FAIRCHILD

SEMICONDUCTOR®

SGU2N60UFD

Ultra-Fast IGBT

General Description

Fairchild's UFD series of Insulated Gate Bipolar Transistors (IGBTs) provides low conduction and switching losses. The UFD series is designed for applications such as motor control and general inverters where high speed switching is a required feature.

Features

- High speed switching
- Low saturation voltage : $V_{CE(sat)} = 2.1 \text{ V} @ I_C = 1.2 \text{ A}$
- High input impedance
- CO-PAK, IGBT with FRD : t_{rr} = 45ns (typ.)

Applications

AC & DC motor controls, general purpose inverters, robotics, and servo controls.

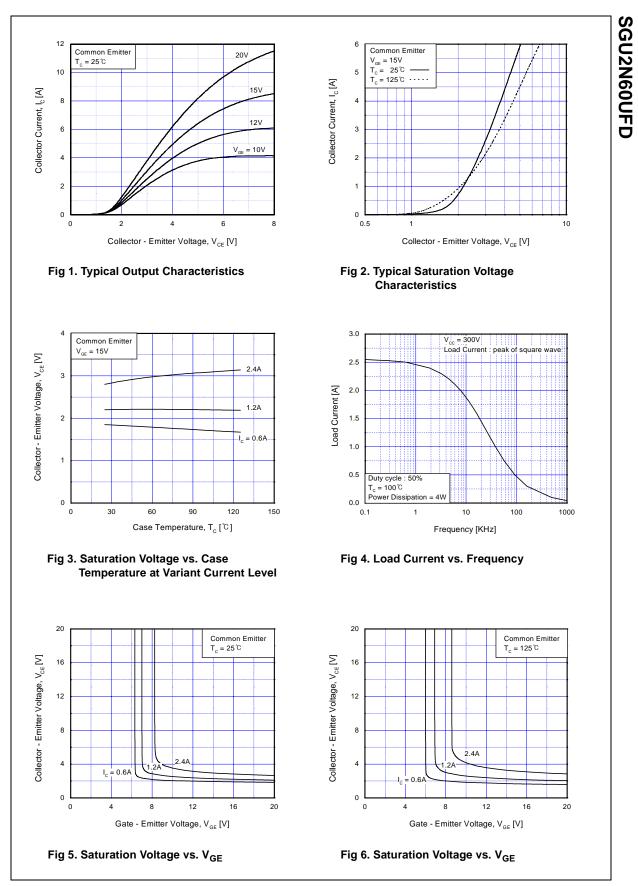
Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Description		SGU2N60UFD	Units
V _{CES}	Collector-Emitter Voltage		600	V
V _{GES}	Gate-Emitter Voltage		± 20	V
	Collector Current	@ T _C = 25°C	2.4	A
I _C	Collector Current	@ T _C = 100°C	1.2	A
I _{CM (1)}	Pulsed Collector Current		10	A
I _F	Diode Continuous Forward Current	@ T _C = 100°C	1.5	A
I _{FM}	Diode Maximum Forward Current		12	A
P _D	Maximum Power Dissipation	@ T _C = 25°C	25	W
	Maximum Power Dissipation	@ T _C = 100°C	10	W
TJ	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Seconds		300	°C

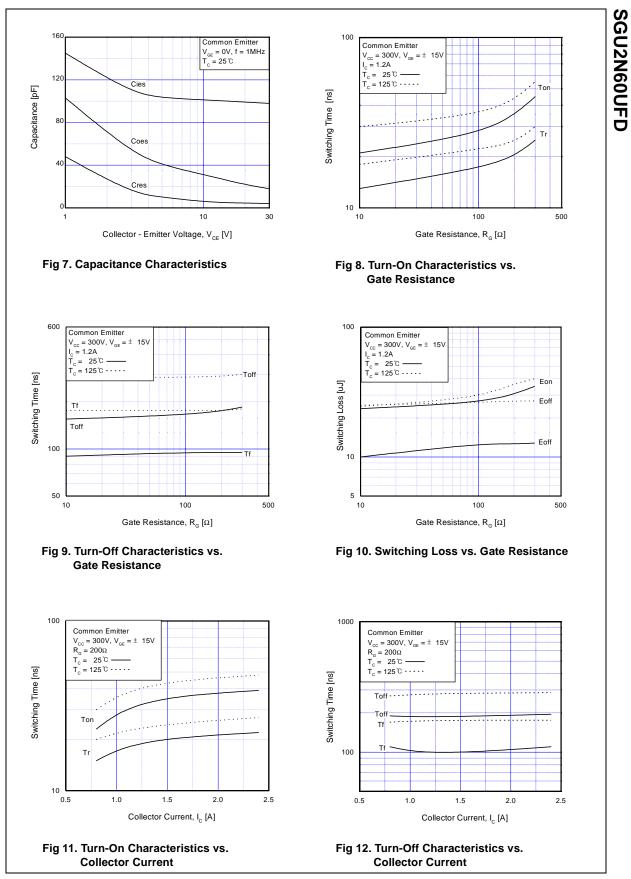
Notes : (1) Repetitive rating : Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
R _{θJC} (IGBT)	Thermal Resistance, Junction-to-Case		5.0	°C/W
R _{0JC} (DIODE)	Thermal Resistance, Junction-to-Case		5.0	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient		110	°C/W


SGU2N60UFD

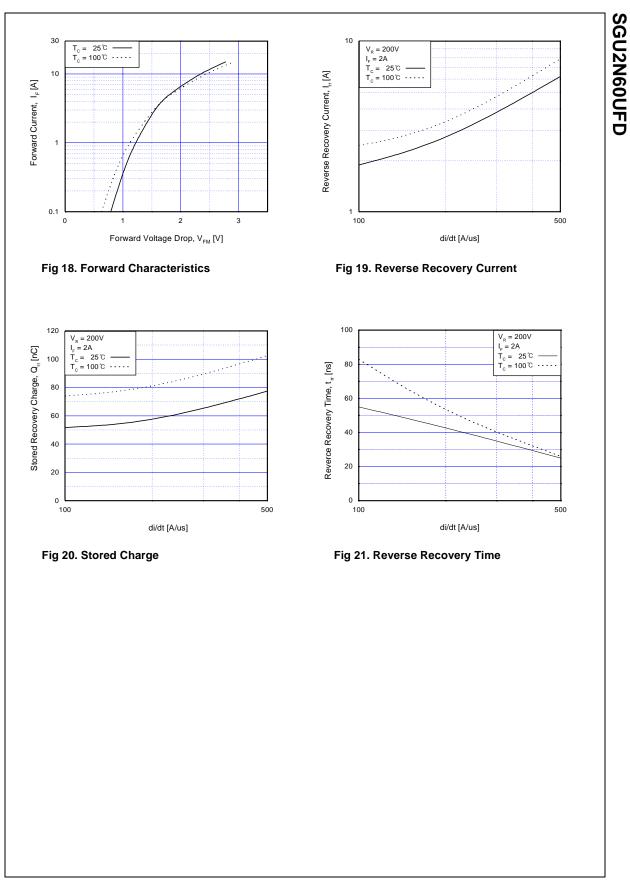
©2002 Fairchild Semiconductor Corporation


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unite
Off Cha	racteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 250uA$	600			V
ΔB _{VCES} / ΔT _J	Temperature Coefficient of Breakdown Voltage	$V_{GE} = 0V, I_C = 1mA$		0.6		V/∘C
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			250	uA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 100	nA
On Cha	racteristics					
V _{GE(th)}	G-E Threshold Voltage	$I_C = 1.2 \text{mA}, V_{CE} = V_{GE}$	3.5	4.5	6.5	V
	Collector to Emitter	$I_{\rm C} = 1.2 {\rm A}, V_{\rm GE} = 15 {\rm V}$		2.1	2.6	V
V _{CE(sat)}	Saturation Voltage	$I_{\rm C} = 2.4 {\rm A}, {\rm V}_{\rm GE} = 15 {\rm V}$		2.6		V
Cies	C Characteristics	V _{CE} = 30V, V _{GE} = 0V,		98		рF
Cios	Input Capacitance			98		pF
C _{oes}	Output Capacitance	$v_{CE} = 30v_{,}v_{GE} = 0v_{,}$ f = 1MHz		18		pF
2 _{res}	Reverse Transfer Capacitance	1 - 110112		4		pF
d(on)	Turn-On Delay Time	-		15		ns
t _r	Rise Time			20		ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 1.2\text{ A},$		80	130	ns
t _f E _{on}	Fall Time	$R_G = 200\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$		95	160	ns
⊏on	Turn-On Switching Loss Turn-Off Switching Loss			30 13		uJ uJ
	Turn-On Switching Loss	-		43	70	uJ
E _{off}	Total Switching Loss					ns
E _{off} E _{ts}	Total Switching Loss			19		
E _{off} E _{ts} ^t d(on)	Turn-On Delay Time	_		19 24		ns
E _{off} E _{ts} td(on)	Turn-On Delay Time Rise Time	Vec = 300 V la = 1.24		24		ns
E _{off} E _{ts} t _{d(on)} t _r t _{d(off)}	Turn-On Delay Time	$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 1.2\text{A},$ R _G = 200Ω, V _{GE} = 15V.			 200 250	ns ns ns
E _{off} E _{ts} td(on) tr td(off) tf	Turn-On Delay Time Rise Time Turn-Off Delay Time	$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 1.2\text{A},$ $R_{G} = 200\Omega, V_{GE} = 15\text{V},$ Inductive Load, $T_{C} = 125^{\circ}\text{C}$		24 115	200	ns
E _{off} Ets td(on) tr td(off) td tf Eon	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$R_{G} = 200\Omega, V_{GE} = 15V,$	 	24 115 176	200 250	ns ns
E _{off} E _{ts} t _d (on) t _r t _d (off) t _f E _{on} E _{off}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss	$R_{G} = 200\Omega, V_{GE} = 15V,$	 	24 115 176 36	200 250 	ns ns uJ
E _{off} E _{ts} td(on) tr td(off) tf E _{on} E _{on} E _{ts}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss	$R_G = 200\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 125^{\circ}C$	 	24 115 176 36 27	200 250 	ns ns uJ uJ
E _{off} E _{ts} td(on) tr td(off) tf E _{on} E _{on} E _{ts} Q _g	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss	$R_{G} = 200\Omega, V_{GE} = 15V,$ Inductive Load, $T_{C} = 125^{\circ}C$ $V_{CE} = 300 V, I_{C} = 1.2A,$	 	24 115 176 36 27 63	200 250 100	ns ns uJ uJ uJ
E _{off} E _{ts} td(on) tr td(off) tf E _{on} E _{on} E _{ts}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Total Gate Charge	$R_G = 200\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 125^{\circ}C$	 	24 115 176 36 27 63 9	200 250 100 14	ns ns uJ uJ uJ nC

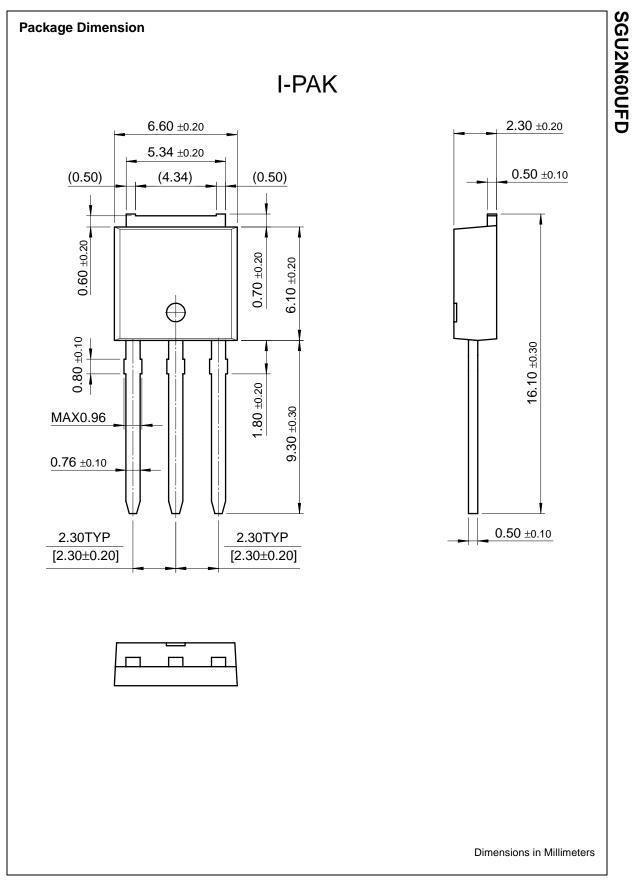
Electrical Characteristics of DIODE $T_{C} = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Condi	Min.	Тур.	Max.	Units	
V	Diada Canward Valtage	1 24	$T_{C} = 25^{\circ}C$		1.4	1.7	v
V _{FM}	Diode Forward Voltage	$I_F = 2A$ $T_C =$	$T_C = 100^{\circ}C$		1.3		v
•	Diada Bayaraa Baaayany Tima		$T_{C} = 25^{\circ}C$		45	80	-
t _{rr}	Diode Reverse Recovery Time		$T_{C} = 100^{\circ}C$		75		ns
1	Diode Peak Reverse Recovery	I _F = 2A,	$T_{C} = 25^{\circ}C$		1.5	3.0	A
rr	Current	di/dt=200A/us	$T_C = 100^{\circ}C$		2.5		A
Q _{rr} Dioo	Dia da Daviana Da asviano Channa	_	$T_{C} = 25^{\circ}C$		60	135	nC
	Diode Reverse Recovery Charge		T _C = 100°C		120		nc

SGU2N60UFD Rev. A1



SGU2N60UFD Rev. A1


100 15 Common Emitter Common Emitter R_L = 250 Ω Tc = 25°C V_{cc} = 300V, V_{ge} = ± 15\ $R_{g} = 200\Omega$ Gate - Emitter Voltage, V_{GE} [V] 12 T_c = 25℃ T_c = 125 °C · · · · · Switching Loss [uJ] 9 Eon 300 Eon 6 200 V _{CE} = 100 V Eoff 10 3 Eoff 0 0.5 1.0 1.5 2.0 2.5 2 8 0 4 6 10 Collector Current, I_{c} [A] Gate Charge, Qg [nC] Fig 14. Gate Charge Characteristics Fig 13. Switching Loss vs. Collector Current 30 20 MAX. (Pulsed) 10 10 50u Collector Current, Ic [A] Collector Current, I_c [A] 100u MAX. (Contir 1 DC Operation 1 0.1 Single Nonrepetitive Pulse $T_c = 25^{\circ}C$ Curves must be derated Safe Operating Area linearly with increase V_{GE}=20V, T_C=100[°]C 0.01 L 0.3 in temperature 0.1 100 1000 10 10 100 1000 1 Collector-Emitter Voltage, V_{CE} [V] Collector-Emitter Voltage, V_{CE} [V] Fig 15. SOA Characteristics Fig 16. Turn-Off SOA Characteristics 10).5 Thermal Response, Zthjc [°C/W] 1.2 1 .1 .05 0.1 .01 single pulse Duty factor D = t1 / t2Peak Tj = Pdm × Zthjc + 0.01 10⁻⁵ 10-4 10⁻³ 10⁻² 10⁻¹ 10[°] 10¹ Rectangular Pulse Duration [sec] Fig 17. Transient Thermal Impedance of IGBT

©2002 Fairchild Semiconductor Corporation

SGU2N60UFD

SGU2N60UFD Rev. A1

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ FAST® Bottomless™ FASTr™ CoolFET™ FRFET™ CROSSVOLT™ GTO™ DenseTrench™ HiSeC™ DOME™ **EcoSPARK™** I²C[™] E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series[™]

GlobalOptoisolator™ PACMAN™ POP™ **ISOPLANAR™** QFET™ QS™ LittleFET™ MicroFET™ MicroPak™

MICROWIRE™ OPTOLOGIC™ **OPTOPLANAR™** Power247[™] $\mathsf{PowerTrench}^{\mathbb{R}}$ QT Optoelectronics[™] Quiet Series™

SLIENT SWITCHER® UHC™ SMART START™ UltraFET[®] SPM™ VCX™ STAR*POWER™ Stealth™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SvncFET™ TinyLogic™ TruTranslation™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

	V SO 210001 D - Disclete, fingit i chormanee fob f with Di	sue			
Fairchild Semiconductor	s <mark>SEARCH <u>Parametric</u> <u>Cross Reference</u></mark>				
		space Product	t Folders and Annlica		
find products	Home >> Find products >>				
Products groups Analog and Mixed Signal	SGU2N60UFD Discrete, High Performance IGBT with Diode Contents	Datasheet	Related Links Request samples Detted line		
Discrete Interface Logic Microcontrollers	General description Features Applications Product status/pricing/packaging Models	Download this datasheet PDF	How to order products Dotted line Product Change Notices (PCNs) Dotted line		
<u>Non-Volatile</u> <u>Memory</u> <u>Optoelectronics</u> <u>Markets and</u>	General description Fairchild's UFD series of Insulated Gate	<u>e-mail this datasheet</u> [E-	Support Dotted line Distributor and field sales representatives		
applications New products Product selection and	Bipolar Transistors (IGBTs) provides low conduction and switching losses. The UFD series is designed for applications such as	This page <u>Print version</u>	Dotted line Quality and reliability Dotted line Design tools		
parametric search Cross-reference search	motor control and general inverters where high speed switching is a required feature.		<u></u>		
technical information	back to top				
buy products	Features		_		
technical support	L .				
my Fairchild	• High Speed Switching				
company	• Low Saturation Voltage : $V_{CE(sat)} = 2.1$ V @ I _C = 1.2A				
	High Input Impedance				

• CO-PAK, IGBT with FRD : t_{rr} = 45ns (typ.)

back to top

Applications

AC &DC Motor controls, General Purpose Inverters, Robotics, Servo Controls

back to top

Product status/pricing/packaging

	Product	Product status	Pricing*	Package type	Leads	Packing method
SGU	2N60UFDTU	Full Production	\$0.63	TO-251(IPAK)	3	RAIL

* 1,000 piece Budgetary Pricing

back to top

Models

Package & leads	Condition	Temperature range	Software version	Revision date
PSPICE				
TO-251(IPAK)-3	Electrical	25°C	9.2	Jun 28, 2002

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor