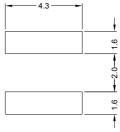

SPS5014FT SERIES


1. PART NO. EXPRESSION :

SPS	501	4 F T 1	RC) N -	· 🔲 🗌
(a)	(b)	(c)(d)	(e)	(f)	(g)

- (a) Series code
- (b) Dimension code
- (c) Powder coating type
- (d) Taping package
- (e) Inductance code : 1R0= 1.0uH
- (f) Tolerance code : $M = \pm 20\%$, $N = \pm 30\%$
- (g) 11~99 : Internal controlled number

2. CONFIGURATION & DIMENSIONS :

Standard Pattern

Un	it:m/m	
0.1		

А	В	С	D	E	F
5.0 ±0.2	5.0 ±0.2	1.4 Max.	2.0 Тур.	1.1 Тур.	4.1 Typ.

3. MATERIALS :

- (a) Core : Ferrite
- (b) Copper Foil : C5191
- (c) Wire : Polyurethane Enamelled Copper Wire
- (d) Solder : M35E
- (e) Coating : Powder Coating
- (e) Ink : 70000-00101

NOTE : Specifications subject to change without notice. Please check our website for latest information.

20.03.2012

SPS5014FT SERIES

4. GENERAL SPECIFICATION :

a) IDC1 : Based on inductance change $~(\Delta L/Lo:~-30\%)$ @ ambient temp. 25°C

b) IDC2 : Based on temperature rise (Δ T: 40°C TYP.)

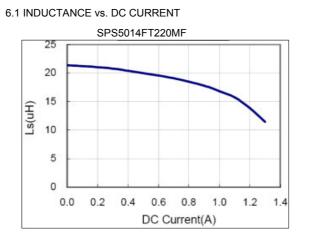
c) Rated DC Current: The less value which is IDC1 or IDC2.

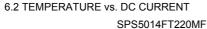
d) Operate temperature range -40°C ~ +105°C (Including self temp. rise)

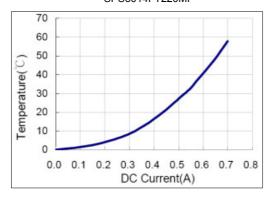
e) Storage temperature range -40°C ~ +105°C

5. ELECTRICAL CHARACTERISTICS :

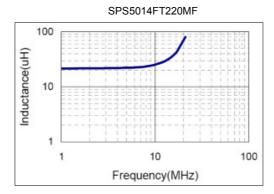
SWS Part No.	Inductance (uH)	Test Frequency (Hz)	RDC (Ω) ±20%	IDC1 (A)	IDC2 (A)	Marking
SPS5014FTR47N	0.47±30%	0.1V/1M	32m	5.0	3.0	R47
SPS5014FT1R0N	1.0±30%	0.1V/1M	45m	4.4	2.5	1R0
SPS5014FT2R2N	2.2±30%	0.1V/1M	65m	2.8	2.2	2R2
SPS5014FT3R3N	3.3±30%	0.1V/1M	94m	2.4	1.9	3R3
SPS5014FT4R7N	4.7±30%	0.1V/1M	0.15	1.9	1.6	4R7
SPS5014FT6R8M	6.8±20%	0.1V/1M	0.20	1.5	1.3	6R8
SPS5014FT100M	10±20%	0.1V/1M	0.25	1.2	1.05	100
SPS5014FT220M	22±20%	0.1V/1M	0.64	0.7	0.58	220




NOTE : Specifications subject to change without notice. Please check our website for latest information.


20.03.2012

SPS5014FT SERIES


6. IMPEDANCE VS. FREQUENCY CURVES : :

6.2 INDUCTANCE vs. FREQUENCY

Pb RoHS Compliant

NOTE : Specifications subject to change without notice. Please check our website for latest information.

20.03.2012

SPS5014FT SERIES

6. RELIABILITY & TEST CONDITION :

ITEM	PERFORMANCE	TEST CONDITION
Mechanical		
Substrate bending	ΔL/Lo ±10% There shall be no mechanical damage or electrical damage.	The sample shall be soldered onto the printed circuit board in figure 1 and a load applied until the figure in the arrow direction is made approximately 3mm.(keep time 30 secs) $\begin{array}{c} \hline \\ 100 \\ \hline \\ 50 \\ \hline \\ 100 \\ \hline \\ 50 \\ \hline \\ 10 \\ \hline 10 \\ \hline \\ 10 \\ \hline 10$
Vibration	$\Delta L/Lo~\pm 10\%$ There shall be no mechanical damage.	The sample shall be soldered onto the printed circuit board and when a vibration having an amplitude of 1.52mm and a frequency of from 10 to 55Hz/1 minute repeated should be applied to the 3 directions (X,Y,Z) for 2 hours each. (A total of 6 hours)
Solderability	New solder More than 90%	Flux (rosin, isopropyl alcohol{JIS-K-1522}) shall be coated over the whole of the sample before hard, the sample shall then be preheated for about 2 minutes in a temperature of 130~150°C and after it has been immersed to a depth 0.5m below for 3±0.2 seconds fully in molten solder M705 with a temperature of 245±5°C. More than 90% of the electrode sections shall be cowered with new solder smoothly when the sample is taken out of the solder bath.
Resistance to Soldering heat (reflow soldering)	There shall be no damage or problems.	Soldering (Peak temperature 260±3°C 10sec) $300 \pm 250 \pm 200 \pm 150 \pm 100 \pm 1$

NOTE : Specifications subject to change without notice. Please check our website for latest information.

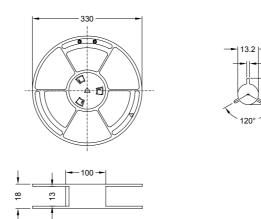
20.03.2012

RoHS Compliant

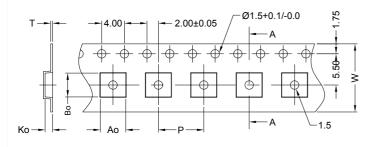
SPS5014FT SERIES

6. RELIABILITY & TEST CONDITION :

ITEM	PERFORMANCE	TEST CONDITION			
Electrical Characteristics Test					
Dielectric withstand voltage	There shall be no damage or problems.	AC 100V voltage shall be applied for 1 minute across the top surface and the terminal of this sample			
Temperature characteristics	ΔL/L20°C ±10% 0~2000 ppm/°C	The test shall be performed after the sample has stabilized in an ambient temperature of -20 to +85°C, and the value calculated based on the value applicable in a normal temperature and normal humidity shall be $\Delta L/L20^{\circ}C \pm 10\%$.			
High temperature storage	ΔL/Lo ±10% There shall be no mechanical damage.	The sample shall be left for 96±4 hours in an atmosphere wit a temperature of 85±2°C and a normal humidity. Upon completion of the measurement shall be made after the sample has been left in a normal temperature and normal humidity for 1 hour.			
Low temperature storage	ΔL/Lo ±10% There shall be no mechanical damage.	The sample shall be left for 96±4 hours in an atmosphere with a temperature of -25±3°C. Upon completion of the test, the measurement shall be made after the sample has been left in a normal temperature and normal humidity for 1 hour.			
Change of temperature	Δ L/Lo ±10% There shall be no other damage of problems	The sample shall be subject to 5 continuos cycles, such as shown in the table 2 below and then it shall be subjected to standard atmospheric conditions for 1 hour, after which measurement shall be made.			
		Temperature Duration			
		-25±3°C 1 (Thermostat No.1) 30 min.			
		Standard 5 sec. or less 2 atmospheric No.1→No.2			
		85±2°C 30 min. 3 (Thermostat No.2) 30 min.			
		4 Standard 5 sec. or less atmospheric No.2→No.1			
Moisture storage	$\Delta L/Lo \pm 10\%$ There shall be no mechanical damage.	The sample shall be left for 96±4 hours in a temperature of 40±2°C and a humidity(RH) of 90~95%. Upon completion of the test, the measurement shall be made after the sample has been left in a normal temperature and normal humidity more than 1 hour.			


NOTE : Specifications subject to change without notice. Please check our website for latest information.

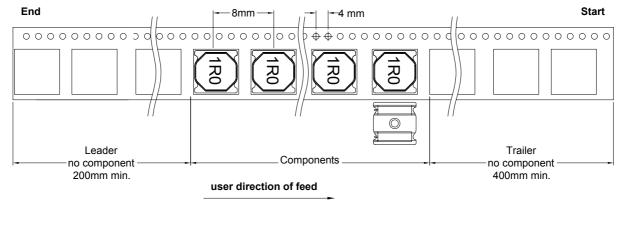
20.03.2012


SPS5014FT SERIES

7. PACKAGING INFORMATION :

7-1. Reel Dimension (mm)

7-2 CARRIER TAPE DIMENSIONS (mm)



Ao	Во	Ko	W	Р	Т
5.5mm	5.35mm	1.55mm	12mm	8.0mm	0.3mm

2.2

17.3

7-3 TAPING DIMENSIONS (mm)

7-4 QUANTITY

3000pcs/Reel

The products are packaged so that no damage will be sustained.

20.03.2012

NOTE : Specifications subject to change without notice. Please check our website for latest information.