the maximum specified data rate. Figure 12 shows the magnitude and phase of the termination impedance vs frequency. The termination resistor cannot be enabled by TE if the device is unpowered or in thermal shutdown mode.

Supply Current

The unloaded static supply currents in the LTC2859/ LTC2861 are very low -typically under 700μ A for all modes of operation without the internal terminator enabled. In applications with resistively terminated cables, the supply current is dominated by the driver load. For example, when using two 120Ω terminators with a differential driver output voltage of 2 V , the DC current is 33 mA , which is sourced by the positive voltage supply. This is true whether the terminators are external or internal such as in the LTC2859/ LTC2861. Power supply current increases with toggling data due to capacitive loading and this term can increase significantly at high data rates. Figure 13 shows supply current vs data rate for two different capacitive loads (for the circuit configuration of Figure 3).

High Speed Considerations

A ground plane layout is recommended for the LTC2859/ LTC2861. A $0.1 \mu \mathrm{~F}$ bypass capacitor less than one quarter inch away from the V_{CC} pin is also recommended. The PC board traces connected to signals A/B and Z/Y (LTC2861) should be symmetrical and as short as possible to maintain good differential signal integrity. To minimize capacitive effects, the differential signals should be separated by more than the width of a trace and should not be routed on top of each other if they are on different signal planes.

Care should be taken to route outputs away from any sensitive inputs to reduce feedback effects that might cause noise, jitter, or even oscillations. For example, in the full duplex LTC2861, DI and A/B should not be routed near the driver or receiver outputs.
The logic inputs of the LTC2859/LTC2861 have 50 mV of hysteresis to provide noise immunity. Fast edges on the outputs can cause glitches in the ground and power supplies which are exacerbated by capacitive loading. If a logic input is held near its threshold (typically 1.5 V), a noise glitch

Figure 11. Termination Resistance vs Common Mode Voltage

Figure 12. Termination Magnitude and Phase vs Frequency

Figure 13. Supply Current vs Data Rate

APPLICATIONS INFORMATION

from a driver transition may exceed the hysteresis levels on the logic and data inputs pins causing an unintended state change. This can be avoided by maintaining normal logic levels on the pins and by slewing inputs through their thresholds by faster than 1V/us when transitioning. Good supply decoupling and proper line termination also reduces glitches caused by driver transitions.

Cable Length vs Data Rate

For a given data rate, the maximum transmission distance is bounded by the cable properties. A typical curve of cable length vs data rate compliant with the RS485 standard is shown in Figure 14. Three regions of this curve reflect different performance limiting factors in data transmission. In the flat region of the curve, maximum distance is determined by resistive losses in the cable. The downward sloping region represents limits in distance and data rate due to AC losses in the cable. The solid vertical line
represents the specified maximum data rate in the RS485 standard. The dashed lines at 250 kbps and 20Mbps show the maximum data rates of the LTC2859/LTC2861 in LowEMI and normal modes, respectively.

Figure 14. Cable Length vs Data Rate (RS485 Standard Shown in Solid Lines)

TYPICAL APPLICATIONS

Multi-Node Network with End Termination Using LTC2859

LTC2859/LTC2861

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

DD Package

10-Lead Plastic DFN (3mm $\times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1699 Rev C)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

BOTTOM VIEW—EXPOSED PAD
NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (WEED-2). CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT 2. DRAWING NOT TO SCALE
2. ALL DIMENSIONS ARE IN MILLIMETERS
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE

TOP AND BOTTOM OF PACKAGE

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

DE/UE Package
12-Lead Plastic DFN ($4 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1695 Rev D)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED

NOTE:

1. DRAWING PROPOSED TO BE A VARIATION OF VERSION (WGED) IN JEDEC PACKAGE OUTLINE M0-229
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

LTC2859/LTC2861

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

GN Package

16-Lead Plastic SSOP (Narrow . 150 Inch)

(Reference LTC DWG \# 05-08-1641)

REVISION HISTORY (Revision history begins at Rev C)

REV	DATE	DESCRIPTION	PAGE NUMBER
C	$3 / 12$	Added H-grade Order Information and Electrical Characteristics parameters Revised Receiver Input Resistance section	Replaced Figure 12 Added Termination Resistor restriction information
		$2,3,4$	

LTC2859/LTC2861

TYPICAL APPLICATION

Failsafe " 0 " Application (Idle State = Logic "0")

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC2854/LTC2855	3.3V 20Mbps RS485/RS422 Transceivers with Integrated Switchable Termination	Up to $\pm 25 \mathrm{kV}$ HBM ESD, $125^{\circ} \mathrm{C}$ Operation
LTC2856/LTC2857/ LTC2858	5V 20Mbps and Slew Rate Limited 15kV RS485/RS422 Transceivers	$\pm 15 \mathrm{kV}$ ESD, $125^{\circ} \mathrm{C}$ Operation
LTC2850/LTC2851/ LTC2852	3.3V 20Mbps RS485/RS422 Transceivers	$\pm 15 \mathrm{kV}$ ESD, $125^{\circ} \mathrm{C}$ Operation
LTC2862/LTC2863/ LTC2864/LTC2865	$\pm 60 \mathrm{~V}$ Fault Protected 3V to 5.5V RS485/RS422 Transceivers	20Mbps or 250kbps, $\pm 15 \mathrm{kV}$ HBM ESD, $\pm 25 \mathrm{~V}$ Common Mode Range
LTM2881	Complete 3.3V Isolated RS485/RS422 μ Module ${ }^{\circledR}$ Transceiver + Power	$2500 V_{\text {RMS }}$ Isolation with Integrated Isolated DC/DC Converter and Switchable Termination
LTC485	Low Power RS485 Interface Transceiver	$\mathrm{I}_{\mathrm{CC}}=300 \mu \mathrm{~A}$ (Typ)
LTC491	Differential Driver and Receiver Pair	$\mathrm{I}_{\text {CC }}=300 \mu \mathrm{~A}$
LTC1480	3.3V Ultralow Power RS485 Transceiver	3.3V Operation
LTC1483	Ultralow Power RS485 Low EMI Transceiver	Controlled Driver Slew Rate
LTC1485	Differential Bus Transceiver	10Mbaud Operation
LTC1487	Ultralow Power RS485 with Low EMI, Shutdown and High Input Impedance	Up to 256 Transceivers on the Bus
LTC1520	50Mbps Precision Quad Line Receiver	Channel-to-Channel Skew 400ps (Typ)
LTC1535	Isolated RS485 Full-Duplex Transceiver	$2500 V_{\text {RMS }}$ Isolation in Surface Mount Package
LTC1685	52Mbps RS485 Transceiver with Precision Delay	Propagation Delay Skew 500ps (Typ)
LT1785	$\pm 60 \mathrm{~V}$ Fault Protected RS485 Transceiver	60V Tolerant, 15kV ESD

