

General Description

The MAX6443-MAX6452 low-current microprocessor reset circuits feature single or dual manual reset inputs with an extended 6.72s setup period. Because of the extended setup period, short switch closures (nuisance resets) are ignored.

On all devices, the reset output asserts when any of the monitored supply voltages drops below its specified threshold. The reset output remains asserted for the reset timeout period (210ms typ) after all monitored supplies exceed their reset thresholds. The reset output is one-shot pulse asserted for the reset timeout period (140ms min) when selected manual reset input(s) are held low for an extended setup timeout period of 6.72s. These devices ignore manual reset transitions of less than 6.72s (typ).

The MAX6443-MAX6448 are single fixed-voltage µP supervisors. The MAX6443/MAX6444 have a single extended manual reset input. The MAX6445/MAX6446 have two extended manual reset inputs. The MAX6447/ MAX6448 have one extended and one immediate manual reset input.

The MAX6449-MAX6452 have one fixed-threshold µP supervisor and one adjustable-threshold µP supervisor. The MAX6449/MAX6450 have two delayed manual reset inputs. The MAX6451/MAX6452 have one delayed and one immediate manual reset input.

The MAX6443-MAX6452 have an active-low RESET with push-pull or open-drain output logic options. These devices, offered in small SOT packages, are fully guaranteed over the extended temperature range (-40°C to +85°C).

Applications

Set-Top Boxes

Consumer Electronics

DVD Players

Modems

MP3 Players

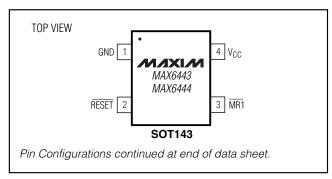
Industrial Equipment

Automotive

Medical Devices

Features

- ♦ Single- or Dual-Supply Voltage Monitors
- ♦ Precision Factory-Set Reset Thresholds from 1.6V to 4.6V
- ♦ Adjustable Threshold to Monitor Voltages Down to 0.63V (MAX6449-MAX6452)
- ♦ Single or Dual Manual Reset Inputs with Extended 6.72s Setup Period
- ♦ Optional Short Setup Time Manual Reset Input (MAX6447/MAX6448 and MAX6451/MAX6452)
- **♦ Immune to Short Voltage Transients**
- ♦ Low 6µA Supply Current
- ♦ Guaranteed Valid Reset Down to Vcc = 1.0V
- ♦ Active-Low RESET (Push-Pull or Open-Drain) **Outputs**
- ♦ 140ms (min) Reset Timeout Period
- ♦ Small SOT143 and SOT23 Packages


Ordering Information

PART	TEMP RANGE	PIN-PACKAGE		
MAX6443 USL -T	-40°C to +85°C	4 SOT143-4		
MAX6444 USL -T	-40°C to +85°C	4 SOT143-4		

Note: The "_ " is a placeholder for the threshold voltage level of the devices. A desired threshold level is set by the two-number suffix found in Table 1. All devices are available in tapeand-reel only. There is a 2500-piece minimum order increment for standard versions (Table 2). Sample stock is typically held on standard versions only. Nonstandard versions require a minimum order increment of 10,000 pieces. Contact factory for availability.

Devices are available in both leaded and lead-free packaging. Specify lead-free by replacing "-T" with "+T" when ordering.

Pin Configurations

MIXIM

ABSOLUTE MAXIMUM RATINGS

All Voltages Referenced to GND	
VCC	0.3V to +6V
Open-Drain RESET	0.3V to +6V
Push-Pull RESET	0.3V to (V _{CC} + 0.3V)
MR1, MR2, MR2, RSTIN	0.3V to +6V
Input Current, All Pins	

Continuous Power Dissipation (T _A = +70°C	
4-Pin SOT143-4 (derate 4.0mW/°C abov	re +70°C)320mW
5-Pin SOT23-5 (derate 7.1mW/°C above	
6-Pin SOT23-6 (derate 8.7mW/°C above	+70°C)696mW
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	
Lead Temperature (soldering, 10s)	+300°C

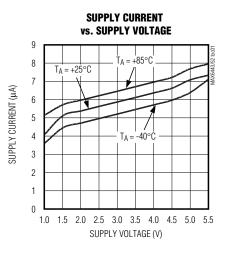
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

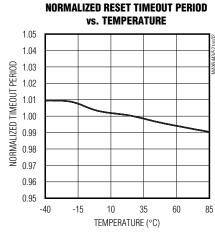
ELECTRICAL CHARACTERISTICS

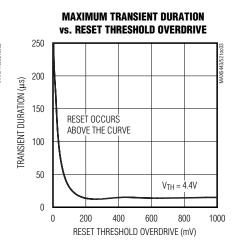
 $(V_{CC} = 1.0 \text{V to } 5.5 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ unless otherwise specified. Typical values are at } T_A = +25 ^{\circ}\text{C.})$ (Note 1)

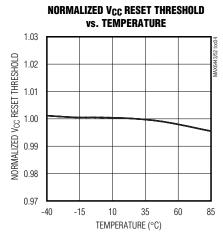
PARAMETER	SYMBOL	CONE	MIN	TYP	MAX	UNITS	
Operating Voltage Range	Vcc		1.0		5.5	V	
V Cusphy Cusph	1	Vcc = 5.5V, no load			7	20	^
V _{CC} Supply Current	lcc	V _{CC} = 3.6V, no load			6	16	μΑ
		46		4.50	4.63	4.75	
		44	4.25	4.38	4.50		
		31		3.00	3.08	3.15	
		29		2.85	2.93	3.00	
V _{CC} Reset Threshold	VTH	26		2.55	2.63	2.70	V
		23		2.25	2.32	2.38	
		22		2.12	2.19	2.25	
		17		1.62	1.67	1.71	
		16	1.52	1.58	1.62]	
Reset Threshold Tempco					60		ppm/°C
Reset Threshold Hysteresis					$2 \times V_{TH}$		mV
RSTIN Threshold	\/	MAX6449-MAX6452	$T_A = 0$ °C to +85°C	0.615	0.630	0.645 V	\/
RSTIN Threshold	V _{TH-RSTIN}	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$		0.610		0.650	V
RSTIN Threshold Hysteresis	V _H YST	MAX6449-MAX6452			2.5		mV
RSTIN Input Current	IRSTIN	MAX6449-MAX6452		-25		+25	nA
RSTIN to Reset Output Delay		MAX6449-MAX6452, 1mV/μs	MAX6449–MAX6452, V _{RSTIN} falling at 1mV/µs		15		μs
Reset Timeout Period	t _{RP}			140	210	280	ms
V _{CC} to RESET Output Delay	t _{RD}	V _{CC} falling at 1mV/µs		20		μs	
MR1 Minimum Setup Period Pulse Width	t _{MR}			4.48	6.72	8.96	S
MR1 + MR2 Minimum Setup Period Pulse Width		MAX6445/MAX6446/I	MAX6449/MAX6450	4.48	6.72	8.96	S

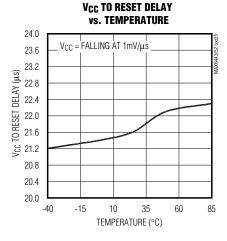
ELECTRICAL CHARACTERISTICS (continued)

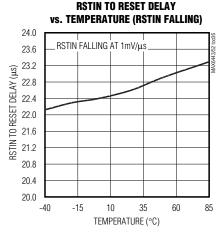

 $(V_{CC} = 1.0V \text{ to } 5.5V, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, \text{ unless otherwise specified. Typical values are at } T_A = +25^{\circ}\text{C.})$ (Note 1)

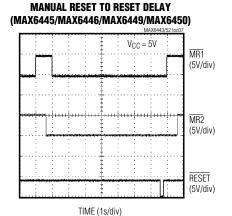

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MR2 Minimum Setup Period Pulse Width		MAX6447/MAX6448/MAX6451/MAX6452	1			μs
MR2 Glitch Rejection		MAX6447/MAX6448/MAX6451/MAX6452		100		ns
MR2 to RESET Delay		MAX6447/MAX6448/MAX6451/MAX6452		200		ns
Manual Reset Timeout Period	t _{MRP}		140	210	280	ms
MR1 to V _{CC} Pullup Impedance			25	50	75	kΩ
MR2 to V _{CC} Pullup Impedance		MAX6445/MAX6446/MAX6449/MAX6450	25	50	75	kΩ
		V _{CC} ≥ 1.00V, I _{SINK} = 50μA, RESET asserted			0.3	
RESET Output Low	N/	V _{CC} ≥ 1.20V, I _{SINK} = 100μA, RESET asserted			0.3	M
(Open Drain or Push-Pull)	VoL	V _{CC} ≥ 2.55V, I _{SINK} = 1.2mA, RESET asserted			0.3	V
		V _{CC} ≥ 4.25V, I _{SINK} = 3.2mA, RESET asserted			0.4	
		V _{CC} ≥ 1.80V, I _{SOURCE} = 200µA, RESET deasserted	0.8 × V _{CC}			
RESET Output High (Push-Pull)	VoH	V _{CC} ≥ 3.15V, I _{SOURCE} = 500µA, RESET deasserted	0.8 × V _{CC}			V
		V _{CC} ≥ 4.75V, I _{SOURCE} = 800µA, RESET deasserted	0.8 × V _{CC}			
RESET Open-Drain Leakage Current	ILKG	RESET deasserted			1	μΑ
MR1, MR2, MR2 Input Low Voltage	VIL			().3 × V _{CC}	V
MR1, MR2, MR2 Input High Voltage	VIH		0.7 × V _{CC}			V

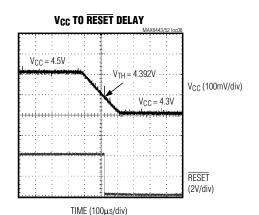

Note 1: Devices production tested at +25°C. Overtemperature limits are guaranteed by design.


Typical Operating Characteristics


($V_{CC} = 3.3V$, $T_A = +25$ °C, unless otherwise noted.)







Pin Description

	PIN					
MAX6443 MAX6444	MAX6445 MAX6446	MAX6447 MAX6448	MAX6449 MAX6450	MAX6451 MAX6452	NAME	FUNCTION
1	2	2	2	2	GND	Ground
2	1	1	1	1	RESET	Active-Low Push-Pull or Open-Drain Output. \overline{RESET} changes from high to low when V_{CC} or RSTIN drops below its selected reset threshold and remains low for the 210ms reset timeout period after all monitored power-supply inputs exceed their selected reset thresholds. \overline{RESET} is one-shot pulsed low for the reset timeout period (140ms min) after selected manual reset inputs are asserted longer than the specified setup period. For the open-drain output, use a minimum $20 k\Omega$ pullup resistor to V_{CC} .
3	_	3	I	3	MR1	Manual Reset Input, Active Low. Internal $50k\Omega$ pullup to V _{CC} . Pull $\overline{MR1}$ low for the typical input pulse width (6.72s) to one-shot pulse \overline{RESET} for the reset timeout period.
_	3	_	3	_		Manual Reset Input, Active Low. Pull both MR1 and MR2 low for the typical input pulse width (6.72s) to one-shot pulse RESET for the reset timeout period.
4	4	4	4	4	V _C C	VCC Voltage Input. Power supply and input for the primary microprocessor voltage reset monitor.
_	5	_	6	_	MR2	Manual Reset Input, Active Low. Internal $50k\Omega$ pullup to V _{CC} . Pull both $\overline{MR1}$ and $\overline{MR2}$ low for the typical input pulse width (6.72s) to one-shot pulse \overline{RESET} for the reset timeout period.
_	_	5	_	6	MR2	Manual Reset Input. Pull the MR2 high to immediately one-shot pulse RESET for the reset timeout period.
_	_	_	5	5	RSTIN	Reset Input. High-impedance input to the adjustable reset comparator. Connect RSTIN to the center point of an external resistor-divider to set the threshold of the externally monitored voltage.

Detailed Description

Reset Output

The reset output is typically connected to the reset input of a microprocessor (μ P). A μ P's reset input starts or restarts the μ P in a known state. The MAX6443–MAX6452 μ P supervisory circuits provide the reset logic to prevent code-execution errors during power-up, power-down and brownout conditions (see the *Typical Operating Circuit*).

RESET changes from high to low whenever the monitored voltages (RSTIN or VCC) drop below the reset

threshold voltages. Once V_{RSTIN} and V_{CC} exceed their respective reset threshold voltages, RESET remains low for the reset timeout period and then goes high. RESET is one-shot pulsed whenever selected manual reset inputs are asserted. RESET stays asserted for the normal reset timeout period (140ms min).

RESET is guaranteed to be in the proper output logic state for V_{CC} inputs \geq 1V. For applications requiring valid reset logic when V_{CC} is less than 1V, see the *Ensuring a Valid RESET Output Down to V_{CC} = 0V* section.

Manual Reset Input Options

Unlike typical manual reset functions associated with supervisors, each device in the MAX6443–MAX6452 family includes at least one manual reset input, which must be held logic-low for an extended setup period (6.72s typ) before the RESET output asserts. When valid manual reset input conditions/setup periods are met, the RESET output is one-shot pulse asserted low for a fixed reset timeout period (140ms min). Existing front-panel pushbutton switches (i.e., power on/off, channel up/down, or mode select) can be used to drive the manual reset inputs. The extended manual reset setup period prevents nuisance system resets during normal front-panel usage or resulting from inadvertent short-term pushbutton closure.

The MAX6443/MAX6444, MAX6447/MAX6448, and MAX6451/MAX6452 include a single manual reset input with extended setup period (MR1). The MAX6445/MAX6446 and MAX6449/MAX6450 include two manual reset inputs (MR1 and MR2) with extended setup periods. For dual MR1, MR2 devices, both inputs must be held low simultaneously for the extended setup period (6.72s typ) before the reset output is pulse asserted. The dual extended setup provides greater protection from nuisance resets. (For example, the user or service technician is informed to simultaneously push both the on/off button and the channel-select button for 6.72s to reset the system.)

The MAX6443–MAX6452 RESET output is pulse asserted once for the reset timeout period after each valid manual reset input condition. At least one manual reset input must be released (go high) and then be driven low for the extended setup period before RESET asserts again. Internal timing circuitry debounces low-to-high manual reset logic transitions, so no external circuitry is required. Figure 1 illustrates the single manual reset function of the MAX6443/MAX6444 single-voltage monitors, and Figure 2 represents the dual manual reset function of the MAX6445/MAX6446 and MAX6449/MAX6450.

The MAX6447/MAX6448 and MAX6451/MAX6452 include both an extended setup period and immediate setup period manual reset inputs. A low-to-high MR2 rising edge transition immediately pulse asserts the RESET output for the reset timeout period (140ms min). If the MAX6447/MAX6448 and MAX6451/MAX6452 MR2 input senses another rising edge before the end of the 140ms timeout period (Figure 3), the internal timer clears and begins counting again. If no rising edges are detected within the 210ms timeout period, RESET deasserts. The high-to-low transition on MR2 input is internally debounced for 210ms to ensure that

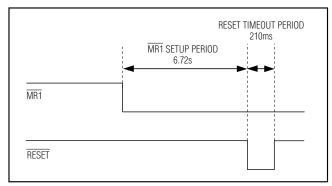


Figure 1. MAX6443/MAX6444 Manual Reset Timing Diagram

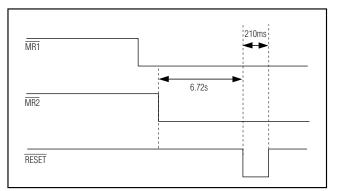


Figure 2. MAX6445/MAX6446/MAX6449/MAX64450 Manual Reset Timing Diagram

there are no false $\overline{\text{RESET}}$ assertions when MR2 is driven from high to low (Figure 4). The MR2 input can be used for system test purposes or smart-card-detect applications (see the *Applications Information* section).

Adjustable Input Voltage (RSTIN)

The MAX6449–MAX6452 monitor the voltage on RSTIN using an adjustable reset threshold set with an external resistor voltage-divider (Figure 5). Use the following formula to calculate the externally monitored voltage (VMON-TH):

$$V_{MON-TH} = V_{TH-RSTIN} \times (R1 + R2) / R2$$

where V_{MON-TH} is the desired reset threshold voltage and V_{TH-RSTIN} is the reset input threshold (0.63V). Resistors R1 and R2 can have very high values to minimize current consumption because of low leakage currents. Set R2 to some conveniently high value (250k Ω , for example), and calculate R1 based on the desired reset threshold voltage, using the following formula:

 $R1 = R2 \times (V_{MON-TH} / V_{TH-RSTIN} - 1) \Omega$

__ /N/XI/N

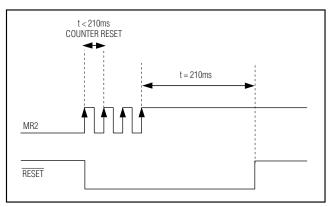


Figure 3. MAX6447/MAX6448/MAX6451/MAX6452 MR2 Assertion DebouncingTiming Diagram

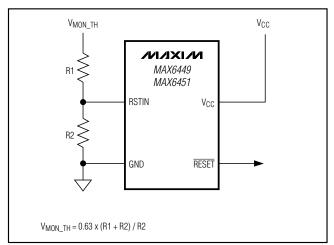


Figure 5. Calculating the Monitored Threshold Voltages

Applications Information

Interrupt Before Reset

To minimize data loss and speed system recovery, many applications interrupt the processor or reset only portions of the system before a processor hard reset is asserted. The extended setup time of the MAX6443–MAX6452 manual reset inputs allows the same pushbutton (connected to both the processor interrupt and the extended MR1 input, as shown in Figure 6) to control both the interrupt and hard reset functions. If the pushbutton is closed for less than 6.72s, the processor is only interrupted. If the system still does not respond properly, the pushbutton (or two buttons for the dual manual reset) can be closed for the full extended setup period to hard reset the processor. If desired, connect an LED to the RESET output to blink off (or on) for the reset timeout period to signify when the pushbutton is

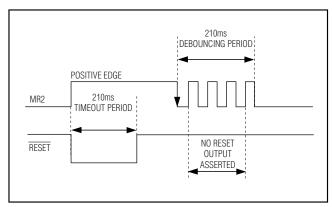


Figure 4. MAX6447/MAX6448/MAX6451/MAX6452 MR2 Deassertion Debouncing Timing Diagram

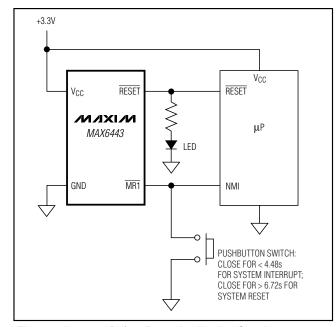


Figure 6. Interrupt Before Reset Application Circuit

closed long enough for a hard reset (the same LED might be used as the front-panel power-on display).

Smart Card Insertion/Removal

The MAX6447/MAX6448/MAX6451/MAX6452 dual manual resets are useful in applications in which both an extended and immediate setup periods are needed. Figure 7 illustrates the insertion and removal of a smart card. $\overline{\text{MR1}}$ monitors a front-panel pushbutton. When closed for 6.72s, $\overline{\text{RESET}}$ one-shot pulses low for 140ms min. Because $\overline{\text{MR1}}$ is internally pulled to V_{CC} through a 50k Ω resistor, the front-panel switch can be connected to

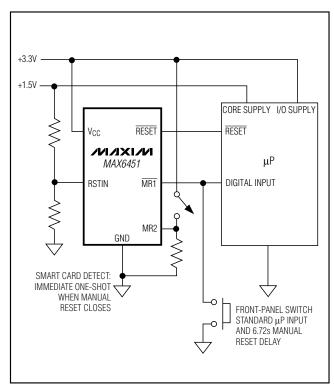


Figure 7. MAX6451/MAX6452 Application Circuit

a microprocessor for general-purpose I/O control. MR2 monitors a switch to detect when a smart card is inserted. When the switch is closed high (card inserted), RESET one-shot pulses low for 140ms. MR2 is internally debounced for 210ms to prevent false resets when the smart card is removed.

Interfacing to Other Voltages for Logic Compatibility

The open-drain $\overline{\text{RESET}}$ output can be used to interface to a μP with other logic levels. As shown in Figure 8, the open-drain output can be connected to voltages from 0 to 6V.

Generally, the pullup resistor connected to the RESET connects to the supply voltage that is being monitored at the IC's VCC pin. However, some systems may use the open-drain output to level-shift from the monitored supply to reset circuitry powered by some other supply (Figure 8). Keep in mind that as the supervisor's VCC decreases toward 1V, so does the IC's ability to sink current at RESET. RESET is pulled high as VCC decays toward 0. The voltage where this occurs depends on the pullup resistor value and the voltage to which it is connected.

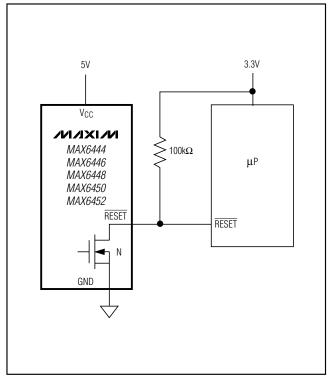


Figure 8. Interfacing to Other Voltage Levels

Ensuring a Valid RESET Down to VCC = 0V (Push-Pull RESET)

When V_{CC} falls below 1V, RESET current-sinking capabilities decline drastically. The high-impedance CMOS-logic inputs connected to RESET can drift to undetermined voltages. This presents no problems in most applications, because most μ Ps and other circuitry do not operate with V_{CC} below 1V.

In applications in which $\overline{\text{RESET}}$ must be valid down to 0V, add a pulldown resistor between $\overline{\text{RESET}}$ and GND for the push-pull outputs. The resistor sinks any stray leakage currents, holding $\overline{\text{RESET}}$ low (Figure 9). The value of the pulldown resistor is not critical; $100\text{k}\Omega$ is large enough not to load $\overline{\text{RESET}}$ and small enough to pull $\overline{\text{RESET}}$ to ground. The external pulldown cannot be used with the open-drain reset outputs.

Transient Immunity

In addition to issuing a reset to the μP during power-up, power-down, and brownout conditions, these supervisors are relatively immune to short-duration falling transients (glitches). The graph Maximum Transient Duration vs. Reset Threshold Overdrive in the *Typical Operating Characteristics* section shows this relationship.

3 ______*NIXIM*

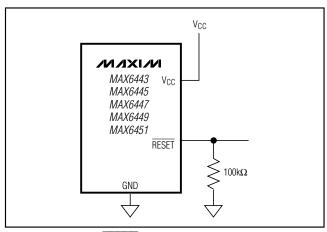


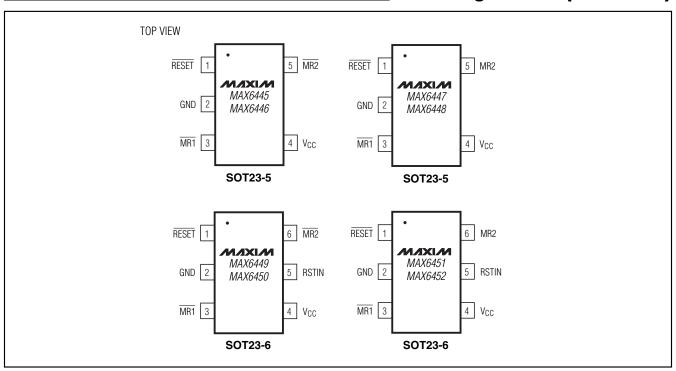
Figure 9. Ensuring \overline{RESET} Valid to $V_{CC} = 0$

The area below the curves of the graph is the region in which these devices typically do not generate a reset pulse. This graph was generated using a falling pulse applied to V_{CC} , starting above the actual reset threshold (V_{TH}) and ending below it by the magnitude indicated (reset threshold overdrive). As the magnitude of the transient increases (V_{CC} goes further below the reset threshold), the maximum allowable pulse width decreases. Typically, a V_{CC} transient that goes 100mV below the reset threshold and lasts 20 μ s or less does not cause a reset pulse to be asserted.

Chip Information

TRANSISTOR COUNT: 1384

PROCESS: BiCMOS

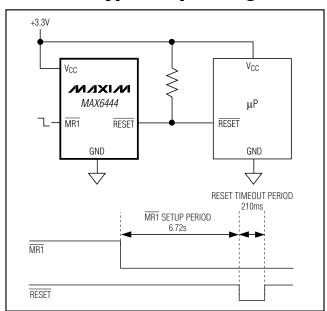

Table 1. Reset Voltage Threshold

PART NO. SUFFIX	V _{CC} NOMINAL VOLTAGE THRESHOLD (V)
46	4.625
44	4.375
31	3.075
29	2.925
26	2.625
23	2.313
22	2.188
17	1.665
16	1.575

Table 2. Standard Versions Table

PART	TOP MARK	PART	TOP MARK
MAX6443US16L	KAFW	MAX6448UK16L	AEER
MAX6443US23L	KAFX	MAX6448UK23L	AEES
MAX6443US26L	KAFY	MAX6448UK26L	AEET
MAX6443US29L	KAFK	MAX6448UK29L	AEEU
MAX6443US46L	KAFZ	MAX6448UK46L	AEEV
MAX6444US16L	KAGA	MAX6449UT16L	ABEL
MAX6444US23L	KAGB	MAX6449UT23L	ABNP
MAX6444US26L	KAGC	MAX6449UT26L	ABNQ
MAX6444US29L	KAGD	MAX6449UT29L	ABNR
MAX6444US46L	KAFL	MAX6449UT46L	ABNS
MAX6445 UK16L	AEEF	MAX6450UT16L	ABEM
MAX6445UK23L	AEEG	MAX6450UT23L	ABNX
MAX6445UK26L	AEEH	MAX6450UT26L	ABNY
MAX6445UK29L	AEEI	MAX6450UT29L	ABNZ
MAX6445UK46L	AEAO	MAX6450UT46L	ABOA
MAX6446 UK16L	AEEN	MAX6451UT16L	ABNT
MAX6446UK23L	AEEO	MAX6451UT23L	ABEN
MAX6446UK26L	AEEP	MAX6451UT26L	ABNU
MAX6446UK29L	AEAP	MAX6451UT29L	ABNV
MAX6446UK46L	AEEQ	MAX6451UT46L	ABNW
MAX6447UK16L	AEEJ	MAX6452UT16L	ABOB
MAX6447UK23L	AEEK	MAX6452UT23L	ABOC
MAX6447UK26L	AEAQ	MAX6452UT26L	ABOD
MAX6447UK29L	AEEL	MAX6452UT29L	ABOE
MAX6447UK46L	AEEM	MAX6452UT46L	ABOF

Pin Configurations (continued)

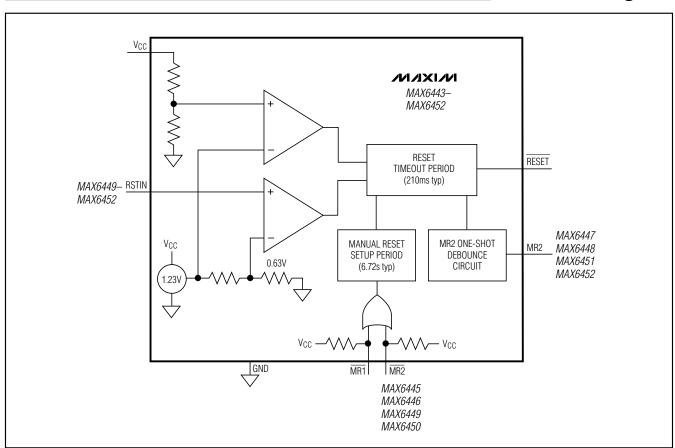

Ordering Information (continued)

TEMP RANGE	PIN-PACKAGE
-40°C to +85°C	5 SOT23-5
-40°C to +85°C	6 SOT23-6
	-40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C

Note: The "__" is a placeholder for the threshold voltage level of the devices. A desired threshold level is set by the two-number suffix found in Table 1. All devices are available in tapeand-reel only. There is a 2500-piece minimum order increment for standard versions (Table 2). Sample stock is typically held on standard versions only. Nonstandard versions require a minimum order increment of 10,000 pieces. Contact factory for availability.

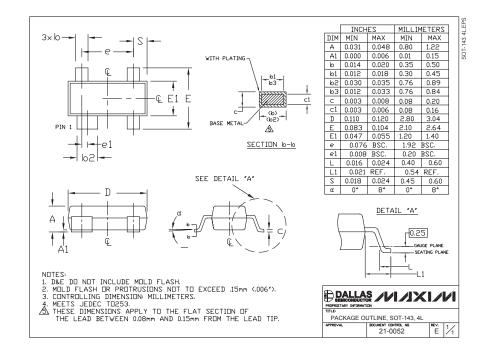
Devices are available in both leaded and lead-free packaging. Specify lead-free by replacing "-T" with "+T" when ordering.

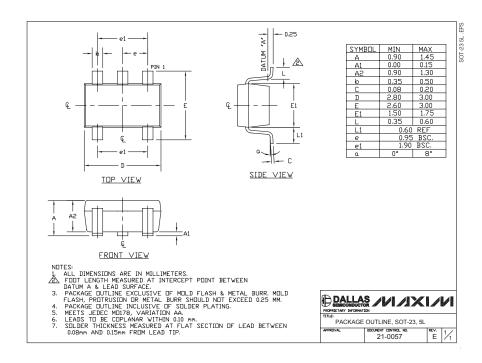
Typical Operating Circuit



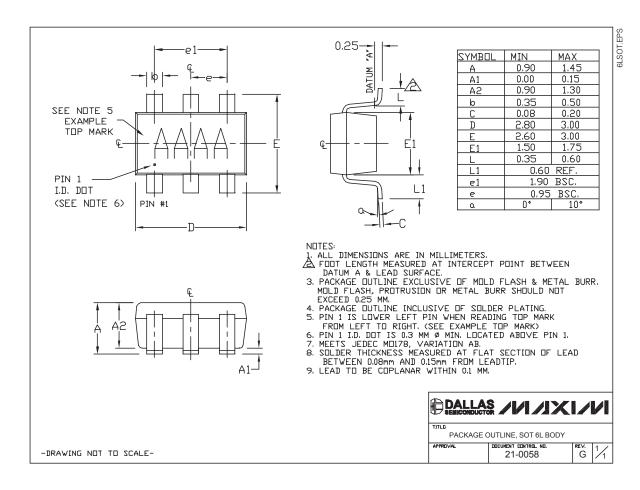
Selector Guide

PART	MR1 SETUP	MR2 (NO SETUP)	MR2 SETUP	RSTIN	PUSH-PULL RESET	OPEN-DRAIN RESET
MAX6443	6.72s	_	_	_	V	_
MAX6444	6.72s	_	_	_	_	~
MAX6445	6.72s	_	6.72s	_	V	_
MAX6446	6.72s	_	6.72s	_	_	~
MAX6447	6.72s	~	_	_	V	_
MAX6448	6.72s	~	_	_	_	V
MAX6449	6.72s	_	6.72s	~	V	_
MAX6450	6.72s	_	6.72s	~	_	~
MAX6451	6.72s	~	_	~	V	_
MAX6452	6.72s	~	_	~	_	~


^{*}Other timing options may be available. Contact factory for availability.


Functional Diagram

Package Information


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.