

General Description

The MAX9986 high-linearity downconversion mixer provides 10dB gain, +23.6dBm IIP3, and 9.3dB NF for 815MHz to 995MHz base-station receiver applications. With a 960MHz to 1180MHz LO frequency range, this particular mixer is ideal for high-side LO injection receiver architectures. Low-side LO injection is supported by the MAX9984, which is pin-for-pin and functionally compatible with the MAX9986.

In addition to offering excellent linearity and noise performance, the MAX9986 also yields a high level of component integration. This device includes a double-balanced passive mixer core, an IF amplifier, a dual-input LO selectable switch, and an LO buffer. On-chip baluns are also integrated to allow for single-ended RF and LO inputs. The MAX9986 requires a nominal LO drive of 0dBm, and supply current is guaranteed to be below 265mA.

The MAX9984/MAX9986 are pin compatible with the MAX9994/MAX9996 1700MHz to 2200MHz mixers. making this entire family of downconverters ideal for applications where a common PC board layout is used for both frequency bands. The MAX9986 is also functionally compatible with the MAX9993.

The MAX9986 is available in a compact, 20-pin, thin QFN package (5mm x 5mm) with an exposed paddle. Electrical performance is guaranteed over the extended -40°C to +85°C temperature range.

Applications

850MHz W-CDMA Base Stations

GSM 850/GSM 900 2G and 2.5G EDGE Base Stations

cdmaOne™ and cdma2000® Base Stations

iDEN® Base Stations

Predistortion Receivers

Fixed Broadband Wireless Access

Wireless Local Loop

Private Mobile Radios

Military Systems

Microwave Links

Digital and Spread-Spectrum Communication Systems

cdma2000 is a registered trademark of the Telecommunications Industry Association.

cdmaOne is a trademark of CDMA Development Group. iDEN is a registered trademark of Motorola, Inc.

Features

- ♦ 815MHz to 995MHz RF Frequency Range
- ♦ 960MHz to 1180MHz LO Frequency Range (MAX9986)
- ♦ 570MHz to 850MHz LO Frequency Range (MAX9984)
- ♦ 50MHz to 250MHz IF Frequency Range
- ♦ 10dB Conversion Gain
- ♦ +23.6dBm Input IP3
- ♦ +12dBm Input 1dB Compression Point
- ♦ 9.3dB Noise Figure
- ♦ 67dBc 2LO-2RF Spurious Rejection at PRF = -10dBm
- Integrated LO Buffer
- ♦ Integrated RF and LO Baluns for Single-Ended Inputs
- ♦ Low -3dBm to +3dBm LO Drive
- ♦ Built-In SPDT LO Switch with 49dB LO1 to LO2 **Isolation and 50ns Switching Time**
- ♦ Pin Compatible with MAX9994/MAX9996 1700MHz to 2200MHz Mixers
- **♦** Functionally Compatible with MAX9993
- ♦ External Current-Setting Resistors Provide Option for Operating Mixer in Reduced Power/Reduced **Performance Mode**
- ♦ Lead-Free Package Available

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	PKG CODE
MAX9986ETP	-40°C to +85°C	20 Thin QFN-EP* 5mm × 5mm	T2055-3
MAX9986ETP-T	-40°C to +85°C	20 Thin QFN-EP* 5mm × 5mm	T2055-3
MAX9986ETP+D	-40°C to +85°C	20 Thin QFN-EP* 5mm × 5mm	T2055-3
MAX9986ETP+TD	-40°C to +85°C	20 Thin QFN-EP* 5mm × 5mm	T2055-3

^{*}EP = Exposed paddle.

Pin Configuration/Functional Diagram and Typical Application Circuit appear at end of data sheet.

⁺ = Lead free. D = Dry pack. T = Tape-and-reel.

ABSOLUTE MAXIMUM RATINGS

hetaJA	+38°C/W
θJC	+13°C/W
Operating Temperature Range (Note A)	$T_C = -40$ °C to $+85$ °C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Note A: To is the temperature on the exposed paddle of the package.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(MAX9986 *Typical Application Circuit*, $V_{CC} = +4.75V$ to +5.25V, no RF signal applied, IF+ and IF- outputs pulled up to V_{CC} through inductive chokes, $R_1 = 953\Omega$, $R_2 = 619\Omega$, $T_C = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $V_{CC} = +5V$, $T_C = +25^{\circ}C$, unless otherwise noted.)

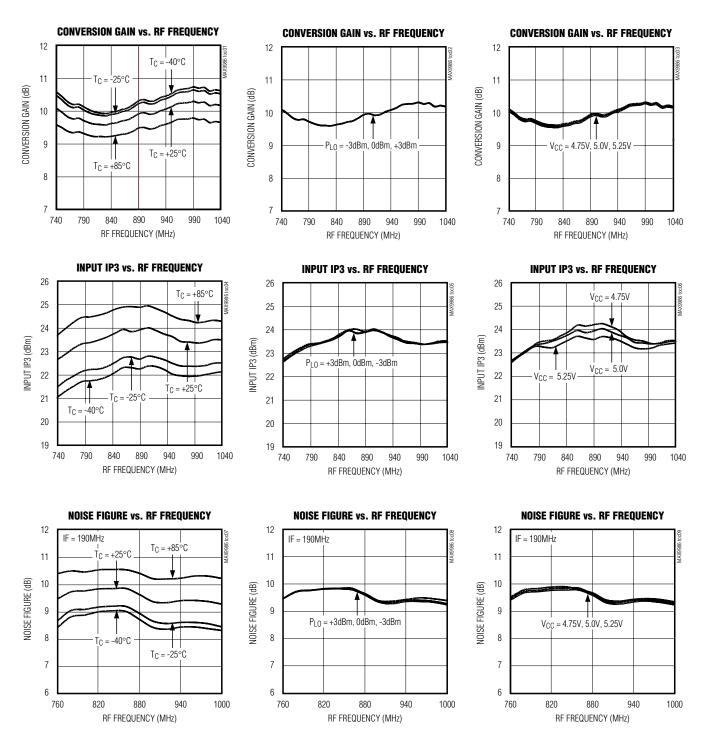
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	Vcc		4.75	5.00	5.25	V
Supply Current	Icc			222	265	mA
LO_SEL Input-Logic Low	VIL				0.8	V
LO_SEL Input-Logic High	VIH		2			V

AC ELECTRICAL CHARACTERISTICS

(MAX9986 Typical Application Circuit, V_{CC} = +4.75V to +5.25V, RF and LO ports are driven from 50Ω sources, P_{LO} = -3dBm to +3dBm, P_{RF} = -5dBm, f_{RF} = 815MHz to 995MHz, f_{LO} = 960MHz to 1180MHz, f_{IF} = 160MHz, f_{LO} > f_{RF} , f_{CC} = -40°C to +85°C, unless otherwise noted. Typical values are at V_{CC} = +5V, P_{RF} = -5dBm, P_{LO} = 0dBm, f_{RF} = 910MHz, f_{LO} = 1070MHz, f_{IF} = 160MHz, f_{CC} = +25°C, unless otherwise noted.) (Note 1)

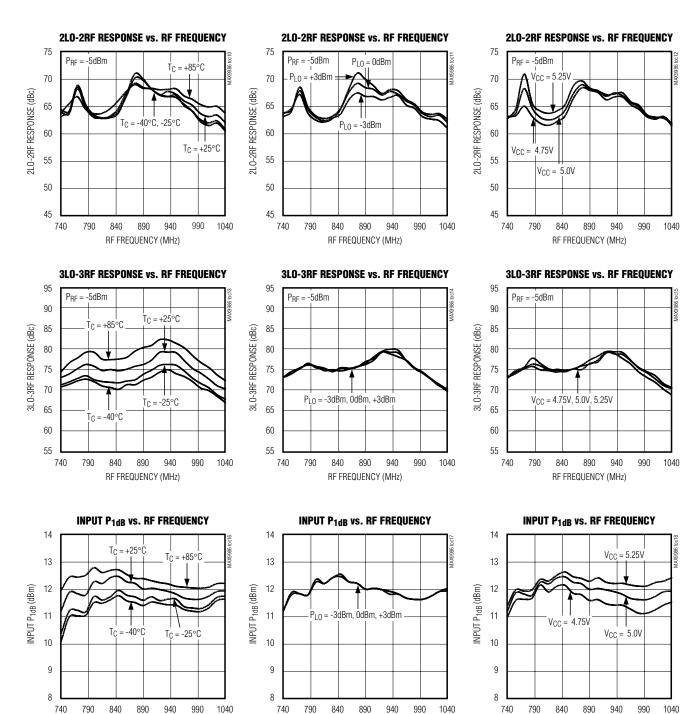
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
RF Frequency Range	f _{RF}	(Note 2)	815		995	MHz
LO Francisco Panas	f	(Note 2)	960		1180	N 41 1-
LO Frequency Range	fLO	MAX9984	570		850	MHz
IF Frequency Range	fıF	(Note 2)	50		250	MHz
Conversion Gain	GC	$T_C = +25$ °C	9	10	11	dB
Gain Variation Over Temperature		$T_{C} = -40^{\circ}C \text{ to } +85^{\circ}C$		-0.007		dB/°C
Conversion Gain Flatness		Flatness over any one of three frequency bands: f _{RF} = 824MHz to 849MHz f _{RF} = 869MHz to 894MHz f _{RF} = 880MHz to 915MHz		±0.15		dB
Input Compression Point	P _{1dB}	(Note 3)		dBm		
Input Third-Order Intercept Point	IIP3	Two tones: $f_{RF1} = 910MHz$, $f_{RF2} = 911MHz$, $P_{RF} = -5dBm/tone$, $f_{LO} = 1070MHz$, $P_{LO} = 0dBm$, $T_{A} = +25^{\circ}C$	21	23.6		dBm
Input IP3 Variation Over		$T_{C} = +25^{\circ}C \text{ to } -40^{\circ}C$		-1.7		٩D
Temperature		$T_C = +25^{\circ}C \text{ to } +85^{\circ}C$		+1.0		dB

AC ELECTRICAL CHARACTERISTICS (continued)


 $(\text{MAX9986 Typical Application Circuit}, \ V_{\text{CC}} = +4.75 \text{V to } +5.25 \text{V}, \ \text{RF and LO ports are driven from } 50 \Omega \text{ sources}, \ P_{\text{LO}} = -3 \text{dBm to } +3 \text{dBm}, \ P_{\text{RF}} = -5 \text{dBm}, \ f_{\text{RF}} = 815 \text{MHz to } 995 \text{MHz}, \ f_{\text{LO}} = 960 \text{MHz to } 1180 \text{MHz}, \ f_{\text{IF}} = 160 \text{MHz}, \ f_{\text{LO}} > f_{\text{RF}}, \ T_{\text{C}} = -40 ^{\circ} \text{C} \text{ to } +85 ^{\circ} \text{C}, \ \text{unless otherwise noted}. \ T_{\text{C}} = +5 \text{V}, \ P_{\text{RF}} = -5 \text{dBm}, \ P_{\text{LO}} = 0 \text{dBm}, \ f_{\text{RF}} = 910 \text{MHz}, \ f_{\text{LO}} = 1070 \text{MHz}, \ f_{\text{IF}} = 160 \text{MHz}, \ T_{\text{C}} = +25 ^{\circ} \text{C}, \ \text{unless otherwise noted}.) \ (\text{Note 1})$

PARAMETER	SYMBOL	CONDITIO	NS	MIN	TYP	MAX	UNITS		
Noise Figure	NF	Single sideband, f _{IF} = 190	MHz		9.3		dB		
Naisa Sigura Haday Blacking		$f_{RF} = 900MHz$ (no signal) $f_{LO} = 1090MHz$	PBLOCKER = +8dBm		19		-10		
Noise Figure Under-Blocking		fBLOCKER = 990MHz fIF = 190MHz (Note 4)	PBLOCKER = +11dBm		dB				
Small-Signal Compression		PFUNDAMENTAL = -5dBm fFUNDAMENTAL = 910MHz	PBLOCKER = +8dBm		0.3		dB		
Under-Blocking Condition		PBLOCKER = +11dBm		2		uв			
LO Drive				-3		+3	dBm		
	2 x 2	2LO-2RF	$P_{RF} = -10dBm$		67				
Spurious Response at IF	2	20-2111	$P_{RF} = -5dBm$		62		dBc		
	3 x 3	3LO-3RF	$P_{RF} = -10dBm$		87				
	0 / 0	OLO OITI	$P_{RF} = -5dBm$		77				
LO1 to LO2 Isolation		$P_{LO} = +3dBm$	LO2 selected	42	49		dB		
201 to 202 isolation		$T_C = +25^{\circ}C \text{ (Note 5)}$	LO1 selected	42	50		GB.		
LO Leakage at RF Port		$P_{LO} = +3dBm$			-47		dBm		
LO Leakage at IF Port		$P_{LO} = +3dBm$			-30		dBm		
RF-to-IF Isolation					46		dB		
LO Switching Time		50% of LOSEL to IF settled	d to within 2°		50		ns		
RF Port Return Loss					20		dB		
L O Port Potrum Loop		LO1/2 port selected, LO2/1 and IF terminated			27		aID		
LO Port Return Loss		LO1/2 port unselected, LO2/1 and IF terminated			26	_	dB		
IF Port Return Loss		LO driven at 0dBm, RF ter differential 200 Ω	rminated into 50Ω ,		22		dB		

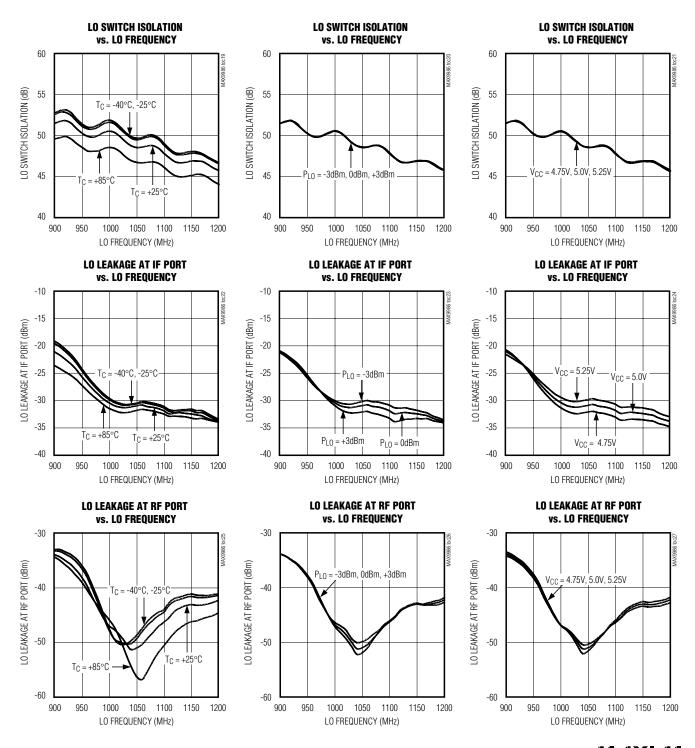
- Note 1: All limits include external component losses. Output measurements taken at IF output of the Typical Application Circuit.
- Note 2: Operation outside this range is possible, but with degraded performance of some parameters.
- Note 3: Compression point characterized. It is advisable not to operate continuously the mixer RF input above +12dBm.
- Note 4: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects of all SNR degradations in the mixer, including the LO noise as defined in Maxim Application Note 2021.
- Note 5: Guaranteed by design and characterization.


Typical Operating Characteristics

(MAX9986 Typical Application Circuit, V_{CC} = +5.0V, P_{LO} = 0dBm, P_{RF} = -5dBm, f_{LO} > f_{RF}, f_{IF} = 160MHz, unless otherwise noted.)

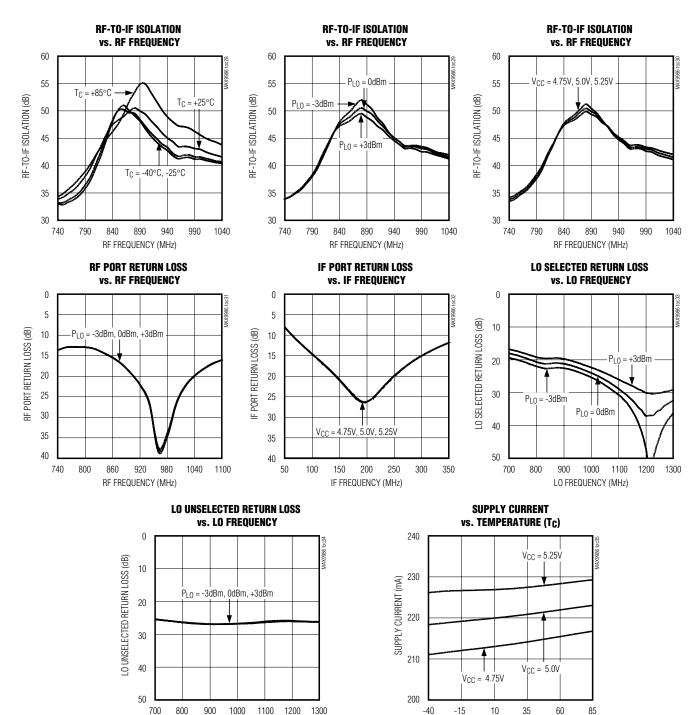
Typical Operating Characteristics (continued)

(MAX9986 Typical Application Circuit, V_{CC} = +5.0V, P_{LO} = 0dBm, P_{RF} = -5dBm, f_{LO} > f_{RF}, f_{IF} = 160MHz, unless otherwise noted.)


RF FREQUENCY (MHz)

RF FREQUENCY (MHz)

RF FREQUENCY (MHz)


Typical Operating Characteristics (continued)

(MAX9986 Typical Application Circuit, V_{CC} = +5.0V, P_{LO} = 0dBm, P_{RF} = -5dBm, f_{LO} > f_{RF}, f_{IF} = 160MHz, unless otherwise noted.)

Typical Operating Characteristics (continued)

(MAX9986 Typical Application Circuit, V_{CC} = +5.0V, P_{LO} = 0dBm, P_{RF} = -5dBm, f_{LO} > f_{RF}, f_{IF} = 160MHz, unless otherwise noted.)

LO FREQUENCY (MHz)

TEMPERATURE (°C)

Pin Description

PIN	NAME	FUNCTION
1, 6, 8, 14	V _C C	Power-Supply Connection. Bypass each V _{CC} pin to GND with capacitors as shown in the <i>Typical Application Circuit</i> .
2	RF	Single-Ended 50Ω RF Input. This port is internally matched and DC shorted to GND through a balun. Requires an external DC-blocking capacitor.
3	TAP	Center Tap of the Internal RF Balun. Bypass to GND with capacitors close to the IC, as shown in the <i>Typical Application Circuit</i> .
4, 5, 10, 12, 13, 17	GND	Ground
7	LOBIAS	Bias Resistor for Internal LO Buffer. Connect a 619Ω ±1% resistor from LOBIAS to the power supply.
9	LOSEL	Local Oscillator Select. Logic control input for selecting LO1 or LO2.
11	LO1	Local Oscillator Input 1. Drive LOSEL low to select LO1.
15	LO2	Local Oscillator Input 2. Drive LOSEL high to select LO2.
16	LEXT	External Inductor Connection. Connect a low-ESR, 30nH inductor from LEXT to GND. This inductor carries approximately 140mA DC current.
18, 19	IF-, IF+	Differential IF Outputs. Each output requires external bias to V _{CC} through an RF choke (see the <i>Typical Application Circuit</i>).
20	IFBIAS	IF Bias Resistor Connection for IF Amplifier. Connect a 953Ω ±1% resistor from IFBIAS to GND.
EP	GND	Exposed Ground Paddle. Solder the exposed paddle to the ground plane using multiple vias.

Detailed Description

The MAX9986 high-linearity downconversion mixer provides 10dB of conversion gain and +23.6dBm of IIP3, with a typical 9.3dB noise figure. The integrated baluns and matching circuitry allow for 50Ω single-ended interfaces to the RF and the two LO ports. A single-pole, double-throw (SPDT) switch provides 50ns switching time between the two LO inputs with 49dB of LO-to-LO isolation. Furthermore, the integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX9986's inputs to a -3dBm to +3dBm range. The IF port incorporates a differential output, which is ideal for providing enhanced IIP2 performance.

Specifications are guaranteed over broad frequency ranges to allow for use in cellular band GSM, cdma2000, iDEN, and W-CDMA 2G/2.5G/3G base stations. The MAX9986 is specified to operate over a 815MHz to 995MHz RF frequency range, a 960MHz to 1180MHz LO frequency range, and a 50MHz to 250MHz IF frequency range. Operation beyond these ranges is possible; see the *Typical Operating Characteristics* for additional details.

RF Input and Balun

The MAX9986 RF input is internally matched to 50Ω , requiring no external matching components. A DC-blocking capacitor is required because the input is internally DC shorted to ground through the on-chip balun.

LO Inputs, Buffer, and Balun

The MAX9986 is ideally suited for high-side LO injection applications with a 960MHz to 1180MHz LO frequency range. For a device with a 570MHz to 850MHz LO frequency range, refer to the MAX9984 data sheet. As an added feature, the MAX9986 includes an internal LO SPDT switch that can be used for frequency-hopping applications. The switch selects one of the two single-ended LO ports, allowing the external oscillator to settle on a particular frequency before it is switched in. LO switching time is typically less than 50ns, which is more than adequate for virtually all GSM applications. If frequency hopping is not employed, set the switch to either of the LO inputs. The switch is controlled by a digital input (LOSEL): logic-high selects LO2, logic-low selects LO1. To avoid damage to the part, voltage must be applied to VCC before digital logic is applied to LOSEL. LO1 and LO2 inputs are internally matched to 50Ω , requiring only a 82pF DCblocking capacitor.

A two-stage internal LO buffer allows a wide input power range for the LO drive. All guaranteed specifications are for an LO signal power from -3dBm to +3dBm. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip.

High-Linearity Mixer

The core of the MAX9986 is a double-balanced, high-performance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. When combined with the integrated IF amplifiers, the cascaded IIP3, 2LO-2RF rejection, and NF performance is typically 23.6dBm, 67dBc, and 9.3dB, respectively.

Differential IF Output Amplifier

The MAX9986 mixer has a 50MHz to 250MHz IF frequency range. The differential, open-collector IF output ports require external pullup inductors to VCC. Note that these differential outputs are ideal for providing enhanced 2LO-2RF rejection performance. Single-ended IF applications require a 4:1 balun to transform the 200 Ω differential output impedance to a 50 Ω single-ended output.

_Applications Information

Input and Output Matching

The RF and LO inputs are internally matched to 50Ω . No matching components are required. RF and LO inputs require only DC-blocking capacitors for interfacing.

The IF output impedance is 200Ω (differential). For evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance down to a 50Ω single-ended output (see the *Typical Application Circuit*).

Bias Resistors

Bias currents for the LO buffer and the IF amplifier are optimized by fine tuning resistors R1 and R2. If reduced current is required at the expense of performance, contact the factory for details. If the ±1% bias resistor values are not readily available, substitute standard ±5% values.

LEXT Inductor

LEXT serves to improve the LO-to-IF and RF-to-IF leakage. The inductance value can be adjusted by the user to

optimize the performance for a particular frequency band. Since approximately 140mA flows through this inductor, it is important to use a low-DCR wire-wound coil. If the LO-to-IF and RF-to-IF leakage are not critical parameters, the inductor can be replaced by a short circuit to ground.

Layout Considerations

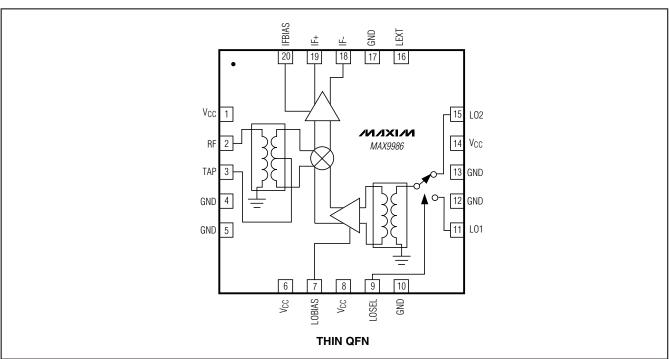
A properly designed PC board is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PC board exposed pad **MUST** be connected to the ground plane of the PC board. It is suggested that multiple vias be used to connect this pad to the lower level ground planes. This method provides a good RF/thermal conduction path for the device. Solder the exposed pad on the bottom of the device package to the PC board. The MAX9986 Evaluation Kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.

Power-Supply Bypassing

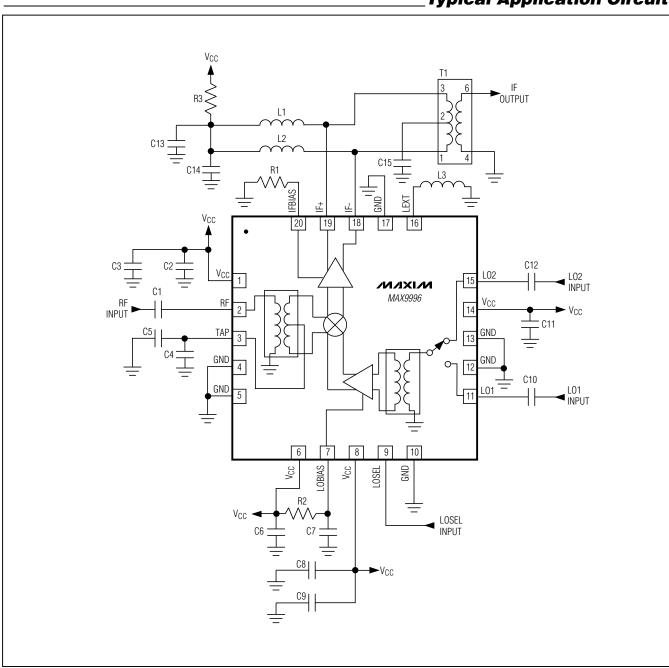
Proper voltage-supply bypassing is essential for high-frequency circuit stability. Bypass each V_{CC} pin and TAP with the capacitors shown in the *Typical Application Circuit*; see Table 1. Place the TAP bypass capacitor to ground within 100 mils of the TAP pin.

Exposed Pad RF/Thermal Considerations

The exposed paddle (EP) of the MAX9986's 20-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PC board on which the MAX9986 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP **MUST** be soldered to a ground plane on the PC board, either directly or through an array of plated via holes.

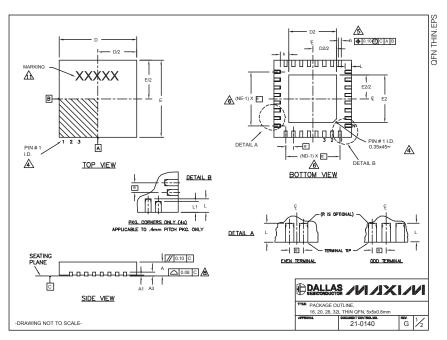

Chip Information

TRANSISTOR COUNT: 1017
PROCESS: SiGe BiCMOS


Table 1. Component List Referring to the Typical Application Circuit

COMPONENT	VALUE	DESCRIPTION
L1, L2	330nH	Wire-wound high-Q inductors (0805)
L3	30nH	Wire-wound high-Q inductor (0603)
C1	10pF	Microwave capacitor (0603)
C2, C4, C7, C8, C10, C11, C12	82pF	Microwave capacitors (0603)
C3, C5, C6, C9, C13, C14	0.01µF	Microwave capacitors (0603)
C15	220pF	Microwave capacitor (0402)
R1	953Ω	±1% resistor (0603)
R2	619Ω	±1% resistor (0603)
R3	3.57Ω	±1% resistor (1206)
T1	4:1 balun	IF balun
U1	MAX9986	Maxim IC

Pin Configuration/Functional Diagram



Typical Application Circuit

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

A 0 0.70 0.75 0.80 0.75 0.80 0.75 0.75 0.80 0.75 0.75 0.80 0.75 0.75 0.75 0.80 0.75 0.75 0.75 0.80 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.7				C	OMMO	ON DI	MENS	IONS								EXF	POSED	PAD	VARIA	TIONS	3		
SYMBOL, INN. MOM. MAX, MIN. MOM. MAX,	PKG.	1	6L 5x	5	2	20L 5	< 5	2	28L 5x5		32L 5x5				PKG.		D2			E2		L	
A1 0 0 02 0.05 0.0 0.00 0.05 0.0 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.05 0.00 0.05 0.05 0.00 0.05 0.05 0.00 0.05 0.05 0.00 0.05 0.0	SYMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	X. MIN. NOM. MAX.			CODES	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	±0.15	ALLOWED	
A3 0 20 REF. 0.02 REF. 0.02 REF. 0.02 REF. 0.02 REF. 0.02 REF. 0.03 REF. 0.0	Α	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80			0.00					0.20	**	
AS 0.20 REF. 0.2	A1	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05			0.00	0110	0.20			0.20	**	
D 0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.25 0.30 0.25 0.30 0.35 0.20 0.25 0.30 0.35 0.20 0.25 0.30 0.	A3	0	20 RF	F	0	20 RF	F	0:	20 RF	F	0	20 RF	F		T1655N-1	3.00	3.10	3.20	3.00	3.10	3.20	_	NO
D	b	0.25	0.30	0.35	0.25	0.30	0.35	_	_		0.20	0.25	0.30			3.00		0.20	0.00		0.20	**	NO
E 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.10	D	-	_	-	_	_	_	_	_		_				.=							**	
e 0,90 BSC. 0,66 BSC. 0,50 BSC. 0,50 BSC. 0,50 BSC. 12855-1 3.15 3.25 3.35 3.15 3.25 3.35 NO L 0,30 0,40 0,50 0,45 0,55 0,65 0,45 0,55 0,65 0,30 0,40 0,50 1.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Е															0.00			0.00		0.20		
K 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - - 0.25 - -	е	0	80 BS	SC.	0	.65 BS	SC.	0	50 BS	SC.	0	.50 BS	SC.		.=		0.20	0.00		0.20		0.40	
1. 0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.45 0.55 0.65 0.40 0.50	k	0.25	-	-	0.25	- I	- I	0.25	-	-	0.25		-									_	
L1	L	0.30	0.40	0.50		0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50									_	
NO 16 20 28 32 ND 4 5 7 8 NE 4 5 7 8 8 NE 4 5 7 8 8 NE 4 5 7 8 8 NE 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	11	-	-			-			-							_	_		_	_	_	-	
ND		\vdash	16	_		20	_		28			32	Н		.=000							_	
NE														. = 0 0 0									
EBBEC WHHB	NF														. = 0 0 0			0.00			0.00		
DITES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 1. DIMENSIONING ARE IN MILLIMETERS. ANGLES ARE IN DECREES. 1. NIS THE TOTAL NUMBER OF TERMINALS. □ THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO LESS 994. SPP-702 LEDTALS OF TERMINAL #1 IDENTIFIER AND COPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE NOIGOTED. THE TERMINAL #1 IDENTIFIER MAY BE ETHER AND OF TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP. □ MORNIGON DAPPLES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP. □ NO AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. 1. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. 2. OPPLANATING PAPLES TO THE EXPOSED HEAT SINK SUJU AS WELL AS THE TERMINALS. 3. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-1, T2855-3 AND T285-6 an	JEDEC	,	NHHE	1		WHH	2	V	VHHD	-1	WHHD-2		-2										
TITES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME YI4 5M-1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. 3. N IS THE TOTAL NUMBER OF TERMINALS. 3. N IS THE TOTAL NUMBER OF TERMINALS. THE TERMINAL PILOPITIES AND TERMINAL PILOPITIES ARE OFFICIALLY OF THE TERMINAL PILOPITIES ARE OFFICIALLY OFFI AND THE TERMINAL PILOPITIES ARE OFFI AND THE TERMINAL PILOPITIES AND THE TERMINAL PILOPITIES ARE OFFI AND THE TERMINAL PILOPITIES AND THE TER																							
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. 3. N IS THE TOTAL NUMBER OF TERMINALS. 3. N IS THE TOTAL NUMBER OF TERMINALS. THE TERMINAL PILOPITIER AND TERMINAL DIMENSION SHALL COPPORAL BY THE TERMINAL PILOPITIER ARE OPTIONAL BY THE TERMINAL PILOPITIER ARE OPTIONAL BY AND TERMINAL PILOPITIER ARE OPTIONAL BY AND THE TERMINAL PILOPITIER ARE OPTIONAL BY A PPLIES TO METALIZED TERMINAL ARD IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP. NO AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. DEAVING COMPLANARITY APPLIES TO METALIZED TERMINAL ARD IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL. TIP. DEAVING COMPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. DRAWING CONFORMS TO JEDEC MOZZO, EXCEPT EXPOSED PAD DIMENSION FOR T2855-1, T2855-3 AND T2855-3 AND T2855-6 and T2855-6 nm FADD 0.30 mm. MARRING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.	OTES:														T3255-2	3.00	3.10	3.20	3.00	3.10		**	
3. N IS THE TOTAL NUMBER OF TERMINALS. THE TERMINAL #1 IDENTIFIER AND TERMINAL MUMBERING CONVENTION SHALL CONFORM TO LESS 94 S 199-72 LETALS OF TERMINAL #1 IDENTIFIER AND TERMINAL #1	1. DIMEN	SIONIN	G & T0	DLERA	NCING	CONF	ORM 1	O ASN	IE Y14.	5M-19	94.				T3255-3	3.00	3.10	3.20	3.00	3.10	3.20	**	YES
ATHE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL COMPORAT DE ASS 961 59P-612 DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL BUT MILET BE LOCATED WITHIN THE ZONE NOIGCATED. THE TERMINAL #1 IDENTIFIER MY BE ETHER A NOUL OF MARKED FERTINE DIMENSION 5 APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP. DIMENSION 5 APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP. DIMENSION 5 APPLIES TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. TO DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. COPPLANABITY APPLIES TO THE EXPOSED HEAT SINK SULO AS WELL AS THE TERMINALS. DIRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-1, T2855-3 AND T2855-8. MARRING IS FOR PACKAGE ORIENTATION REFERENCE ONLY. MARRING IS FOR PACKAGE ORIENTATION REFERENCE ONLY. 1 NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.	2. ALL DI	MENSI	ONS A	RE IN I	ИILLIМ	ETERS	. ANGI	ES AR	E IN D	EGRE	ES.				T3255-4	3.00	3.10	3.20	3.00	3.10	3.20	**	NO
CONFORM TO JESD 95 1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZODE NIDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE. DIMENSION A APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. COPLAMARITY APPLIES TO THE EXPOSED HAT SINK SLUG AS WELL AS THE TERMINALS. DEAWING CONFORMS TO JEDEC MOZZO, EXCEPT EXPOSED PAD DIMENSION FOR T286S-1, T285S-3 AND T285S-6. WARPAGE SHALL NOT EXCEED 0.10 mm. MARRING IS FOR PACKAGE ORENTATION REFERENCE ONLY. 12 NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.	3. N IS TH	HE TOT	AL NU	MBER	OF TE	RMINA	LS.								T3255N-1	3.00	3.10	3.20	3.00	3.10	3.20	**	NO
T2855-3 AND T2855-6. 10. WARFAGE SHALL NOT EXCEED 0.10 mm. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY. 12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY. 15. AUGUST OF LEADS SHOWN ARE FOR REFERENCE ONLY. 16. Q. 28, 32L THIN OFN, 5x5x0.8mm	CONFO OPTIO IDENT DIMEN FROM ND AN 7. DEPOR	ORM TO NAL, B IFIER N SION E TERMI D NE F PULATI	O JESE UT MU IAY BE APPLI NAL TI EFER ON IS I	95-1 S ST BE EITHE ES TO P. TO THI POSSIE	SPP-01 LOCAT ER A M META E NUM BLE IN	2. DETED WITED WITED WITED COLUMN COL	TAILS (ITHIN T IR MAR) TERM IF TERM IMETRI	OF TER THE ZO KED FI IINAL A MINALS CAL FA	MINAL NE IND EATUR IND IS S ON E	#1 IDE DICATE E. MEASI ACH D	ENTIFIED. THE	ER ARE E TERM BETWE E SIDE	E MINAL # EEN 0.2 RESPE	IVELY.					••	SEE CO	MMON E	DIMENSIO	INS TABLE
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY. 16, 20, 28, 32L THIN QFN, 5x5x0.8mm	T2855- 10. WARPA	3 AND GE SH	T2855- IALL N	6. OT EXC	CEED (0.10 mr	n.				D DIME	ENSION	N FOR T	55-1,							VI.	/1>	(1/
	_									ILY.							TITUE				0511.5		
			FADS	SHOW	N ARE	FOR I	REFER	ENCE (ONLY.								1	16, 20	, 28, 32	LIHIN	QFN, 5>	:5x0.8mn	1

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600