

SANYO Semiconductors

DATA SHEET

Monolithic Linear IC Multi power supply regulator+1.5ch forward/reverse motor driver

Overview

The LA5688H is Multi power supply regulator+1.5ch forward/reverse motor driver.

Functions

- One circuit of 2.6V regulator ($I_0 = 100 \text{mA}$)
- 3.1V regulator-2 circuit ($I_O = 50mA$)
- One circuit of 3.3V regulator ($I_O = 150mA$)
- Independent ON/OFF of each regulator
- 1.5ch forward/reverse motor driver incorporated

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		-0.3 to 9	V
Input voltage	V _{IN} max		-0.3 to 9	V
Allowable power dissipation	Pd max	$Ta \leq 25^{\circ}C$ Independent IC	0.79	W
		Ta \leq 25°C Mounted on a specified board. *	1.8	W
OUT pin output current	IOUT max		±1	А
Operating temperature	Topr		-20 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

* Mounted on a board : 76.1×114.3×1.6mm³, glass epoxy board.

Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.

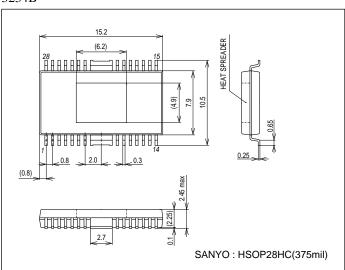
Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

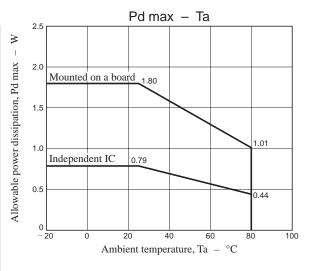
Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	V _{CC} 1		4.1 to 7.5	V
Supply voltage 1'	V _{CC} 1'	*	3.5 to 7.5	V
Supply voltage 2	V _{CC} 2		0 to 7.5	V
Supply voltage 3	V _{CC} 3		3.5 to 7.5	V
VREF voltage	VREF		0.3 to V _{CC} 3-1	V
REG2.6 output current	REG2.6		0 to 100	mA
REG3.1A•B output current	REG3.1A•B		0 to 50	mA
REG3.3 output current	REG3.3		0 to 150	mA
Input "H" level voltage	VIH		2.0 to 7.5	V
Input "L" level voltage	V _{IL}		-0.3 to 0.7	V

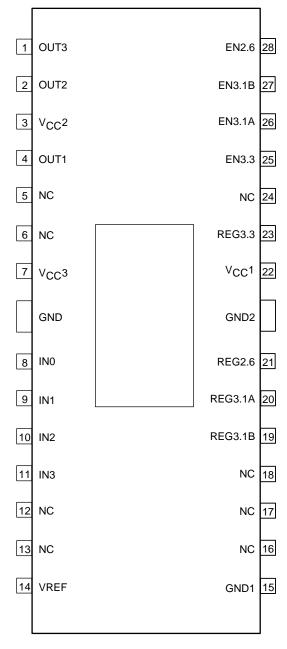
* When only the motor driver is used without using the regulator

Electrical Characteristics at Ta = 25°C

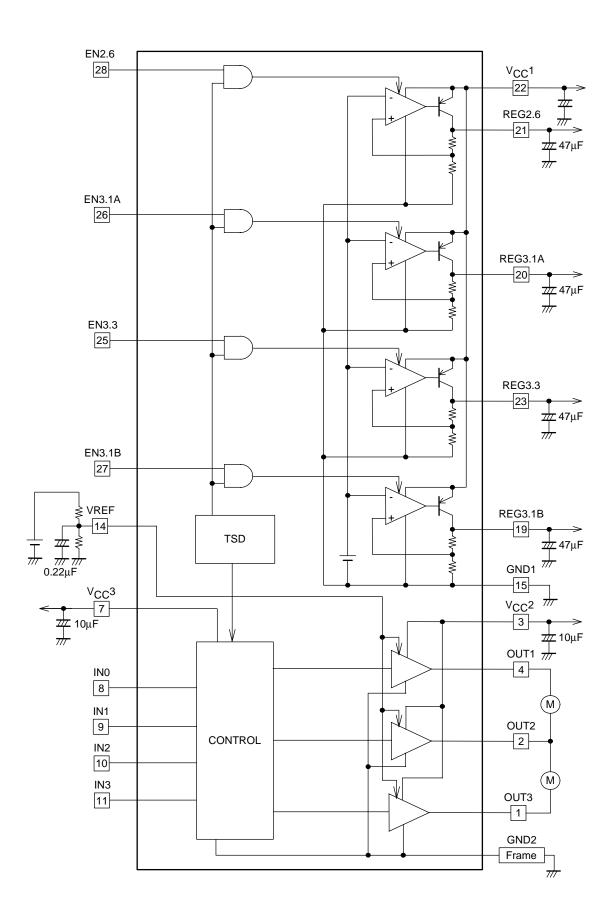

Parameter	Symbol Conditions		Ratings			Unit
T didifictor			min	typ	max	01110
All regulator blocks Power	dissipation V _{CC} 1 = 6V IRI	EG2.6 = 100mA, IREG3.3A●B = 50mA, IREC	G3.3 = 150mA	-		
V _{CC} 1 power dissipation	I _{CC} 1			30	47	mA
REG2.6 Regulator block VC	C ¹ = 6V, IREG2.6 = 100m/	A				
Output voltage 1	V _O _REG2.6		2.55	2.6	2.65	V
Dropout voltage	VDROP_REG2.6			0.25	0.5	V
Line regulation	$\Delta VOLN_REG2.6$	V _{CC} 1 = 4.1 to 7.5V			200	mV
Load regulation	$\Delta VOLD_REG2.6$	IREG2.6 = 5 to 100mA			200	mV
Peak output current	IOP_REG2.6		100	140		mA
Output short-circuit current	IOSC_REG2.6			50	100	mA
Input "H" level voltage	V _{IH} _EN2.6		2.0			V
Input "L" level voltage	V _{IL} _EN2.6				0.7	V
"H" level input current	I _{IH} _EN2.6	VEN2.6 = 2V		50	70	μΑ
REG3.1A•B Regulator block	V _{CC} 1 = 6V, IREG3.1A•B	= 50mA				
Output voltage	V _O _REG3.1A•B		3.04	3.1	3.16	V
Dropout voltage	VDROP_REG3.1A•B			0.25	0.5	V
Line regulation	∆VOLN_REG3.1A•B	V _{CC} 1 = 4.1 to 7.5V			200	mV
Load regulation	∆VOLD_REG3.1A•B	IREG3.1A•B = 5 to 50mA			200	mV
Peak output current	IOP_REG3.1A•B		50	70		mV
Output short-circuit current	IOSC_REG3.1A•B			25	50	mA
Input "H" level voltage	V _{IH} _ENB3.1A•B		2.0			V
Input "L" level voltage	V _{IL} _ENB3.1A•B				0.7	V
"H" level input current	I _{IH} _ENB3.1A∙B	VEN3.1A•B = 2V		50	70	μΑ
REG3.3 Regulator block V _C	C ¹ = 6V, IREG3.3 = 150m/	A				
Output voltage	V _O _REG3.3		3.23	3.3	3.37	V
Dropout voltage	VDROP_REG3.3			0.25	0.5	V
Line regulation	∆VOLN_REG3.3	V _{CC} 1 = 4.1 to 7.5V			200	mV
Load regulation	∆VOLD_REG3.3	IREG3.3 = 5 to 150mA			200	mV
Peak output current	IOP_REG3.3		150	210		mA
Output short-circuit current	IOSC_REG3.3			75	150	mA
Input "H" level voltage	V _{IH} _EN3.3		2.0			V
Input "L" level voltage	V _{IL} _EN3.3				0.7	V
"H" level input current	I _{IH} EN3.3	VEN3.3 = 2V		50	70	μA


Continued on next page.

Parameter	0		Ratings				
Parameter	Symbol	Conditions	min	typ	max	Unit	
Motor driver block V _{CC} 1 = V _C	C2 = V _{CC} 3 = 6V						
V _{CC} 3 power dissipation 1	I _{CC} 3_1	Forward/Reversed, VREF = $V_{CC}3$		38	58	mA	
V _{CC} 3 power dissipation 2	I _{CC} 3_2	Brake		68	mA		
V _{CC} 3 power dissipation 3	ICC3_3	Standby		15	μA		
Output saturation voltage	VSAT_OUT	I _{OUT} = 200mA, VREF = V _{CC} 3 (Upper side + Lower side)		1.5	V		
VREF pin outflow current	IREF	VREF = 2.5V (Forward/Reversed)		3.5	μΑ		
VOUT-VREF offset	VOF	VREF = 2.5V, IO = 100mA	-200		200	mV	
Output TR current capacity 1	IOUT max1	$V_{CC}3 = 3.5V$, VREF = $V_{CC}3$ Lower side Tr VCE = 1V	900			mA	
Output TR current capacity 2	IOUT max2	$V_{CC}3 = 4.0V$, VREF = $V_{CC}3$ Lower side Tr VCE = 1V	1000			mA	
Input "H" level voltage	V _{IH} IN		2.0			V	
Input "L" level voltage	V _{IL} IN				0.7	V	
"H" level input current	I _{IH} _IN	V _{IN} = 2V		50	70	μA	


Package Dimensions

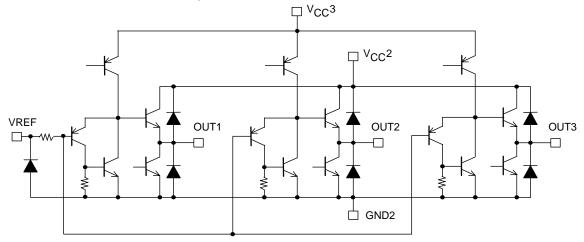
unit : mm (typ) 3234B


Pin Assignment

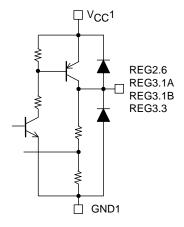
Top view

NC for no contact

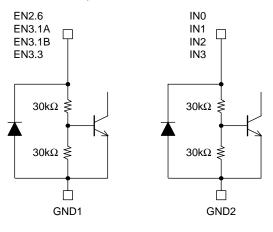
Block Diagram



Truth table for 1.5ch forward/reverse motor driver


	Input				Output			
IN0	IN1	IN2	IN3	OUT1	OUT2	OUT3	Mode	
L	L	L	L				Standby	
L	L	Н	L	н	L			Forward
L	L	L	н	L	Н		ch1	Reversed
L	L	Н	Н	L	L			Brake
Н	L	L	L		L	Н		Forward
L	н	L	L		Н	L	ch2	Reversed
Н	Н	L	L		L	L		Brake

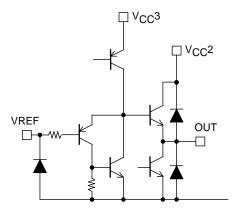
Blank column is for OFF.


1.5ch forward/reverse motor driver output circuit

Each regulator output circuit

EN2.6, EN3.1A, EN3.1B, EN3.3, INO to IN3 input circuit

*Resistance values are TYP values.


Cautions for Use

(1) GND1 and GND2

When using, short-circuit GND1 and GND2 externally.

- (2) Supply voltage when only the motor driver is used without using the regulator As the reference power supply in IC is taken from V_{CC}1, apply the voltage also to V_{CC}1. In this case, the operation condition of V_{CC}1 ranges from 3.5 to 7.5V. (Refer to page 2. Operation Conditions, Supply Voltage 1')
- (3) Supply voltage when only the regulator is used without using the motor driver The regulator operates with V_{CC}1 (without need of applying voltage to V_{CC}2, V_{CC}3, and VREF)
- (4) VREF pin

Application of the voltage to VREF pin enables setting of each OUT Hi voltage. In this case, the input to VREF ranges from 0.3 to (V_{CC} 3-1) V. (Refer to page 2. Operation conditions, VREF voltage)

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of June, 2007. Specifications and information herein are subject to change without notice.