32-Bit Proprietary Microcontroller

CMOS

FR60 MB91350A Series

MB91F353A/MB91353A/MB91352A/MB91351A/ MB91V350A

■ DESCRIPTION

The FR families are lines of standard single-chip microcontrollers each based on a 32-bit high-performance RISC CPU, incorporating a variety of I/O resources and bus control features for embedded control applications which require high CPU performance for high-speed processing.
This FR60 family is based on FR30 and FR40 families and enhanced is bus access. The FR60 family is a line of single-chip oriented microcontrollers incorporating a wealth of peripheral resources.
The FR60 family is optimized for embedded control applications requiring high processing power of the CPU, such as DVD player, navigation, high performance Fax machine, and printer controls.

- FEATURES

1. FR CPU

- 32-bit RISC, load/store architecture with a five-stage pipeline
- Maximum operating frequency: 50 MHz (using the PLL at an oscillation frequency of 12.5 MHz)
- 16-bit fixed length instructions (basic instructions), 1 instruction per cycle
- Instruction set optimized for embedded applications: Memory-to-memory transfer, bit manipulation, barrel shift etc.
(Continued)
PACKAGE

Purchase of Fujitsu $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ Patent Rights to use, these components in an $I^{2} \mathrm{C}$ system provided that the system conforms to the $I^{2} \mathrm{C}$ Standard Specification as defined by Philips.

MB91350A Series

- Instructions adapted for high-level languages : Function entry/exit instructions, multiple-register load/store instructions
- Register interlock functions: Facilitating coding in assemblers
- On-chip multiplier supported at the instruction level.

Signed 32-bit multiplication: 5 cycles
Signed 16-bit multiplication: 3 cycles

- Interrupt (PC, PS save): 6 cycles, 16 priority levels
- Harvard architecture allowing program access and data access to be executed simultaneously

2. Bus interface

- Maximum operating frequency: 25 MHz
- Capable of up to 21 -bit address full output (2 MB of space)
- 8,16-bit data output
- Built-in pre-fetch buffer
- Non-used data and address pin are usable as general I/O port.
- Capable of chip-select signal output for completely independent four areas settable in 64 KB minimum
- Support for various memory interfaces:

SRAM, ROM, FLASH
page mode FLASH ROM, page mode ROM

- Basic bus cycle : 2 cycles
- Programmable automatic wait cycle generator capable of inserting wait cycles for each area
- RDY input for external wait cycles

3. Mounted memory

D-bus memory	MB91V350A	MB91F353A	MB91353A	MB91352A	MB91351A
ROM	No	512 KB	512 KB	384 KB	384 KB
RAM (stack)	16 KB	16 KB	16 KB	8 KB	16 KB
RAM (Execute instruction)	16 KB	8 KB	8 KB	8 KB	8 KB

4. DMAC (DMA Controller)

- Capable of simultaneous operation of up to 5 channels
- Two transfer sources (internal peripheral or software):

Activation sources are software-selectable (transfer can be activated by UART0/1/2).

- Addressing using 32 -bit full addressing mode (increment, decrement, fixed)
- Transfer modes (demand transfer, burst transfer, step transfer, block transfer)
- Selectable transfer data size: 8,16 , or 32 -bit
- Multi-byte transfer enabled (by software)
- DMAC descriptor in IO areas (200н to 240н, 1000н to 1024н)

5. Bit search module (for REALOS)

- Search for the position of the bit $1 / 0$-changed first in 1 word from the MSB

6. Various timers

- 4 channels of 16 -bit reload timer (including 1 channel for REALOS): Internal clock frequency selectable from among divisions by $2 / 8 / 32$ (division by $64 / 128$ selectable only for ch3)
- 16 -bit free-running timer: 1 channel.

Output compare module: 2 channels.
Input capture : 4 channels.

- 16-bit PPG timer 3 channels
(Continued)

MB91350A Series

(Continued)

7. UART

- UART Full duplex double buffer 4 channels
- Selectable parity On/Off
- Asynchronous (start-stop synchronized) or CLK-synchronous communications selectable
- Internal timer for dedicated baud rate
- External clock can be used as transfer clock
- Assorted error detection functions (for parity, frame, and overrun errors)
- Support for 115 Kbps

8. SIO

- 2 channels for 8 -bit data serial transfer
- Shift clock selectable from among internal three and external one
- Shift direction selectable (transfer from LSB or MSB) selectable

9. Interrupt controller

- Total of 9 external interrupt lines (1 nonmaskable interrupt pin and 8 normal interrupt pins available for WakeUp from STOP)
- interrupt from internal peripheral
- Programmable priorities (16 levels) for all interrupts except the non-maskable interrupt

10. D/A converter

- 8-bit resolution. 2 channels

11. A/D converter

- 10-bit resolution. 8 channels
- Casting time for serial/parallel conversion: $1.48 \mu \mathrm{~s}$
- Conversion mode (single conversion mode, continuous conversion mode)
- Activation source (software, external trigger, peripheral interrupt)

12. Other interval timer/counter

- 8-bit up/down counter
- 16-bit timer (U-timer), 4 channels
- Watch dog timer

13. $I^{2} \mathrm{C}$ bus interface (400 kbps supported)

- 1 channel master/slave sending and receiving
- Arbitration and clock synchronization

14. I/O port

- 3-V I/O ports (8 ports shared for external interrupts support 5-V input.)
- Max 84 ports

15. Other features

- Internal oscillator circuit as clock source, allowing PLL multiplication to be selected
- Provided with $\overline{\mathrm{NIT}}$ as a reset pin (The CPU operates without oscillation stabilization wait interval when the INIT pin is reset.)
- others, watch-dog timer reset, software reset enable
- Support for stop and sleep modes for low power consumption, capable of saving power during CPU operation at 32 kHz .
- Gear function
- Built-in time base timer
- Package: LQFP-120 (lead pitch: 0.50 mm)
- CMOS technology(0.35 mm)
- Power supply voltage: $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

MB91350A Series

PIN ASSIGNMENT

(TOP VIEW)

(FPT-120P-M21)

MB91350A Series

■ PIN DESCRIPTION

Pin no.	Pin name	Circuit type	Description
1 to 8	D16 to D23	C	External data bus bit 16 to bit 23. Enabled in external bus mode.
	P20 to P27		Available as a port in external bus 8-bit mode.
9 to 16	D24 to D31	C	External data bus bit 24 to bit 31. Enabled in external bus mode.
	P30 to P37		Usable as port at single chip mode
$\begin{gathered} 17,20 \text { to } \\ 26 \end{gathered}$	A00 to A07	C	Bits 0 to 7 of external address bus. Enabled in external bus mode.
	P40 to P47		Usable as port at single chip mode
27 to 34	A08 to A15	C	Bits 8 to 15 of external address bus. Enabled in external bus mode.
	P50 to P57		Usable as port at single chip mode
35 to 39	A16 to A20	C	Bits 16 to 20 of external address bus. Enabled in external bus mode.
	P60 to P64		Available as a port either in single chip mode or with no external address bus in use.
106, 105	DA0, DA1	-	D/A converter output pin
$\begin{gathered} 113 \text { to } \\ 120 \end{gathered}$	ANO to AN7	G	Analog input pin.
97	POO	D	General purpose input/output port. This function is enabled when the timer output function is disabled.
	OC0		Output compare pin.
98	PO2	D	General purpose I/O. This function is available as a port when the output compare output is not in use.
	OC2		Output compare pin.
70	PN0	D	General purpose I/O. This function is available as a port when the output compare output is not in use.
	PPG0		PPG timer output pin
71	PN2	D	General purpose I/O. This function is available as a port when the PPG timer output is not in use.
	PPG2		PPG timer output pin
72	PN4	D	General purpose I/O. This function is available as a port when the PPG timer output is not in use.
	PPG4		PPG timer output pin
73	SI6	D	Data input for serial I/O6. Since this input is used as required when serial I/O6 is in input operation, the port output must remain off unless intentionally turned on.
	AINO		8 -bit up/down counter input. Since this input is used as required when enabled, the port output must remain off unless intentionally turned on.
	TRGO		External trigger input for PPG timer0. Since this input is used as required when enabled, the port output must remain off unless intentionally turned on.
	PM0		General purpose I/O. This function is available a port when the serial I/O, 8 -bit up/down counter, and PPG timer outputs are not in use.

(Continued)

MB91350A Series

Pin no.	Pin name	Circuit type	Description
74	SO6	D	Data output for serial I/O6. This function is enabled when the serial I/O6 data output is enabled.
	BINO		8-bit up/down counter input. Since this input is used as required when enabled, the port output must remain off unless intentionally turned on.
	TRG1		External trigger input for PPG timer 1. Since this input is used as required when enabled, the port output must remain off unless intentionally turned on.
	PM1		General purpose I/O. This function is available a port when the serial I/O, 8-bit up/down counter, and PPG timer outputs are not in use.
75	SCK6	D	Clock innput/output for serial I/O6. This function is enabled either when serial I/O6 clock output is enabled or in external shift clock input mode.
	ZIN0		8 -bit up/down counter input. Since this input is used as required when enabled, the port output must remain off unless intentionally turned on.
	TRG2		External trigger input for PPG timer 2. Since this input is used as required when enabled, the port output must remain off unless intentionally turned on.
	PM2		General purpose I/O. This function is available a port when the serial I/O, 8 -bit up/down counter, and PPG timer outputs are not in use.
78	SI7	D	Data input for serial I/O7. Since this input is used as required when serial I/O7 is in input operation, the port output must remain off unless intentionally turned on.
	TRG3		External trigger input for PPG timer 3. Since this input is used as required when enabled, the port output must remain off unless intentionally turned on.
	PM3		General purpose I/O. This function is available a port when the serial I/O, 8 -bit up/down counter, and PPG timer outputs are not in use.
79	SO7	D	Data output for serial I/O7. This function is enabled when the serial I/O7 data output is enabled.
	TRG4		External trigger input for PPG timer 4. Since this input is used as required when enabled, the port output must remain off unless intentionally turned on.
	PM4		General purpose I/O. This function is available a port when the serial I/O, 8-bit up/down counter, and PPG timer outputs are not in use.
80	SCK7	D	Clock innput/output for serial I/O7. This function is enabled either when serial I/O7 clock output is enabled or in external shift clock input mode.
	PM5		General purpose I/O. This function is available a port when the serial I/O, 8 -bit up/down counter, and PPG timer outputs are not in use.
42	SDA	F	Clock input/output pin for $I^{2} \mathrm{C}$ bus. This function is enabled when the $I^{2} \mathrm{C}$ system is enabled for operation in standard mode. The port output must remain off unless intentionally turned on. (Open drain input)
	PLO		General purpose input/output port. This function is available as a port when the $I^{2} \mathrm{C}$ system is disabled for operation. (Open drain input)

(Continued)

MB91350A Series

Pin no.	Pin name	Circuit type	Description
41	SCL	F	Clock input/output pin for ${ }^{2} \mathrm{C}$ bus. This function is enabled when the $\mathrm{I}^{2} \mathrm{C}$ system is enabled for operation in standard mode. The port output must remain off unless intentionally turned on. (Open drain input)
	PL1		General purpose input/output port. This function is available as a port when the $I^{2} \mathrm{C}$ system is disabled for operation. (Open drain input)
81 to 86	INT0 to INT5	E	External interrupt input. Since this input is used as required when the corresponding external interrupt is enabled, the port output must remain off unless intentionally turned on.
	PK0 to PK5		General purpose input/output port.
87	INT6	E	External interrupt input. Since this input is used as required when the corresponding external interrupt is enabled, the port output must remain off unless intentionally turned on.
	FRCK		External clock input pin for freerun timer. Since this input is used as required when selected as the external clock input for the free running timer, the port output must remain off unless intentionally turned on.
	PK6		General purpose input/output port.
88	INT7	E	External interrupt input. Since this input is used as required when the corresponding external interrupt is enabled, the port output must remain off unless intentionally turned on.
	$\overline{\text { ATG }}$		External trigger input for A / D converter. Since this input is used as required when selected as an A/D activation source, the port output must remain off unless intentionally turned on.
	PK7		General purpose input/output port.
89	SIO	D	UARTO data input. Since this input is used as required when UART0 is in input operation, the port output must remain off unless intentionally turned on.
	PIO		General purpose input/output port.
90	SOO	D	UARTO data output. This function is enabled when the UARTO data output is enabled.
	PI1		General purpose input/output port. This function is enabled when the data output function of UART0 is disabled.
91	SCKO	D	UARTO clock input/output pin. This function is enabled either when UARTO clock output is enabled or in external clock input mode.
	PI2		General purpose input/output port. This function is enabled when UARTO does not use external clock input with its clock output function disabled.
92	SI1	D	UART1 data input. Since this input is used as required when UART0 is in input operation, the port output must remain off unless intentionally turned on.
	PI3		General purpose input/output port.
93	SO1	D	UART1 data output. This function is enabled when the UART1 data output is enabled.
	PI4		General purpose input/output port. This function is enabled when the data output function of UART1 is disabled.

(Continued)

MB91350A Series

Pin no.	Pin name	Circuit type	Description
94	SCK1	D	UART1 clock input/output pin. This function is enabled either when UART1 clock output is enabled or in external clock input mode.
	PI5		General purpose input/output port. This function is enabled when UART1 does not use external clock input with UART1 clock output function disabled.
99	SI2	D	UART2 data input. Since this input is used as required when UART2 is in input operation, the port output must remain off unless intentionally turned on.
	PH0		General purpose input/output port.
100	SO2	D	UART2 data output. This function is enabled when the UART2 data output is enabled.
	PH1		General purpose input/output port. This function is enabled when the data output function of UART2 is disabled.
101	SCK2	D	UART2 clock input/output pin. This function is enabled either when UART2 clock output is enabled or in external clock input mode.
	PH2		General purpose input/output port. This function is enabled when UART2 does not use external clock input with its clock output function disabled.
102	SI3	D	UART3 data input. Since this input is used as required when UART3 is in input operation, the port output must remain off unless intentionally turned on.
	PH3		General purpose input/output port.
103	SO3	D	UART3 data output. This function is enabled when the UART3 data output is enabled.
	PH4		General purpose input/output port. This function is enabled when the data output function of UART3 is disabled.
104	SCK3	D	UARTO clock input/output pin. This function is enabled either when UART3 clock output is enabled or in external clock input mode.
	PH5		General purpose input/output port. This function is enabled when UART3 does not use external clock input with its clock output function disabled.
51	$\overline{\mathrm{NMI}}$	H	NMI (Non Maskable Interrupt) input.
61	X1A	B	Output clock cycle time. Sub clock
60	X0A	B	Input clock cycle time. Sub clock
52 to 54	MD2 to MD0	H, J	Mode Pins 2 to 0 . The levels applied to these pins set the basic operating mode. Connect Vcc or Vss. Input circuit configuration: The production model (masked-ROM model) is type "H". The FLASHROM model is type " J ".
58	X0	A	Input clock cycle time. Main clock
57	X1	A	Output clock cycle time. Main clock
55	$\overline{\text { INIT }}$	1	External reset input
66	$\overline{\mathrm{CSO}}$	C	Chip select 0 output. Enable at external bus mode
	PAO		General purpose input/output port. This is enabled at single chip mode.

(Continued)

MB91350A Series

Pin no.	Pin name	Circuit type	Description
67	$\overline{\text { CS1 }}$	C	Chip select 1 output. This function is enabled when the chip select 1 output is enabled.
	PA1		General purpose input/output port. This function is enabled when the chip select 1 output is disabled.
68	CS2	C	Chip select 2 output. This function is enabled when the chip select 2 output is enabled.
	PA2		General purpose input/output port. This function is enabled when the chip select 2 output is disabled.
69	$\overline{\mathrm{CS3}}$	C	Chip select 3 output. This function is enabled when the chip select 3 output is enabled.
	PA3		General purpose input/output port. This function is enabled when the chip select 3 output is disabled.
45	RDY	D	External ready input. The pin has this function when external ready input is enabled.
	IN0		Input capture input pin. Since this input is used as required when selected as an input capture input, the port output must remain off unless intentionally turned on.
	P80		General purpose input/output port. This function is enabled when external ready signal input is disabled.
46	$\overline{\text { BGRNT }}$	D	Acknowledge output for external bus release. Outputs "L" when the external bus is released. The pin has this function when output is enabled.
	IN1		Input capture input pin. Since this input is used as required when selected as an input capture input, the port output must remain off unless intentionally turned on.
	P81		General purpose input/output port. This function is enabled when external bus release acknowledge output is disabled.
47	BRQ	D	External bus release request input. Input " 1 " to request release of the external bus. The pin has this function when input is enabled.
	IN2		Input capture input pin. Since this input is used as required when selected as an input capture input, the port output must remain off unless intentionally turned on.
	P82		General purpose input/output port. The pin has this function when the external bus release request input is disabled.
48	$\overline{\mathrm{RD}}$	D	External bus read strobe output. It is available in the external bus mode.
	P83		General purpose input/output port. This is enabled at single chip mode.
49	WR0	D	External bus write strobe output. It is available in the external bus mode.
	P84		General purpose input/output port. This is enabled at single chip mode.

(Continued)

MB91350A Series

(Continued)

Pin no.	Pin name	Circuit type	Description
50	$\overline{\text { WR1 }}$	D	External bus write strobe output. This function is enabled when $\overline{\mathrm{WR1}}$ output is enabled in external bus mode.
	IN3		(INO)input capture input pin. Since this input is used as required when selected as an input capture input, the port output must remain off unless intentionally turned on.
	P85		General purpose input/output port. The pin has this function when the external bus write-enable output is disabled.
62	SYSCLK	C	System clock output. The pin has this function when system clock output is enabled. This outputs the same clock as the external bus operating frequency. (Output halts in stop mode.)
	P90		General purpose input/output port. The pin has this function when system clock output is disabled.
63	P91	C	General purpose input/output port.
64	P93	C	General purpose input/output port.
65	$\overline{\text { AS }}$	C	Address strobe output. This function is enabled when address strobe output is enabled.
	P94		General purpose input/output port. This function is enabled when address load output is disabled.

[Power supply and GND pins]

Pin no.	Pin name	Description
$18,40,43,59,76,96,112$	Vss $_{s c}$	GND pins. Apply equal potential to all of the pins.
$19,44,56,77,95$	V $_{\mathrm{cc}}$	3.3 V power supply pin. Apply equal potential to all of the pins.
107	DAvs	GND pin for D/A converter
108	DAvc	Power supply pin for D/A converter
109	AVcc	Analog power supply pin for A/D converter
110	AVRH	Reference power supply pin for A/D converter
111	AVss/AVRL	Analog GND pin for A/D converter

MB91350A Series

I/O CIRCUIT TYPE

Type	Circuit type	Remarks
A		- Oscillation feedback resistance: approx. $1 \mathrm{M} \Omega$
B		- Oscillation feedback resistance for low speed (subclock oscillation): approx. $7 \mathrm{M} \Omega$
C		- CMOS level output - CMOS level input With standby control With Pull-up control Pull-up resistance $=$ approx. $50 \mathrm{k} \Omega$ (Typ) $\mathrm{loL}=8 \mathrm{~mA}$
D		- CMOS level output - CMOS level hysteresis input With standby control With Pull-up control Pull-up resistance $=$ approx. $50 \mathrm{k} \Omega$ (Typ) $\mathrm{loL}=4 \mathrm{~mA}$

(Continued)

MB91350A Series

Type	Circuit type	Remarks
E		- CMOS level output - CMOS level hysteresis input With stand voltage of 5 V $\mathrm{loL}=4 \mathrm{~mA}$
F		- Nch (Open drain input) - CMOS level hysteresis input With standby control With stand voltage of 5 V $\mathrm{loL}=15 \mathrm{~mA}$
G		- Analog input With switch
H		- CMOS level hysteresis input
1		- CMOS level hysteresis input With pull-up resistor Pull-up resistance $=$ approx. $50 \mathrm{k} \Omega$ (Typ)

(Continued)

MB91350A Series

(Continued)

Type	Circuit type	Remarks
J		- CMOS level input - FLASH product only

MB91350A Series

- HANDLING DEVICES

- Preventing Latchup

Latch-up may occur in a CMOS IC if a voltage greater than V_{cc} or less than $\mathrm{V}_{\text {ss }}$ is applied to an input or output pin or if an above-rating voltage is applied between Vcc and Vss. A latchup,if it occurs, significantly increases the power supply current and may cause thermal destruction of an element. When you use a CMOS IC, don't exceed the absolute maximum rating.

- Treatment of Unused Pins

Do not leave an unused input pin open, since it may cause a malfunction. Handle by using a pull-up or pull-down resistor.

- About Power Supply Pins

In products with multiple V_{cc} and V ss pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to external power supply and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.
Moreover, connect the current supply source with the V_{cc} and $\mathrm{V}_{\text {ss }}$ pins of this device at the low impedance.
It is also advisable to connect a ceramic bypass capacitor of approximately $0.1 \mu \mathrm{~F}$ between V_{cc} and $\mathrm{V}_{s s}$ near this device.

- About Crystal Oscillator Circuit

Noise near the $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 0 \mathrm{~A}$ and $\mathrm{X1}$ A pins may cause the device to malfunction. Design the printed circuit board so that X0, X1, X0A, X1A, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located close to the device as possible.
It is strongly recommended to design the PC board artwork with the $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 0 \mathrm{~A}$ and X 1 A pins surrounded by ground plane because stable operation can be expected with such a layout.

- Notes on Using External Clock

When external clock is selected, supply it to X0 pin generally, and simultaneously the opposite phase clock to X0 must be supplied to X 1 pin. However, in this case the stop mode(oscillator stop mode) must not be used. (This is because the X1 pin stops at High level output in STOP mode.)

Using an external clock (normal)

Note: STOP mode (oscillation stop mode) cannot be used.

- Clock Control Block

Take the oscillation stabilization wait time during Low level input to the INIT pin.

- Notes and Not Using the 32 K Clock

When no oscillator is connected to the X0A and X1A pins, pull down the X0A pin and open the X1A pin.

MB91350A Series

- Treatment of NC and OPEN Pins

Pins marked as NC and OPEN must be left open-circuit.

- About Mode Pins (MD0 to MD2)

These pins should be connected directly to V cc or $\mathrm{V}_{\text {ss. }}$.
To prevent the device erroneously switching to test mode due to noise, design the printed circuit board such that the distance between the mode pins and V_{cc} or V_{ss} is short as possible and the connection impedance is low.

- Operation at Start-up

The INIT pin must be at Low level when the power supply is turned on.
Immediately after the power supply is turned on, hold the Low level input to the INIT pin for the settling time required for the oscillator circuit to take the oscillation stabilization wait time for the oscillator circuit. (For INIT via the INIT pin, the oscillation stabilization wait time setting is initialized to the minimum value.)

- About Oscillation Input at Power On

When turning the power on, maintain clock input until the device is released from the oscillation stabilization wait state.

- Caution on Operations during PLL Clock Mode

Even if the oscillator comes off or the clock input stops with the PLL clock selected for this microcontroller, the microcontroller may continue to operate at the free-running frequency of the PLL's internal self-oscillating oscillator circuit. Performance of this operation, however, cannot be guaranteed.

- External Bus Setting

This model guarantees an external bus frequency of 25 MHz .
Setting the base clock frequency to 50 MHz with DIVR1 (external bus base clock division setting register) initialized sets the external bus frequency also to 50 MHz . Before changing the base clock frequency, set the external bus frequency not exceeding 25 MHz .

- MCLK and SYSCLK

MCLK and SYSCLK has a difference that MCLK stops in SLEEP/STOP mode but SYSCLK stops only in STOP mode. Use either depending on each application.
Upon initialization, MCLK becomes invalid (PORT) and SYSCLK becomes valid. To use MCLK, set the port function register (PFR) to select the use of that clock.

- Pull-up Control

Connecting a pull-up resistor to the pin serving as an external bus pin cannot a guarantee the "■ ELECTRICAL CHARACTERISTICS 4. AC Characteristics (4) Normal Bus Access Read/Write Operation, (5) Multiplex Bus Access Read/Write operation and (7) Hold Timing".
Even the port for which a pull-up resistor has been set is invalid in stop mode with $\mathrm{HIZ}=1$ or in hardware standby mode.

- Sub Clock Select

Immediately after switching from main clock mode to subclock mode for the clock source, insert at least one NOP instruction.
(Idi \#0x0b, r0)
(Idi \#_CLKR, r12)
stb r0, @r12 // sub-clock mode
nop // Must insert NOP instruction

MB91350A Series

- Bit Search Module

The BSDO, BSD1, and BDSC registers are accessed only in words.

- D-bus Memory

Do not allocate the code area in memory on the D-bus because no instruction fetch takes place to the D-bus. Executing an instruction fetch to the D-bus area causes wrong data to be interpreted as code, possibly letting the device to run out of control.

- Low Power Consumption Mode

To enter the sleep or stop mode, be sure to read the standby control register (STCR) immediately after writing to it. Precisely, use the following sequence.
Set the I flag, ILM, and ICR to, after returning from standby mode, branch to the interrupt handler having caused the device to return.
(Idi \#value_of_standby, rO)
(Idi \#_STCR, r12)
stb r0, @r12 // set STOP/SLEEP bit
Idub @r12, r0 // Must read STCR
Idub @r12, r0 // after reading, go into standby mode
nop // Must insert NOP *5
nop
nop
nop
nop

- Switch Shared Port Function

To switch between the use as a port and the use as a dedicated pin, use the port function register (PFR). Note, however, that bus pins are switched depending on external bus settings.

- Pre-fetch

When accessing a prefetch-enabled little endian area, be sure to use word access (in 32-bit, word length) only. Byte or halfword access results in wrong data read.

- I/O Port Access

Ports are accessed only in bytes.

- Built-in RAM

Immediately after a reset is canceled, the internal RAM allocation restricting function is still working, allowing only 4 KB to be used for data and for program execution irrespective of the on-chip RAM capacity.
To kill the restricting function, update the setting.
When the above setting is updated, the instruction must be followed by at least one NOP instruction.

- FLASH MEMORY

In programming mode, flash memory cannot be used as an interrupt vector table. A reset is possible.

MB91350A Series

- Notes on the PS Register

As the PS register is processed by some instructions in advance, exception handling below may cause the interrupt handling routine to break when the debugger is used or the display contents of flags in the PS register to be updated.

As the microcontroller is designed to carry out reprocessing correctly upon returning from such an EIT event, it performs operations before and after the EIT as specified in either case.

1. The following operations are performed when the instruction followed by a DIVOU/DIVOS instruction results in: (a) acceptance of a user interrupt or NMI, (b) single-stepping, or (c) a break at a data event or emulator menu.

- The D0 and D1 flags are updated in advance.
- An EIT handling routine (user interrupt, NMI, or emulator) is executed.
- Upon returning from the EIT, the DIVOU/DIVOS instruction is executed and the D0 and D1 flags are updated to the same values as in (1).

2. The following operations are performed when the ORCCR/STILM/MOVRi and PS instructions are executed.

- The PS register is updated in advance.
- An EIT handling routine (user interrupt, NMI, or emulator) is executed.
- Upon returning from the EIT, the above instructions are executed and the PS register is updated to the same value as in (1).

MB91350A Series

[Note on Debugger]

- Step Execution of RETI Command

If an interrupt occurs frequently during single-stepping, the corresponding interrupt handling routine is executed repeatedly. This will prevent the main routine and low-interrupt-level programs from being executed.
(Whenever RETI is single-stepped when interrupts by the timebase timer have been enabled, for example, the timebase timer routine causes a break at the beginning.)
Disable the corresponding interrupt when the corresponding interrupt handling routine no longer needs debugging.

- Break Function

If the address at which to cause a hardware break (including a event break) is set to the address currently contained in the system stack pointer or in the area containing the stack pointer, the user program causes a break after execution of one instruction.
To prevent this, do not set (word) access to the area containing the address in the system stack pointer as the target of a hardware break (including an event break).

- Internal ROM area

Do not set an area of internal ROM as a DMAC transfer destination.

- Simultaneous Occurrences of a Software Break (INTE instruction) and a User Interrupt/NMI

When a software break and a user interrupt/NMI occur simultaneously, the emulator debugger may react as follows.

- The debugger stops pointing to a location other than the programmed breakpoints.
- The halted program is not re-executed correctly.

If this symptom occurs, use a hardware break in place of a hardware break. When using a monitor debugger, do not set a break at the relevant location.

- A stack pointer placed in an area set for a DSU operand break can cause a malfunction. Do not apply a data event break to access to the area containing the address of a system stack pointer.

MB91350A Series

BLOCK DIAGRAM

MB91350A Series

CPU AND CONTROL UNIT

Internal architecture

The FR family CPU is a high performance core based on a RISC architecture while incorporating advanced instructions for embedded controller applications.

1. Features

- RISC architecture employed. Basic instructions: Executed at 1 instruction per cycle
- General-purpose registers: 32-bit $\times 16$ registers
- 4GB linear memory space
- Multiplier integrated.

32 -bit $\times 32$-bit multiplication: 5 cycles.
16 -bit $\times 16$-bit multiplication: 3 cycles

- Enhanced interrupt servicing. Fast response speed (6 cycles). Multiple interrupts supported. Level masking (16 levels)
- Enhanced I/O manipulation instructions. Memory-to-memory transfer instructions Bit manipulation instructions
- High code efficiency. Basic instruction word length: 16-bit
- Low-power consumption. Sleep mode and stop mode
- Gear function

MB91350A Series

2. Internal architecture

The FR-family CPU has a Harvard architecture in which the instruction and data buses are separated. The 32bit $\longleftrightarrow 16$-bit bus converter is connected to a 32 -bit bus (F -bus), providing an interface between the CPU and peripheral resources. The Harvard \longleftrightarrow Princeton bus converter is connected to both of the I-bus and D-bus, providing an interface between the CPU and the bus controller.

MB91350A Series

3. Programming model

- Basic programming model

MB91350A Series

4. Register

General purpose registers

32-bit		
		[Initial Value]
R0		XXXX XXXXH
R1		...
...	...	\cdots
R12		\ldots
R13	AC	\ldots
R14	FP	XXXX XXXXH
R15	SP	00000000 H

Registers R0 to R15 are general-purpose registers. The registers are used as the accumulator and memory access pointers for CPU operations.

Of these 16 registers, the registers listed below are intended for special applications, for which some instructions are enhanced.

R13: Virtual accumulator
R14: Frame pointer
R15: Stack pointer

The initial values of R0 to R14 after a reset are indeterminate. R15 is initialized to 00000000н (SSP value).

- PS (Program Status)

This register holds the program status and is divided into the ILM, SCR, and CCR.
The undefined bits in the following illustration are all reserved bits. Reading these bits always returns " 0 ". Writing to them has no effect.

PS

MB91350A Series

- CCR (Condition Code Register)

7	6	5	4	3	2	1	0	[Initial Value]
-	-	S	1	N	z	V	C	- - 00XXXX

S : Stack flag. Cleared to "0" by a reset.
I : Interrupt enable flag. Cleared to "0" by a reset.
N : Negative flag. The initial value after a reset is indeterminate.
Z : Zero flag. The initial value after a reset is indeterminate.
V : Overflow flag. The initial value after a reset is indeterminate.
C : Carry flag. The initial value after a reset is indeterminate.

- SCR (System Condition code Register)

Fflag for step dividing
Stores intermediate data for stepwise multiplication operations.
Step trace trap flag
A flag specifying whether the step trace trap function is enabled or not.
Emulator use step trace trap function. The function cannot be used by the user program when using the emulator.

- ILM

20	19	18	17	16	[Initial Value]
ILM4	ILM3	ILM2	ILM1	ILM0	01111в
ILM					

This register stores the interrupt level mask value. The value in the ILM register is used as the level mask. Initialized to "15" (01111в) by a reset.

- PC (Program Counter)

The program counter contains the address of the instruction currently being executed.
The initial value after a reset is indeterminate.

- TBR (Table Base Register)

The table base register contains the start address of the vector table used for servicing EIT events. The initial value after a reset is 000FFCOOн.

MB91350A Series

- RP (Return Pointer)

The return pointer contains the address to which to return from a subroutine.
When the CALL instruction is executed, the value in the PC is transferred to the RP.
When the RET instruction is executed, the value in the RP is transferred to the PC.
The initial value after a reset is indeterminate.

- SSP (System Stack Pointer)

The SSP is the system stack pointer and functions as R15 when the S flag is " 0 ".
The SSP can be explicitly specified.
The SSP is also used as the stack pointer that specifies the stack for saving the PS and PC when an EIT event occurs.
The initial value after a reset is 00000000 H .

- USP (User Stack Pointer)

The USP is the user stack pointer and functions as R15 when the S flag is " 1 ".
The USP can be explicitly specified.
The initial value after a reset is indeterminate.
This pointer cannot be used by the RETI instruction.

- Multiply \& Divide register

These registers hold the results of a multiplication or division. Each of them is 32 -bit long.
The initial value after a reset is indeterminate.

MB91350A Series

MODE SETTINGS

The FR family uses mode pins (MD2 to MD0) and a mode register (MODR) to set the operation mode.

1. Mode Pins

The MD2, MD1, and MD0 pins specify how the mode vector fetch is performed.

Mode Pins			Mode name	Reset vector access area	Remarks
MD2	MD1	MD0			
0	0	0	internal ROM mode vector	Internal	
0	0	1	external ROM mode vector	External	The bus width is specified by the mode register.

Values other than those listed in the table are prohibited.

2. Mode Register (MODR)

The data written to the mode register at 000F FFF8н using mode vector fetch is called mode data.
After an operation mode has been set in the mode register (MODR), the device operates in the operation mode.
The mode register is set by any reset source. User programs cannot write data to the mode register.
Note : Conventionally the FR family has nothing at addresses (000007 FF) in the mode register.

[Register description]

[bit7-bit3] Reserved bit

Be sure to set this bit to " 00000 ". Operation is not guaranteed when any value other than " 00000 " is set.

[bit2] ROMA (internal ROM enable bit)

The ROMA bit is used to set whether to enable the internal F-bus RAM and F-bus ROM areas.

ROMA	Function	Remarks
0	External ROM mode	Internal F-bus RAM is valid; the area (80000 н to 10 0000H) of internal ROM is used as an external area.
1	Internal ROM mode	Internal F-bus RAM and F-bus ROM become valid.

[bit1, bit0] WTH1, WTH0 (Bus width setting bits)
Used to set the bus width to be used in external bus mode.
When the operation mode is the external bus mode, this value is set in bits BW1 and BW0 in AMD0 (CS0 area).

WTH1	WTH0	function	Remarks		
0	0	8-bit bus width	external bus mode		
0	1	16-bit bus width	Setting disabled		
1	0				
1	1	single chip mode	single chip mode		

MB91350A Series

MEMORY SPACE

1. Memory space

The FR family has 4 GB of logical address space (2^{32} addresses) available to the CPU by linear access.

- Direct Addressing Areas

The following address space areas are used as I/O areas.
These areas are called direct addressing areas, in which the address of an operand can be specified directly during an instruction.
The size of directly addressable areas depends on the length of the data being accessed as shown below.
\rightarrow Byte data access $\quad: 000 \mathrm{H}$ to 0 FFн
\rightarrow Half word data access : 000н to 1FFн
\rightarrow Word data access : 000н to 3FFH

2. Memory Map

Memory Map of MB91F353A/MB91353A

	Single chip mode	Internal ROM external bus mode	External ROM external bus mode	
0000 0000 ${ }^{-}$	I/O	I/O	1/O	addressing area
0000 0400 -	I/O	I/O	1/O	Refer to I/O Map
0001 0000 ${ }^{--}$	Access disallowed	Access disallowed	Access disallowed	
$0003 \mathrm{EOOOH}-$	Built-in RAM 8 KB (Execute instruction)	Built-in RAM 8 KB (Execute instruction)	Built-in RAM 8 KB (Execute instruction)	
0004 0000H-	Built-in RAM 16 KB (Stack)	Built-in RAM16 KB (Stack)	Built-in RAM 16 KB (Stack)	
-	Access disallowed	Access disallowed	Access disallowed	
0005 0000 ${ }^{--}$		External area	External area	
0010 0000н--	$\begin{gathered} \text { Built-in ROM } \\ 512 \mathrm{~KB} \end{gathered}$	Built-in ROM 512 KB		
	Access disallowed	External area		
FFFF FFFFH				

- Each mode is set depending on the mode vector fetch after $\overline{\mathbb{N I T}}$ is negated.
- The available area of internal RAM is restricted immediately after a reset is canceled. When the setting of the available area is updated, the instruction must be followed by at least one NOP instruction.
- The MB91V350A uses the area of 512 KB of internal ROM as emulation RAM in the MB91F353A/MB91353A memory map. The internal RAM (Instruction) has been expanded from 8 KB to 16 KB .

MB91350A Series

Memory Map of MB91352A

	Single chip mode	Internal ROM external bus mode	External ROM external bus mode	
0000 0000H	I/O	1/O	I/O	Direct addressing area Refer to I/O Map
0000 0400H	I/O	1/O	I/O	
0001 0000н	Access disallowed	Access disallowed	Access disallowed	
$0003 \mathrm{E000} \mathrm{H}-$	Built-in RAM 8 KB (Execute instruction)	Built-in RAM 8 KB (Execute instruction)	Built-in RAM 8 KB (Execute instruction)	
0004 0000H	Built-in RAM 8 KB (Stack)	Built-in RAM 8 KB (Stack)	Built-in RAM 8 KB (Stack)	
0004 2000H	Access disallowed	Access disallowed	Access disallowed	
00050000 н		External area	External area	
0010 0000н	Built-in ROM 384 KB	Built-in ROM 384 KB		
	Access disallowed	External area		
FFFF FFFFH				

- Each mode is set depending on the mode vector fetch after $\overline{\mathrm{NIT}}$ is negated.
- The available area of internal RAM is restricted immediately after a reset is canceled. When the setting of the available area is updated, the instruction must be followed by at least one NOP instruction.

MB91350A Series

Memory Map of MB91351A

| Single chip |
| :---: | :---: | :---: | :---: | :---: | :---: |
| mode |

- Each mode is set depending on the mode vector fetch after $\overline{\mathbb{N I T}}$ is negated.
- The available area of internal RAM is restricted immediately after a reset is canceled. When the setting of the available area is updated, the instruction must be followed by at least one NOP instruction.

MB91350A Series

3. I/O Map

This shows the location of the various peripheral resource registers in the memory space.
[How to read the table]

Note: Initial values of register bits are represented as follows:
" 1 " : Initial value is " 1 ".
" 0 " : Initial Value is " 0 ".
" X " : Initial value is " X ".
"-" : No physical register at this location

Address	Register				Block diagram
	+ 0	+1	+2	+3	
000000н	-	-	PDR2 [R/W] B XXXXXXXX	PDR3 [R/W] B XXXXXXXX	T-unit Port Data Register
000004н	PDR4 [R/W] B XXXXXXXX	PDR5 [R/W] B XXXXXXXX	PDR6 [R/W] B XXXXXXXX	-	
000008H	PDR8 [R/W] B - - XXXXXX	PDR9 [R/W] B -- - XXXXX	PDRA [R/W] B --- XXXX	-	
00000С ${ }_{\text {H }}$	-	-			
000010н	-	PDRH [R/W] B $--X X X X X X$	PDRI [R/W] B - - XXXXXX	-	R-bus Port Data Register
000014 ${ }_{\text {H }}$	PDRK [R/W] B XXXXXXX	$\begin{gathered} \text { PDRL [R/W] B } \\ -\ldots---X X ~ \end{gathered}$	PDRM [R/W] B $--X X X X X X$	PDRN [R/W] B - - XXXXXX	
000018н	PDRO [R/W] B XXXXXXXX	-	-	-	
00001信	-				
000020н	-	-	-	-	Reserved
000024 ${ }_{\text {H }}$	-	-	-	-	Reserved

(Continued)

MB91350A Series

Address	Register				Block diagram
	+ 0	+1	+2	+3	
000028	$\begin{gathered} \text { SMCS6 [R/W] B, H } \\ 00000010---00-- \end{gathered}$		$\begin{gathered} \hline \text { SES6 [R/W] B } \\ ----00 \end{gathered}$	SDR6 [R/W] B XXXXXXXX	SIO 6
00002CH	$\begin{gathered} \text { SMCS7 [R/W] B, H } \\ 00000010---00-- \end{gathered}$		SES7 [R/W] B ----00	SDR7 [R/W] B XXXXXXXX	SIO 7
000030н	-	-	-	-	Reserved
000034н	$\begin{gathered} \hline \text { CDCR6 [R/W] B } \\ 0--1111 \end{gathered}$	-*	$\begin{gathered} \hline \text { CDCR7 [R/W] B } \\ 0--1111 \end{gathered}$	-*1	$\begin{array}{\|c} \hline \text { SIO Prescaler } \\ 6,7 \end{array}$
000038н	-	-	SRCL6 [W] B	SRCL7 [W] B	SIO 6, SIO7
00003CH	-	-	-	-	Reserved
000040н	EIRRO [R/W] B, H, W 00000000	ENIRO [R/W] B, H, W 00000000	$\begin{aligned} & \text { ELVRO [R/ } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { W] B, H, W } \\ 00000000 \end{gathered}$	Ext int (INT0 to INT7)
000044H	$\begin{gathered} \text { DICR [R/W] B, H, W } \\ -\ldots-0 \end{gathered}$	$\begin{gathered} \text { HRCL }[\text { R/W] B, H, W } \\ 0--11111 \end{gathered}$			DLYI/I-unit
000048н	TMRLR [W] H, W XXXXXXXX XXXXXXXX		TMR [R] H, W XXXXXXXX XXXXXXXX		Reload Timer
00004CH	-		TMCSR [R/W] B, H, W---000000000000		
000050н	TMRLR [W] H, W XXXXXXXX XXXXXXXX		TMR [R] H, W XXXXXXXX XXXXXXXX		Reload Timer
000054H	-		TMCSR [R/W] B, H, W -- - 000000000000		
000058н	TMRLR [W] H, W XXXXXXXX XXXXXXXX		TMR [R] H, W XXXXXXXX XXXXXXXX		Reload Timer
00005CH	-		TMCSR [R/W] B, H, W -- - 000000000000		2
000060н	SSR [R/W] B, H, W 00001000	SIDR/SODR [R/W] B, H, W XXXXXXXX	SCR [R/W] B, H, W 00000100	$\begin{gathered} \text { SMR [R/W] B, H, W } \\ 00-0-\ldots \end{gathered}$	UART0
000064	UTIM [R] H (UTIMR [W] H) 0000000000000000		DRCL [W] B	$\begin{gathered} \text { UTIMC [R/W] B } \\ 0-00001 \end{gathered}$	U-timer/ UART 0
000068н	SSR [R/W] B, H, W 00001000	SIDR/SODR [R/W] B, H, W XXXXXXXX	SCR [R/W] B, H, W 00000100	SMR [R/W] B, H, W $00-0-\mathrm{C}$	UART1
00006C	UTIM [R] H (UTIMR [W] H) 0000000000000000		DRCL [W] B	$\begin{gathered} \text { UTIMC [R/W] B } \\ 0-00001 \end{gathered}$	U-timer/ UART 1
000070н	SSR [R/W] B, H, W 00001000	SIDR/SODR [R/W] B, H, W XXXXXXXX	SCR [R/W] B, H, W 00000100		UART2
000074	UTIM [R] H (UTIMR [W] H) 0000000000000000		DRCL [W] B	$\begin{aligned} & \text { UTIMC [R/W] B } \\ & 0-00001 \end{aligned}$	U-timer/ UART 2

(Continued)

MB91350A Series

Address	Register				Block diagram
	+ 0	+1	+2	+3	
000078н	$\begin{gathered} \hline \text { ADCS2 [R/W] B, H, W } \\ \text { X000XX00 } \end{gathered}$	ADCS1 [R/W]B, H, W 000X0000	ADCT [R/W] H, W XXXXXXXX_XXXXXXXX		A/D converter: Successive approximation
00007Сн	ADTH0 [R] B, H, W XXXXXXXX	$\begin{aligned} & \hline \text { ADTLO }[R] \text { B, H, W } \\ & 000000 X X \end{aligned}$	ADTH1 [R] B, H, W XXXXXXXX	$\begin{aligned} & \hline \text { ADTL1 [R] B, H, W } \\ & 000000 \mathrm{XX} \end{aligned}$	
000080н	ADTH2 [R] B, H, W XXXXXXXX	$\begin{aligned} & \text { ADTL2 [R] B, H, W } \\ & 000000 X X \end{aligned}$	ADTH3 [R] B, H, W XXXXXXXX	$\begin{gathered} \text { ADTL3 [R] B, H, W } \\ 000000 X X \end{gathered}$	
000084н	-	-	$\begin{gathered} \text { DACR1 }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ -\cdots--0 \end{gathered}$	$\begin{gathered} \text { DACRO }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ -\ldots-\ldots 0 \end{gathered}$	D/A Converter
000088н	-	-	DADR1 [R/W]B, H, W XXXXXXXX	$\begin{gathered} \text { DADRO }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ \text { XXXXXXXX } \end{gathered}$	
00008CH	-	-	-	-	Reserved
000090н	-	-	-	-*1	Reserved
000094H	$\begin{aligned} & \text { IBCR [R/W] B, H, W } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { IBSR [R] B, H, W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { ITBA [R/M } \\ ----00 \end{gathered}$	$\begin{aligned} & \text { N] B, H, W } \\ & 000000000 \end{aligned}$	${ }^{2} \mathrm{C}$ interface
000098н	$\begin{gathered} \text { ITMK [R/W] B, H, W } \\ 00---1111111111 \end{gathered}$		$\begin{gathered} \hline \text { ISMK [R/W] B, H, W } \\ 01111111 \end{gathered}$	$\begin{aligned} & \text { ISBA [R/W] B, H, W } \\ & -0000000 \end{aligned}$	
00009CH	-	IDAR [R/W] B, H, W 00000000	$\begin{gathered} \hline \text { ICCR [R/W] B, H, W } \\ 0-011111 \end{gathered}$	$\begin{gathered} \text { IDBL [R/W] B, H, W } \\ -----0 \end{gathered}$	
0000АОн	-	-*1	-	-*1	Reserved
0000A4H	-	-* ${ }^{*}$	-* ${ }^{*}$	-*1	
0000A8H	TMRLR [W] H, W XXXXXXXX XXXXXXXX		$\begin{gathered} \text { TMR [R] H, W } \\ \text { XXXXXXXXXXXXX } \end{gathered}$		Reload Timer 3
0000ACH	-		TMCSR [R/W] B, H, W -- - 000000000000		
0000B0н	-	$\begin{gathered} \text { RCR0 }[W] B, H, W \\ 00000000 \end{gathered}$	-	UDCRO [R] B, H, W 00000000	8-bit Up/ Down Counter0
0000B4н	$\begin{gathered} \text { CCRHO }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ 00000000 \end{gathered}$	$\begin{gathered} \text { CCRLO [R/W] B, H, W } \\ 00001000 \end{gathered}$	-	$\begin{gathered} \text { CSRO }[R / W] \text { B, H, W } \\ 00000000 \end{gathered}$	
0000B8H	-	-	-	-	Reserved
0000 BCH	-	-	-	-	Reserved
0000COH	SSR [R/W] B, H, W 00001000	SIDR/SODR [R/W] B, H, W XXXXXXXX	SCR [R/W] B, H, W 00000100	SMR [R/W] B, H, W $00-0-\mathrm{H}$	UART3
0000C4H	UTIM [R] H (UTIMR [W] H) 0000000000000000		-	$\begin{aligned} & \text { UTIMC [R/W] B } \\ & 0-00001 \end{aligned}$	U-timer/ UART 3
0000С8н	-	-	-	-	Reserved
0000ССн	-	-	-	-	Reserved
0000DOH	-	-	-	-	Reserved
0000D4H	$\begin{gathered} \hline \text { TCDT [R/ } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { Z/W] H, W } \\ & 00000000 \end{aligned}$	-	$\begin{gathered} \hline \text { TCCS }[R / W] B, H, W \\ 00000000 \end{gathered}$	16-bit Free run Timer

(Continued)

MB91350A Series

Address	Register				Block diagram
	+0	+1	+2	+3	
0000D8н	IPCP1 [R] H, W XXXXXXXX XXXXXXXX		IPCP0 [R]H, W XXXXXXXX XXXXXXXX		16-bit ICU
0000DCH	$\begin{gathered} \text { IPCP3 }[R] H, W \\ X X X X X X X X X X X X X X X \end{gathered}$		IPCP2 [R] H, W XXXXXXXX XXXXXXXX		
0000EOH	-	ICS23 [R/W] B, H, W 00000000	-	$\begin{gathered} \text { ICS01 [R/W] B, H, W } \\ 00000000 \end{gathered}$	
0000E4н	-	-	$\begin{gathered} \text { OCCPO [R/W]H, W } \\ \text { XXXXXXXX XXXXXXXX } \end{gathered}$		16-bit OCU
0000Е8н	-	-	OCCP2 [R/W] H, W XXXXXXXX XXXXXXXX		
0000EСн	-	-	-	-	Reserved
0000FOн	-	-	-	-	
0000F4н	$\begin{gathered} \text { OCS23 [R/W] B, H, W } \\ 111011000001100 \end{gathered}$		OCS01 [R/W] B, H, W111011000001100		16-bit OCU
0000F8н	-	-	-	-	Reserved
0000FCH	-	-	-	-	Reserved
$\begin{aligned} & \text { 000100н } \\ & \text { to } \\ & 000114 \mathrm{H} \end{aligned}$	-	-	-	-	Reserved
000118н	$\begin{gathered} \text { GCN10 [R/W] H } \\ 00110010 _00010000 \end{gathered}$		-	$\begin{gathered} \text { GCN20 [R/W] B } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PPG Control } \\ 0 \end{gathered}$
$00011 \mathrm{CH}_{\mathrm{H}}$	-		-		Reserved
000120н	$\begin{gathered} \text { PTMRO [R] H, W } \\ \text { 11111111_1111111 } \end{gathered}$		PCSR0 [W] H, W XXXXXXXX_XXXXXXXX		PPG0
000124H	PDUT0 [W] H, W XXXXXXXX_XXXXXXXX		PCNH0 [R/W] B, H, W PCNLO [R/W] B, H, W 00000000 00000000		
000128н	-		-		Reserved
00012CH	-		-		
000130н	$\begin{gathered} \text { PTMR2 [R] H, W } \\ \text { 1111111_1111111 } \end{gathered}$		PCSR2 [W] H, W XXXXXXXX_XXXXXXXX		PPG2
000134H	PDUT2 [W] H, W XXXXXXXX XXXXXXXX		PCNH2 [R/W] B, H, W PCNL2 [R/W] B, H, W 00000000 00000000		
000138н	-		-		Reserved
00013C ${ }_{\text {H }}$	-		-		
000140н	$\begin{gathered} \text { PTMR4 [R] H, W } \\ \text { 1111111_1111111 } \end{gathered}$		PCSR4 [W] H, W XXXXXXXX_XXXXXXXX		PPG4
000144н	PDUT4 [W] H, W XXXXXXXX_XXXXXXXX		PCNH4 [R/W] B, H, W PCNL4 [R/W] B, H, W 00000000 00000000		
000148H	-		-		Reserved
$00014{ }_{\text {H }}$	-		-		

(Continued)

MB91350A Series

Address	Register				Block diagram
	+ 0	+1	+2	+3	
$\begin{array}{\|l\|} \hline 000150_{H} \\ \text { to } \\ 0001 \mathrm{FC}_{H} \end{array}$	-				Reserved
000200н	DMACAO [R/W] B, H, W *200000000 0000XXXX XXXXXXXX XXXXXXXX				DMAC
000204н	DMACB0 [R/W] B, H, W0000000000000000 XXXXXXXX XXXXXXXX				
000208н	DMACA1 [R/W] B, H, W *2 $000000000000 \times X X X$ XXXXXXXX XXXXXXXX				
00020С	DMACB1 [R/W] B, H, W0000000000000000 XXXXXXXX XXXXXXXX				
000210н	DMACA2 [R/W] B, H, W *2 $000000000000 \times X X X$ XXXXXXXX XXXXXXXX				
000214	$\begin{gathered} \text { DMACB2 [R/W] B, H, W } \\ 0000000000000000 \text { XXXXXXXX XXXXXXXX } \end{gathered}$				
000218	DMACA3 [R/W] B, H, W *200000000 0000XXXX XXXXXXXX XXXXXXX				
00021CH	DMACB3 [R/W] B, H, W0000000000000000 XXXXXXXX XXXXXXXX				
000220н	DMACA4 [R/W] B, H, W *200000000 0000XXXX XXXXXXXX XXXXXXX				
000224	DMACB4 [R/W] B, H, W0000000000000000 XXXXXXXX XXXXXXXX				
000228н	-				
$\begin{aligned} & 00022 \mathrm{C}_{\mathrm{H}} \\ & \text { to } \\ & 00023 \mathrm{C}_{\mathrm{H}} \end{aligned}$	-				Reserved
000240	DMACR [R/W] B $0 \times X 00000$ XXXXXXXX XXXXXXXX XXXXXXXX				DMAC
$\begin{array}{\|l\|} \hline 000244 \mathrm{H} \\ \text { to } \\ 00027 \mathrm{C}_{\mathrm{H}} \end{array}$	-				Reserved
000280н	$\begin{gathered} \text { FRLR [R/W] B, H, W } \\ ----01^{* 3} \end{gathered}$	-	-	-	F-bus RAM capacity limit
$\begin{array}{\|c} \hline 000284_{H} \\ \text { to } \\ 00038 \mathrm{C}_{\mathrm{H}} \end{array}$	-				Reserved
000390~	$\begin{gathered} \text { DRLR }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ \quad---01^{*} 3 \end{gathered}$	-	-	-	D-bus RAM capacity limit
$\begin{gathered} 000394 н \\ \text { to } \\ 0003 E C_{H} \end{gathered}$	-				Reserved

(Continued)

MB91350A Series

Address	Register				Block diagram
	+ 0	+1	+2	+3	
0003F0н	BSDO [W]XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				Bit Search Module
0003F4н					
0003F8H	BSDC [W]XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0003FCH	BSRR [R]XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000400н	-	$\begin{gathered} \text { DDRH [R/W] B } \\ --000000 \end{gathered}$	$\begin{gathered} \text { DDRI [R/W] B } \\ --000000 \end{gathered}$	-	R-bus Data Direction Register
000404н	$\begin{aligned} & \hline \text { DDRK [R/W] B } \\ & 00000000 \end{aligned}$	$\begin{gathered} \hline \text { DDRL [R/W] B } \\ ---00-00 \end{gathered}$	$\begin{aligned} & \text { DDRM [R/W] B } \\ & --000000 \end{aligned}$	$\begin{aligned} & \text { DDRN [R/W] B } \\ & --000000 \end{aligned}$	
000408H	$\begin{gathered} \text { DDRO [R/W] B } \\ 00000000 \end{gathered}$	-	-		
00040C ${ }_{\text {H }}$	-				
000410н	-	$\begin{aligned} & \text { PFRH [R/W] B } \\ & --00-00- \end{aligned}$	$\begin{aligned} & \text { PFRI [R/W] B } \\ & --00-00- \end{aligned}$	-	R-bus Port Function Register
000414н	-	$\begin{gathered} \hline \text { PFRL [R/W] B } \\ ---00 \end{gathered}$	$\begin{gathered} \text { PFRM [R/W] B } \\ --00-00- \end{gathered}$	$\begin{gathered} \text { PFRN [R/W] B } \\ --000000 \end{gathered}$	
000418н	$\begin{gathered} \hline \text { PFRO [R/W] B } \\ 00000000 \end{gathered}$	-	-		
00041CH	-				Reserved
000420 ${ }^{\text {H }}$	-	$\begin{aligned} & \text { PCRH [R/W] B } \\ & --000000 \end{aligned}$	$\begin{gathered} \hline \text { PCRI [R/W] B } \\ --000000 \end{gathered}$	-	R-bus Pull-up Control Register
000424н	-	-	$\begin{gathered} \hline \text { PCRM }[R / W] \text { B } \\ --000000 \end{gathered}$	PCRN [R/W] B	
000428H	$\begin{aligned} & \hline \text { PCRO [R/W] } \\ & 00000000 \end{aligned}$	-	-	-	
$\begin{gathered} 00042 \mathrm{CH}_{\mathrm{H}} \\ \text { to } \\ 00043 \mathrm{CH}_{\mathrm{H}} \end{gathered}$	-				Reserved
000440н	$\begin{gathered} \text { ICR00 }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR01 [R/W] B, H, W } \\ --11111 \end{gathered}$	$\begin{gathered} \text { ICR02 [R/W] B, H, W } \\ --11111 \end{gathered}$	ICR03 [R/W] B, H, W	Interrupt Control unit
000444н	$\begin{gathered} \text { ICR04 [R/W] B, H, W } \\ --11111 \end{gathered}$	ICR05 [R/W] B, H, W	ICR06 [R/W] B, H, W 11111	ICR07 [R/W] B, H, W	
000448	$\begin{gathered} \text { ICR08 [R/W] B, H, W } \\ --11111 \end{gathered}$	ICR09 [R/W] B, H, W	ICR10 [R/W] B, H, W ---11111	ICR11 [R/W] B, H, W --- 11111	
00044CH	$\begin{gathered} \text { ICR12 } \begin{array}{c} \text { [R/W] B, H, W } \\ ---11111 \end{array} \end{gathered}$	$\begin{gathered} \text { ICR13 [R/W] B, H, W } \\ --11111 \end{gathered}$	ICR14 [R/W] B, H, W ---11111	ICR15 [R/W] B, H, W ---11111	
000450н	$\begin{gathered} \text { ICR16 [R/W] B, H, W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR17 [R/W] B, H, W } \\ --11111 \end{gathered}$	ICR18 [R/W] B, H, W --- 11111	$\begin{gathered} \text { ICR19 [R/W] B, H, W } \\ ---11111 \end{gathered}$	

(Continued)

MB91350A Series

Address	Register				Block diagram
	+ 0	+1	+2	+3	
000454H	$\begin{gathered} \hline \text { ICR20 [R/W] B, H, W } \\ --11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR21 [R/W] B, H, W } \\ --11111 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { ICR22 [R/W] B, H, W } \\ --11111 \end{array}$	$\begin{gathered} \hline \text { ICR23 }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ --11111 \end{gathered}$	Interrupt Control unit
000458н	$\begin{gathered} \text { ICR24 [R/W] B, H, W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR25 [R/W] B, H, W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR26 [R/W] B, H, W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR27 [R/W] B, H, W } \\ ---11111 \end{gathered}$	
00045CH	$\begin{gathered} \text { ICR28 [R/W] B, H, W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR29 [R/W] B, H, W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR30 }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR31 }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ ---11111 \end{gathered}$	
000460н	$\begin{gathered} \hline \text { ICR32 }[\text { R/W] B, H, W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR33 }[\text { R/W] B, H, W } \\ --11111 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { ICR34 [R/W] B, H, W } \\ --11111 \end{array}$	$\begin{gathered} \hline \text { ICR35 [R/W] B, H, W } \\ --11111 \end{gathered}$	
000464н	$\begin{gathered} \text { ICR36 [R/W] B, H, W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR37 [R/W] B, H, W } \\ --11111 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { ICR38 [R/W] B, H, W } \\ --11111 \end{array}$	$\begin{gathered} \text { ICR39 }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ ---11111 \end{gathered}$	
000468н	$\begin{gathered} \text { ICR40 [R/W] B, H, W } \\ --11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR41 [R/W] B, H, W } \\ --11111 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { ICR42 [R/W] B, H, W } \\ --11111 \end{array}$	$\begin{array}{\|c\|} \hline \text { ICR43 [R/W] B, H, W } \\ --11111 \end{array}$	
00046CH	$\begin{gathered} \hline \text { ICR44 [R/W] B, H, W } \\ --11111 \end{gathered}$	ICR45 [R/W] B, H, W	$\begin{array}{\|c\|} \hline \text { ICR46 [R/W] B, H, W } \\ --11111 \end{array}$	$\begin{gathered} \hline \text { ICR47 [R/W] B, H, W } \\ --11111 \end{gathered}$	
$\begin{array}{\|c\|} \hline 000470 н \\ \text { to } \\ 00047 \text { C }_{\boldsymbol{H}} \end{array}$	-				
000480н	$\begin{gathered} \text { RSRR [R/W] B, H, W } \\ 10000000 \end{gathered}$	$\begin{array}{c\|} \hline \text { STCR [R/W] B, H, W } \\ 00110011 \end{array}$	$\begin{gathered} \text { TBCR }[R / W] B, H, W \\ 00 X X X X 00 \end{gathered}$	$\begin{gathered} \text { CTBR [W] B, H, W } \\ \text { XXXXXXX } \end{gathered}$	Clock Control unit
000484н	$\begin{gathered} \text { CLKR }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ 00000000 \end{gathered}$	WPR [W] B, H, W XXXXXXXX	DIVRO [R/W] B, H, W 00000011	$\begin{gathered} \text { DIVR1 [R/W] B, H, W } \\ 00000000 \end{gathered}$	
000488H	- -				Reserved
00048C	$\begin{aligned} & \hline \text { WPCR [R/W] B } \\ & 00--000 \end{aligned}$	-	-	-	Clock timer
000490н	$\begin{aligned} & \text { OSCR [R/W] B } \\ & 000-- \text { XXO } \end{aligned}$	-	-	-	Main oscillation stabilization timer
000494	$\begin{aligned} & \hline \text { RSTOP0 [W] B } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { RSTOP1 [W] B } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { RSTOP2 [W] B } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { RSTOP3 [W] B } \\ ----000 \end{gathered}$	Peripheral stop control
000498 ${ }^{\text {H }}$	-	-	-	-	Reserved
$\begin{aligned} & 00049 \mathrm{C}_{\mathrm{H}} \\ & \text { to } \\ & 0005 \mathrm{FC} \end{aligned}$			-		Reserved
000600н	-	-	DDR2 [R/W] B 00000000	$\begin{gathered} \text { DDR3 [R/W] B } \\ 00000000 \end{gathered}$	
000604	$\begin{aligned} & \hline \text { DDR4 [R/W] B } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \hline \text { DDR5 [R/W] B } \\ & 00000000 \end{aligned}$	$\begin{gathered} \hline \text { DDR6 [R/W] B } \\ 00000000 \end{gathered}$	-	T-unit Data
000608н	$\begin{gathered} \text { DDR8 [R/W] B } \\ -000000 \end{gathered}$	DDR9 [R/W] B --00000	$\begin{gathered} \text { DDRA [R/W] B } \\ ---0000 \end{gathered}$	-	
00060С ${ }_{\text {н }}$	-		-		
000610н	-	-	-	-	T-unit Port
000614н	-	-	$\begin{gathered} \hline \text { PFR6 [R/W] B } \\ 11111111 \end{gathered}$	-	Function Register

(Continued)

MB91350A Series

(Continued)

MB91350A Series

Address	Register				Block diagram
	+ 0	+1	+2	+3	
000678н	IOWRO [R/W] B, H, W XXXXXXXX	IOWR1 [R/W] B, H, W XXXXXXXX	IOWR2 [R/W] B, H, W XXXXXXXX	-	T-unit
$00067 \mathrm{CH}_{\text {H }}$	-				
000680н	$\begin{gathered} \text { CSER }[R / W] B, H, W \\ 000000001 \end{gathered}$	-	-	$\begin{aligned} & \text { TCR [W] B, H, W } \\ & \text { 0000XXXX } \end{aligned}$	
$\begin{array}{\|c\|} \hline 000684 \boldsymbol{H} \\ \text { to } \\ 000 \mathrm{AFC} \end{array}$	-				Reserved
000B00н	$\begin{gathered} \text { ESTSO [R/W] } \\ \text { X0000000 } \end{gathered}$	ESTS1 [R/W] XXXXXXXX	$\begin{aligned} & \hline \text { ESTS2 [R] } \\ & \text { 1XXXXXXX } \end{aligned}$	-	DSU (Evaluation chip only)
000B04 ${ }^{\text {H }}$	$\begin{gathered} \text { ECTLO [R/W] } \\ 0 \times 000000 \end{gathered}$	$\begin{gathered} \text { ECTL1 [R/W] } \\ 00000000 \end{gathered}$	$\begin{aligned} & \hline \text { ECTL2 [W] } \\ & 000 \times 0000 \end{aligned}$	$\begin{gathered} \text { ECTL3 [R/W] } \\ 00 \times 00 \mathrm{X} 11 \end{gathered}$	
000B08н	$\begin{aligned} & \text { ECNTO [W] } \\ & \text { XXXXXXX } \end{aligned}$	ECNT1 [W] XXXXXXXX	$\begin{aligned} & \hline \text { EUSA [W] } \\ & \text { XXX00000 } \end{aligned}$	$\begin{aligned} & \text { EDTC [W] } \\ & 0000 X X X X \end{aligned}$	
000B0CH	$\begin{gathered} \text { EWPT [R] } \\ 0000000000000000 \end{gathered}$		-		
000B10н	$\begin{gathered} \text { EDTRO [W] } \\ X X X X X X X X X X X X X \end{gathered}$		EDTR1 [W] XXXXXXXX XXXXXXXX		
$\begin{aligned} & \hline 000 \mathrm{~B} 14 \mathrm{H} \\ & \text { to } \\ & 000 \mathrm{~B} 1 \mathrm{C}_{\mathrm{H}} \end{aligned}$	-				
000B20н	EIAO [W]XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B24 ${ }_{\text {H }}$					
000B28 ${ }^{\text {+ }}$	EIA2 [W]XXXXXXXX $X X$				
000B2CH					
000B30н	EIA4 [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B344					
000B38 ${ }_{\text {н }}$					

(Continued)

MB91350A Series

Address	Register				Block diagram
	+ 0	+1	+2	+3	
000B3CH	EIA7 [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				DSU (Evaluation chip only)
000B40н	EDTA [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B444	EDTM [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B48 ${ }^{\text {+ }}$	EOAO [W]XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B4CH					
000B50н					
000B54н	EPSR [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B58н					
000B5CH	EIAM1 [W]$x X X X X X X X ~ X X X X X X X X ~ X X X X X X X X ~ X X X X X X X X ~$				
000B60н	EOAM0/EODM0 [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B64н	EOAM1/EODM1 [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B68\%	EODO [W]XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B6CH	EOD1 [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
$\begin{aligned} & \text { 000B70н } \\ & \text { to } \\ & 000 \mathrm{BFC} \end{aligned}$	-				Reserved
000C00н	Register access disallowed TEST				Interrupt Control unit
$\begin{aligned} & \hline 000 \mathrm{C} 04 \mathrm{H} \\ & \text { to } \\ & 000 \mathrm{C} 14 \mathrm{H} \end{aligned}$	Register access disallowed TEST				R-bus test
$\begin{gathered} 000 \mathrm{C} 18 \mathrm{H} \\ \text { to } \\ 000 \mathrm{FFC} \end{gathered}$	-				Reserved

(Continued)

MB91350A Series

(Continued)

Address	Register				Block diagram
	+ 0	+1	+2	+3	
001000н	DMASA0 [R/W] W XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				DMAC
001004н	DMADA0 [R/W] W XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
001008н	DMASA1 [R/W] W XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
00100CH	DMADA1 [R/W] W XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
001010н	DMASA2 [R/W] W XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
001014н	DMADA2 [R/W] W XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
001018H	DMASA3 [R/W] W XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
00101CH	DMADA3 [R/W] W XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
001020н	DMASA4 [R/W] W XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
001024	DMADA4 [R/W] W XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
$\begin{array}{\|c\|} \hline 001028 \text { н } \\ \text { to } \\ 001 \text { FFC } \end{array}$	-				Reserved
007000 ${ }^{\text {H }}$	$\begin{gathered} \text { FLCR [R/W] } \\ 0110 X 000 \end{gathered}$	-	-	-	FLASH MEMORY
007004н	$\begin{gathered} \text { FLWC [R/W] } \\ 00010011 \end{gathered}$	-	-	-	
007008н	-	-	-	-	
00700С ${ }_{\text {н }}$	-	-	-	-	
007010H	-	-	-	-	
$\begin{array}{\|c\|} \hline 007014 \mathrm{H} \\ \text { to } \\ 0070 \mathrm{FF}_{\mathrm{H}} \end{array}$	-				Reserved

*1 : Test register access barred.
*2 : The lower 16-bit (DTC(15: 0)) of DMACA0 to DMACA4 cannot be accessed in byte.
*3 : The built-in RAM should be use after the change of setting, because the built-in RAM limits the usable area after the reset release. If setting of the usable area is changed, put a NOP instruction or more to the end of command.

MB91350A Series

4. Vector table

Interrupt source	Interrupt number		Interrupt level	Offset	TBR default address	RN
	10	16				
Reset	0	00	-	3FCH	000FFFFC ${ }_{\text {¢ }}$	-
Mode vector	1	01	-	3F8H	000FFFF8\%	-
System reserved	2	02	-	3F4H	000FFFF4 ${ }_{\text {н }}$	-
System reserved	3	03	-	3FOH	000FFFFF0н	-
System reserved	4	04	-	3ECH	000FFFECH	-
System reserved	5	05	-	3E8н	000FFFE8н	-
System reserved	6	06	-	3E4н	000FFFE4н	-
Coprocessor absent trap	7	07	-	3E0н	000FFFE0н	-
Coprocessor error trap	8	08	-	3DCH	000FFFDCH	-
INTE instruction	9	09	-	3D8н	000FFFD8н	-
Instruction break exception	10	0A	-	3D4H	000FFFD4н	-
Operand break trap	11	OB	-	3D0н	000FFFDD ${ }_{\text {н }}$	-
Step trace trap	12	OC	-	3СС ${ }_{\text {H }}$	000FFFCCH	-
NMI request (tool)	13	OD	-	3C8H	000FFFFC8 ${ }_{\text {н }}$	-
Undefined instruction exception	14	OE	-	3С4н	000FFFFC4 ${ }_{\text {н }}$	-
NMI request	15	OF	15 (Fн) fixed	3С0н	000FFFFC0н	-
External interrupt 0	16	10	ICR00	3ВСн	000FFFBC ${ }_{\text {H }}$	6
External interrupt 1	17	11	ICR01	3В8н	000FFFB8н	7
External interrupt 2	18	12	ICR02	3В4н	000FFFB4 ${ }_{\text {н }}$	11
External interrupt 3	19	13	ICR03	3В0н	000FFFB0н	-
External interrupt 4	20	14	ICR04	ЗАСн	000FFFACH	-
External interrupt 5	21	15	ICR05	3A8H	000FFFA8H	-
External interrupt 6	22	16	ICR06	3А4 ${ }_{\text {н }}$	000FFFA4 ${ }_{\text {н }}$	-
External interrupt 7	23	17	ICR07	3АО ${ }_{\text {H}}$	000FFFAOH	-
Reload timer 0	24	18	ICR08	39С ${ }_{\text {H }}$	000FFF9C	8
Reload timer 1	25	19	ICR09	398н	000FFF98 ${ }_{\text {н }}$	9
Reload timer 2	26	1A	ICR10	394 H	000FFF94н	10
UART (Reception completed)	27	1B	ICR11	390H	000FFF90н	0
UART (Reception completed)	28	1C	ICR12	38 CH	000FFF88C ${ }_{\text {н }}$	1
UART (Reception completed)	29	1D	ICR13	388H	000FFF888	2
UART0 (RX completed)	30	1E	ICR14	384 H	000FFF84 ${ }_{\text {н }}$	3
UART1 (RX completed)	31	1F	ICR15	380 H	000FFF880н	4
UART2 (RX completed)	32	20	ICR16	$37 \mathrm{CH}_{\mathrm{H}}$	000FFF7CH	5
DMAC0 (end, error)	33	21	ICR17	378H	000FFF78	-
DMAC1 (end, error)	34	22	ICR18	374 ${ }_{\text {H }}$	000FFF74 ${ }_{\text {¢ }}$	-

(Continued)

MB91350A Series

Interrupt source	Interrupt number		Interrupt level	Offset	TBR default address	RN
	10	16				
DMAC2 (end, error)	35	23	ICR19	370 H	000FFF70н	-
DMAC3 (end, error)	36	24	ICR20	36CH	000FFF6Cн	-
DMAC4 (end, error)	37	25	ICR21	368H	000FFF68н	-
A/D	38	26	ICR22	364	000FFF64н	15
${ }^{12} \mathrm{C}$	39	27	ICR23	360H	000FFF60н	-
System reserved	40	28	ICR24	35CH	000FFF5 ¢ $_{\text {н }}$	-
System reserved	41	29	ICR25	358H	000FFF58н	12
SIO 6	42	2A	ICR26	354	000FFF54 ${ }_{\text {н }}$	13
SIO 7	43	2B	ICR27	350 H	000FFF50н	14
UART 3(Reception completed)	44	2C	ICR28	$34 \mathrm{CH}_{\mathrm{H}}$	$000 \mathrm{FFF} 4 \mathrm{CH}_{\text {н }}$	-
UART 0 (RX completed)	45	2D	ICR29	348H	000FFF48н	-
Reload timer 3/main oscillation stabilization wait timer	46	2E	ICR30	344H	000FFF44 ${ }_{\text {H }}$	-
Timebase timer overflow	47	2F	ICR31	340 ${ }^{\text {H}}$	000FFFF40н	-
System reserved	48	30	ICR32	$33 \mathrm{CH}_{\mathrm{H}}$	000FFF3CH	-
Clock counter	49	31	ICR33	338	000FFF38	-
U/D Counter 0	50	32	ICR34	334 ${ }_{\text {¢ }}$	000FFFF34	-
System reserved	51	33	ICR35	330 ${ }^{\text {H}}$	000FFF30 ${ }_{\text {н }}$	-
PPG 0	52	34	ICR36	32 CH	000FFF2CH	-
PPG 2	53	35	ICR37	328н	000FFF28н	-
PPG 4	54	36	ICR38	324 ${ }_{\text {H }}$	000FFF24 ${ }_{\text {н }}$	-
16-bit free-run timer	55	37	ICR39	320 ${ }_{\text {H}}$	000FFF20н	-
ICU 0 (capture)	56	38	ICR40	31 CH	000FFF1C ${ }_{\text {н }}$	-
ICU 1(capture)	57	39	ICR41	318н	000FFF18н	-
ICU 2/3(capture)	58	3A	ICR42	314	000FFF14 ${ }_{\text {н }}$	-
OCU 0 (match)	59	3B	ICR43	310 H	000FFFF10н	-
OCU 2 (match)	60	3C	ICR44	$30 \mathrm{CH}_{\mathrm{H}}$	000FFFF0C ${ }_{\text {H }}$	-
System reserved	61	3D	ICR45	308н	000FFFF08н	-
System reserved	62	3E	ICR46	304 ${ }_{\text {H }}$	000FFFF04 ${ }_{\text {н }}$	-
Interrupt delay source bit	63	3F	ICR47	300 H	000FFFO0\%	-
System reserved (Used by REALOS)	64	40	-	2 FCH	000FFEFCH	-
System reserved (Used by REALOS)	65	41	-	2F8H	000FFEF8 ${ }_{\text {H }}$	-
System reserved	66	42	-	2F4 ${ }_{\text {H }}$	000FFEF4 ${ }_{\text {н }}$	-
System reserved	67	43	-	2FOH	000FFEFOH	-
System reserved	68	44	-	2 ECH	000FFEEC ${ }_{\text {H }}$	-

(Continued)

MB91350A Series

(Continued)

Interrupt source	Interrupt number		Interrupt level	Offset	TBR default address	RN
	10	16				
System reserved	69	45	-	2Е8н	000FFEE8н	-
System reserved	70	46	-	2E4н	000FFEE4н	-
System reserved	71	47	-	2EOH	000FFEEOн	-
System reserved	72	48	-	2DCH	000FFEDCH	-
System reserved	73	49	-	2D8н	000FFED8н	-
System reserved	74	4A	-	2D4	000FFED4н	-
System reserved	75	4B	-	2D0н	000FFEDOн	-
System reserved	76	4C	-	2 CCH	000FFECCH	-
System reserved	77	4D	-	2С8н	000FFEC8	-
System reserved	78	4E	-	2C4H	000FFEC4	-
System reserved	79	4F	-	2 COH	000FFECOн	-
Used by INT instruction	$\begin{gathered} 80 \\ \text { to } \\ 255 \end{gathered}$	$\begin{aligned} & 50 \\ & \text { to } \\ & \text { FF } \end{aligned}$	-	$\begin{gathered} 2 \mathrm{BCH} \\ \text { to } \\ 000_{\mathrm{H}} \end{gathered}$	$\begin{aligned} & \text { O00FFEBCH } \\ & \text { to } \\ & 000 \mathrm{FFCOOH} \end{aligned}$	-

MB91350A Series

- PERIPHERAL RESOURCES

1. Interrupt Controller

(1) Description

The interrupt controller manages interrupt reception and arbitration.

Hardware configuration

This module consists of the following components:

- ICR register
- Interrupt priority determination circuit
- Interrupt level and interrupt number (vector) generator
- HOLD request removal request generator
- Main function

This module has the following major functions:

- Detect NMI and interrupt requests
- Prioritize interrupts (according to level and number)
- Notify interrupt level of selected interrupt request (to CPU)
- Notify interrupt number of selected interrupt request (to CPU)
- Request (to the CPU) to return from stop mode in response to an NMI or interrupt request with interrupt level other than "11111"
- HOLD request cancel request issued to the bus master

MB91350A Series

(2) Register list

ICR register

	7	6	5	4	3	2	1	0
ICR00	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR01	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR02	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR03	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR04	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR05	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR06	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR07	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR08	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR09	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR10	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR11	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR12	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR13	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR14	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR15	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR16	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR17	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR18	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR19	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR20	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR21	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR22	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR23	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR24	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR25	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR26	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR27	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR28	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR29	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR30	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR31	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO

(Continued)

MB91350A Series

(Continued)

ICR32
ICR33
ICR34
ICR35
ICR36
ICR37
ICR38
ICR39
ICR40
ICR41
ICR42
ICR43
ICR44
ICR45
ICR46
ICR47

7	6	5	4	3	2	1	0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0

Hold request cancel request register (HRCL)
HRCL

MHALTI	-	-	LVL4	LVL3	LVL2	LVL1	LVL0

MB91350A Series

(3) Block diagram

MB91350A Series

2. External Interrupt/NMI Control

(1) Description

The external interrupt control unit is the block that controls external interrupt requests input to $\overline{\text { NMI }}$ and INTO to INT7. The level can be selected from "H", "L", rising edge, or falling edge (except for NMI).

(2) Register list

External interrupt enable register (ENIR)

7	6	5	4	3	2	1	0
EN7	EN6	EN5	EN4	EN3	EN2	EN1	EN0

External interrupt request register (EIRR)

15	14	13	12	11	10	9	8
ER7	ER6	ER5	ER4	ER3	ER2	ER1	ER0

Request level setting register (ELVR)

15	14	13	12	11	10	9	8
LB7	LA7	LB6	LA6	LB5	LA5	LB4	LA4

7	6	5	4	3	2	1	0
LB3	LA3	LB2	LA2	LB1	LA1	LB0	LA0

The above registers (for 8 channels) are available in a set; there are a total of 8 channels.

(3) Block diagram

MB91350A Series

3. REALOS-related Hardware

REALOS-related hardware is used by the real-time OS. Therefore, it cannot be used by user programs when REALOS is used.

- Delay interrupt module
(1) Description

The delayed interrupt module generates a task switching interrupt.
This module enables software to issue or cancel an interrupt request to the CPU.

(2) Register list

Delayed Interrupt Control Register (DICR)

(3) Block diagram

MB91350A Series

- Bit Search Module

(1) Description

The bit search module searches data written to an input register for " 0 ", "1", or a change point and returns the detected bit position.

(2) Register list

0 detection data register (BSDO)
1 detection data register (BSD1)
Data register for transition detection (BSDC)
Detection result register (BSRR)

(3) Block diagram

MB91350A Series

4. 8-bit Up/Down Counter

(1) Description

This block is the up/down counter/timer consisting of six event input pins, an 8 -bit up/down counter, an 8 -bit reload/compare register, and their control circuit .
The MB91F353A/MB91353A/MB91352A contains 2 channels of 8 -bit up/down counter in this block.
This module has the following features.

- 8 -bit count register enabling counting from (0)d to (255)d
- Four different count modes available with selectable count clocks

Count mode
—— Timer mode
— Up/down count mode
— Phase difference count mode (2 Multiplication)
— Phase difference count mode (4 Multiplication)

- Capable of selecting a count clock signal in timer mode, from among the inputs from two internal clocks and an internal circuit
Count clock (When operating at 25 MHz)

- Capable of selecting the detection edge of the external pin input signal in up/down count mode

Detection edge

- Phase difference count mode suitable for counting for an encoder such as a motor, capable of easily counting the rotation angle and the number of revolutions at high precision by inputting the phase-A, phase-B, and phase-Z outputs of the encoder
- ZIN pin available for two functions selectable (valid in all modes)

ZIN Pin

- Compare and reload functions available not only separately but also in combination for up/down counting at an arbitrary width. Compare/reload function
- Compare function (comparison interrupt request output)
- Compare function (comparison interrupt request output and counter clear)
- Reload function (underflow interrupt request output and reload)
Compare/reload function
(Comparison interrupt request output and counter clear; underflow interrupt
request output and reload)
Compare/reload disabled
- Count direction flag used to identify the preceding count direction
- Capable of controlling the independent generations of interrupts at a compare match, reload (underflow), overflow, or at a count direction change

MB91350A Series

(2) Register list

2.1 Up/down count resister (UDCR)

Up/down count resister ch0 (UDCR0)

7	6	5	4	3	2	1	0
D07	D06	D05	D04	D03	D02	D01	D00

2.2 Reload compare resister (RCR)

Reload compare resister ch0 (RCR0)

7	6	5	4	3	2	1	0
D07	D06	D05	D04	D03	D02	D01	D00

2.3 Counter status register(CSR)

Counter status register ch0 (CSRO)

7	6	5	4	3	2	1	0
CST	CIT	UDI	CM	OVF	UD	UD	UD

2.4 Counter control resister (CCRL)

Counter control resister ch0 (CCRLO)

7	6	5	4	3	2	1	0
Reserve	CTU	UC	RLD	UD	CGS	CGE	CGE

2.5 Counter control resister (CCRH)

Counter control resister ch0 (CCRH)

15	14	13	12	11	10	9	8
M16	CDC	CFI	CLK	CM	CM	CES	CES

MB91350A Series

(3) Block diagram

MB91350A Series

5. 16-bit Reload Timer

(1) Description

The 16-bit timer consists of a 16-bit down counter, 16-bit reload register, internal clock, clock generation prescaler, and control register.
The clock source can be selected from among three internal clocks (prepared by frequency dividing the machine clock by $2 / 8 / 32$, and also by $64 / 128$ only for ch3) and an external event.
The interrupt can be used to initiate DMA transfer.
The MB91F353A/MB91353A/MB91352A contains 4 channels of this timer.

(2) Register list

Control status register (TMCSR)

c	6	5	4	3	2	1	0
Reserved	-	OUTL	RELD	INTE	UF	CNTE	TRG

16-bit timer register (TMR)

16-bit reload register (TMRLR)

MB91350A Series

(3) Block diagram

MB91350A Series

6. PPG (Programable Pulse Generator)

The PPG can efficiently output highly precise PWM waveforms.
The MB91F353A/MB91353A/MB91352A contains 3 channels of PPG timer.

(1) Description

Each channel consists of a 16 -bit down counter, 16 -bit data register with cycle setting buffer, 16 -bit compare register with duty ratio setting buffer, and pin control unit.
The count clocks for the 16 -bit down counter can be selected from the following 4 types :(peripheral clock $\phi, \phi /$ 4, $\phi / 16, \phi / 64$)
The counter is initialized to "FFFFF" at a reset or counter borrow.
PPG outputs (PPG0, PPG2, PPG4) are provided for each channel.
PPG outputs (PPG0, PPG2, PPG4) are provided for each channel.
(2) Register list

(3) Block diagram (overall configuration for 1 channel)

MB91350A Series

7. U-timer (16-bit timer for UART baud rate generation)

(1) Description

The U-timer is a 16 -bit timer for generating the baud rate for the UART. An arbitrary baud rate can be set depending on the combination of the chip operating frequency and U-timer reload value. The MB91F353A/MB91353A/MB91352A contains 4 channels of this timer.
(2) Register list
\square
(3) Block diagram

MB91350A Series

8. UART

(1) Description

The UART is a serial I/O port for asynchronous (start-stop) or CLK synchronous communication. This module has the features listed below. The MB91F353A/MB91353A/MB91352A contains 4 channels of UART.

- Full duplex double buffer
- Asynchronous (start-stop synchronized) or CLK synchronized transmission
- Supports multi-processor mode
- Completely programmable baud rate.

Arbitrary baud rate set by built-in timer (See the section for "U-timer".)

- Variable baud rate can be input from an external clock.
- Error detection functions(parity, framing, overrun)
- Transmission signal format is NRZ
- UART Ch0 to Ch2 can start DMA transfer using interrupts (Ch3 and Ch4 cannot start DMA transfer).
- Capable of clearing DMAC interrupt source by writing to DRCL register

(2) Register list

Serial input register/serial output register (SIDR/SODR)

7	6	5	4	3	2	1	0
D7	D6	D5	D4	D3	D2	D1	D0

Serial status register (SSR)

7	6	5	4	3	2	1	0
PE	ORE	FRE	RDRF	TDRE	BDS	RIE	TIE

Serial mode register (SMR)

7	6	5	4	3	2	1	0
MD1	MD0	-	-	CSO	-	-	-

Serial control register (SCR)

7	6	5	4	3	2	1	0
PEN	P	SBL	CL	A / D	REC	RXE	TXE

DRCL register (DRCL)

MB91350A Series

(3) Block diagram

MB91350A Series

9. Extended I/O serial interface (SIO)

(1) Description

This block is a serial I/O interface that allows data transfer using clock synchronization. It is composition of 8 -bit $\times 1$ channel.
LSB-first or MSB-first transfer mode can be selected for data transfer.
The MB91F353A/MB91353A/MB91352A contains 3 channels of this SIO.

The serial I/O interface operates in 2 modes:

- Internal shift clock mode: Transfer data in synchronization with the internal clock.
- External shift clock mode: Transfer data in synchronization with the clock supplied via the external pin (SCK).

By manipulating the general-purpose port sharing the external pin (SCK) in this mode, data can also be transferred by a CPU instruction.

(2) Register list

Serial mode control status register (SMCS)

15	14	13	12	11	10	9	8
SMD2	SMD1	SMD0	SIE	SIR	BUSY	STOP	STRT

7	6	5	4	3	2	1	0
-	-	-	-	MODE	BDS	-	-

SIO test resister (SES)

SDR (Serial Data Register) (SDR)

7	6	5	4	3	2	1	0
D7	D6	D5	D4	D3	D2	D1	D0

SIO prescaler control register (CDCR)

15	14	13	12	11	10	9	8
MD	-	-	-	DIV3	DIV2	DIV1	DIV0

DMAC interrupt source clear register (SRCL)

MB91350A Series

(3) Block diagram

MB91350A Series

10. 16-bit Free-run Timer

(1) Description

The 16 -bit free-running timer consists of a 16 -bit up counter, control register, and status register. The count values of this timer are used as the base timer for the output compares and input capture modules.

- Four count clock frequencies are available.
- An interrupt can be generated at a counter overflow.
- The counter can be initialized upon a match with compare register 0 of the output compare unit, depending on the mode.

(2) Register list

Timer data register (upper) (TCDT)

15	14	13	12	11	10	9	8
T 15	T 14	T 13	T 12	T 11	T 10	T 9	T 8

Timer data register (lower) (TCDT)

7	6	5	4	3	2	1	0
T07	T06	T05	T04	T03	T02	T01	T00

Timer control status register (lower) (TCCS)

7	6	5	4	3	2	1	0
ECLK	IVF	IVFE	STOP	MODE	CLR	CLK1	CLK0

(3) Block diagram

MB91350A Series

11. Input Capture

(1) Description

This module detects a rising or falling edge or both edges of an external input signal and stores the 16 -bit freerunning timer value in a register. In addition, the module can generate an interrupt upon detection of an edge.
The input capture module consists of input capture data registers and a control register.
Each input capture unit has a corresponding external input pin.

- The detection edge of an external input can be selected from among 3 types.

Rising edge
Falling edge
Both edges

- An interrupt can be generated upon detection of a valid edge of an external input.
(2) Register list

Input capture data register (upper) (IPCPO to 3)

15	14	13	12	11	10	9	8
CP15	CP14	CP13	CP12	CP11	CP10	CP09	CP08

Input capture data register (lower) (IPCPO to 3)

7	6	5	4	3	2	1	0
CP07	CP06	CP05	CP04	CP03	CP02	CP01	CP00

Input capture control register (ICS23)

7	6	5	4	3	2	1	0
ICP3	ICP2	ICE3	ICE2	EG31	EG30	EG21	EG20

Input capture control register (ICS01)

7	6	5	4	3	2	1	0
ICP1	ICP0	ICE1	ICE0	EG11	EG10	EG01	EG00

MB91350A Series

(3) Block diagram

16-bit timer counter value

MB91350A Series

12. Output Compare

(1) Description

The output compare module consists of 16 -bit compare registers, compare output latch, and control register. When the 16 -bit free-running timer value matches the compare register value, the output level is inverted and an interrupt is issued.
The MB91F353A/MB91353A/MB91352A contains 2 channels of this block.

This module has the features listed below.

- Capable of using the two compare registers independently. Output pins and interrupt flags corresponding to the compare registers
- Capable of setting the initial value for each output pin.
- Interrupts can be generated upon a compare match.
- The ch0 compare register is used as the compare clear register for the 16 -bit free-running timer.

(2) Register list

Compare register (OCCPO, 2)

15	14	13	12	11	10	9	8
C 15	C 14	C 13	C 12	C 11	C 10	C 09	C 08

Compare register (ОССРО, 2)

7	6	5	4	3	2	1	0
C 07	C 06	C 05	C 04	C 03	C 02	C 01	C 00

Output control register (OCSO1)

Output control register (OCS23)

MB91350A Series

(3) Block diagram

MB91350A Series

13. $I^{2} \mathrm{C}$ Interface

(1) Description

The $I^{2} \mathrm{C}$ interface is a serial I/O port supporting the Inter-IC bus, operating as a master/slave device on the $I^{2} \mathrm{C}$ bus. It has the following features:

- Master/slave sending and receiving
- Arbitration function
- Clock sync function
- Slave address and general call address detection function
- Ditecting function of transmitting direction
- Repeated start condition generation and detection function
- Bus error detection function
- 10-bit/7-bit slave address
- Slave address receive acknowledge control when in master mode
- Slave address receive acknowledge control when in master mode. Support for composite slave addresses
- Capable of interruption when a transmission or bus error occurs
- Standard mode (Max 100 Kbps)/High speed mode (Max 400 Kbps) supported

MB91350A Series

(2) Register list

Bus control register (IBCR)

15	14	13	12	11	10	9	8
BER	BEIE	SCC	MSS	ACK	GCAA	INTE	INT

Bus status register (IBSR)

7	6	5	4	3	2	1	0
BB	RSC	AL	LRB	TRX	AAS	GCA	ADT

10-bit slave address resister (ITBA)

15	14	13	12	11	10	9	8
-	-	-	-	-	-	TA9	TA8

7	6	5	4	3	2	1	0
TA7	TA6	TA5	TA4	TA3	TA2	TA1	TA0

10-bit slave address mask resister (ITMK)

7	6	5	4	3	2	1	0
TM7	TM6	TM5	TM4	TM3	TM2	TM1	TM0

7-bit slave address resister (ISBA)

7	6	5	4	3	2	1	0
-	SA6	SA5	SA4	SA3	SA2	SA1	SA0

7-bit slave address mask resister (ISMK)

15	14	13	12	11	10	9	8
ENSB	SM6	SM5	SM4	SM3	SM2	SM1	SM0

D/A data register (IDAR)

7	6	5	4	3	2	1	0
D7	D6	D5	D4	D3	D2	D1	D0

Clock control register (ICCR)

15	14	13	12	11	10	9	8
TEST	-	EN	CS4	CS3	CS2	CS1	CS0

Clock disable register (IDBL)

MB91350A Series

(3) Block diagram

MB91350A Series

14. A/D converter

(1) Description

The A/D converter converts the analog input voltage into a digital value. It has the following features:

- Conversion time: $1.48 \mu \mathrm{~s}$ minimum per channel
- Employing serial / parallel conversion type for sample \& hold circuit.
- 10-bit resolution (switchable between 8 and 10 bits)
- Program selection of the analog input from among 8 channels
- Conversion mode

Single conversion mode: Convert 1 selected channel. Scan conversion mode: Scan up to 4 channels.

- Converted data is stored in the data buffer.
- An interrupt request to the CPU can be generated upon completion of A/D conversion. The interrupt can be used to start DMA transfer.
- The startup source can be selected from among software, external trigger (falling edge), and reload timer ch2 (rising edge).

(2) Register list

Control status register (ADCS2/ADCS1)

Conversion time setting resister (ADCT)

Converted data register 0 (ADTH0/ADTLO)

ADTH0	ADTLO

Converted data register 1 (ADTH1/ADTL1)

ADTH1	ADTL1

Converted data register 2 (ADTH2/ADTL2)

ADTH2	ADTL2

Converted data register 3 (ADTH3/ADTL3)

ADTH3	ADTL3

MB91350A Series

(3) Block diagram

MB91350A Series

15. 8-bit D/A converter

(1) Description

This block contains 2 channels of 8 -bit D/A converters. The D/A converter register can be used to control the independent output of each channel. The block has the following features.

- Power saving function
- 3.3 V Interface
(2) Register list

D/A data register 0, 1 (DADRO, DADR1)

7	6	5	4	3	2	1	0
DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0

D/A control register 0, 1 (DACRO, DACR1)

(3) Block diagram

MB91350A Series

16. DMAC (DMA Controller)

(1) Description

This module realize direct memory access (DMA) transfer with the FR family device.
DMA transfer controlled by this module enables many types of data transfer to be performed at high speed without CPU intervention, thereby improving system performance.

- Hardware configuration

This model consists mainly of the following components:

- Independent DMA channels $\times 5$ channels
- 5 channels independent access control circuits
- 32-bit address register (Supports reloading: 2 per channel)
- 16 -bit transfer count register (Supports reloading: 1 per channel)
- 4-bit block count register (1 per channel)
- 2-cycle transfer
- Main function

This module has the following major functions for data transfer:

- Supports independent data transfer for multiple channels (5 channels)
(1) Priority order $($ ch0 $>$ ch1 $>$ ch2 $>$ ch3 $>$ ch4)
(2) Order can be reversed for ch0 and ch1
(3) DMAC activation triggers
- Internal peripheral request (Interrupt request sharing, including external interrupts)
- Software request (register write)
(4)Transmission mode
- Demand transfer, burst transfer, step transfer, or block transfer
- Addressing mode: 32-bit full addressing (increment, decrement, or fixed) (address increment can be in the range -255 to +255)
- Data length: Byte, halfword, or word
- Single-shot or reload operation selectable

MB91350A Series

(2) Register Description

			31	16	15	0
ch0 Control/status	Register A	(DMACAO)				
	Register B	(DMACBO)				
ch1 Control/status	Register A	(DMACA1)				
	Register B	(DMACB1)				
ch2 Control/status	Register A	(DMACA2)				
	Register B	(DMACB2)				
ch3 Control/status	Register A	(DMACA3)				
	Register B	(DMACB3)				
ch4 Control/status	Register A	(DMACA4)				
	Register B	(DMACB4)				
Overall control register		(DMACR)				
ch0 Transfer source address register		(DMASAO)				
		(DMADAO)				
ch1 Transfer source address register		(DMASA1)				
		(DMADA1)				
ch2 Transfer source address register		(DMASA2)				
		(DMADA2)				
ch3 Transfer source address register		(DMASA3)				
		(DMADA3)				
ch4 Transfer source address register		(DMASA4)				
		(DMADA4)				

MB91350A Series

(3) Block diagram

MB91350A Series

■ ELECTRICAL CHARACTERISTICS

1. Abusolute Maximum Rating

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1	Vcc	Vss-0.5	Vss +4.0	V	*2
Analog power supply voltage*1	DAvc	Vss - 0.5	$\mathrm{Vss}+4.0$	V	*3
Analog power supply voltage*1	AVcc	V ${ }_{\text {SS }}-0.5$	$V_{s s}+4.0$	V	*3
Analog reference voltage*1	AVRH	Vss - 0.5	$\mathrm{Vss}+4.0$	V	*3
Input voltage*1	V	Vss - 0.5	$\mathrm{Vcc}+0.5$	V	*8
Input voltage (Nch open-drain) *1	Vind	Vss-0.5	Vss +5.5	V	
Analog pin input voltage*1	VIA	Vss-0.5	AVcc +0.5	V	*8
Output voltage*1	Vo	Vss-0.5	$V_{c c}+0.5$	V	
Maximum clamp current	Iclamp	-2.0	+ 2.0	mA	*7
Total maximum clamp current	$\Sigma \mid$ Iclamp\|	-	20	mA	*7
"L" level maximum output current	los	-	10	mA	*4
"H" level maximum output current (Nch open-drain)	lolnd	-	20	mA	
"L" level average output current	lolav	-	8	mA	*5
" H " level average output current (Nch open-drain)	lolavnd	-	15	mA	
"L" level total maximum output current	Σ lob	-	100	mA	
"L" level total average output cur rent	Σ lolav	-	50	mA	*6
"H" level maximum output current	Іон	-	-10	mA	*4
"H" level average output current	lohav	-	-4	mA	*5
"H" level total maximum output current	Σ loh	-	- 50	mA	
"H" level total average output cur rent	Σ Іона⿱	-	- 20	mA	*6
Power consumption	PD	-	850	mW	
Operating temperature	Ta	-40	+ 85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tsta	-	+125	${ }^{\circ} \mathrm{C}$	

*1 : The parameter is based on $\mathrm{Vss}=\mathrm{DAvs}=\mathrm{AV} s \mathrm{~s}=0 \mathrm{~V}$.
*2 : Vcc must not be lower than $\mathrm{V}_{\mathrm{ss}}-0.3 \mathrm{~V}$.
*3 : Be careful not to exceed "VCC +0.3 V ", for example, when the power is turned on.
*4 : The maximum output current is the peak value for a single pin.
*5 : The average output current is the average current for a single pin over a period of 100 ms .
*6 : The total average output current is the average current for all pins over a period of 100 ms .
*7 : • Relevant pins: Port2, 3, 4, 5, 6, 8, 9, A, H, I, K, M, N, O and AN (A/D input)

- Use within recommended operating conditions.
- Use at DC voltage (current).
- The $+B$ signal should always be applied a limiting resistance placed between the $+B$ signal and the microcontroller.

MB91350A Series

- The value of the limiting resistance should be set so that when the $+B$ signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that, when the microcontroller drive current is low as in low power consumption mode, the + B input potential can increase the potential at the V cc pin via a protective diode, possibly affecting other devices.
- Note that, if the +B input exists when the microcontroller is off (not fixed at 0 V), power is supplied through the pin, possibly causing the microcontroller to operate imperfectly.
- Note that, if the + B input exists when the power supply is turned on, power is supplied through the pin, possibly resulting in a power-supply voltage at which a power-on reset does not work.
- Be careful not to let the + B input pin open.
- Note that the analog I/O pins (such as the LCD drive and comparator input pins) other than the A/D input pin cannot input + B.
- Sample recommended circuits:
- Input/output equivalent circuits

*8 : If the maximum current to/from an input is limited by some means with external components, the Icramp rating supersedes the V_{1} rating.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB91350A Series

2. Recommended Operating Conditions

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Power supply voltage	Vcc	3.0	3.6	V	At normal operating
	Vcc	3.0	3.6	V	Hold RAM status at stop
Analog power supply voltage	DAvc	Vss - 0.3	Vss +3.6	V	
	AVcc	Vss - 0.3	Vss +3.6		
Analog reference voltage	AVRH	AVss	AV ${ }_{\text {cc }}$	V	
Operating temperature	Ta	-40	+ 85	${ }^{\circ} \mathrm{C}$	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB91350A Series

3. DC Characteristics

$\left(\mathrm{Vcc}=3.0 \mathrm{~V}\right.$ to 3.6 V , V ss $=\mathrm{DAvs}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
" H " level input voltage	VIH	$\begin{gathered} \hline \text { Port 2, 3, 4, } \\ 5,6,9, \mathrm{~A} \end{gathered}$	-	$\mathrm{V} c \mathrm{c} \times 0.65$	-	$\mathrm{Vcc}+0.3$	V	
	Vihs	$\begin{aligned} & \text { Port 8, H, I, } \\ & \text { M, N, O, } \\ & \text { MDO, MD1, } \\ & \text { MD2, INIT, } \\ & \overline{\text { NMI }} \end{aligned}$	-	$\mathrm{Vcc} \times 0.8$	-	$\mathrm{V} \mathrm{cc}+0.3$	V	Hysteresis input
	V HST	Port K, L	-	$\mathrm{Vcc} \times 0.8$	-	5.25	V	Hysteresis input with stand voltage of 5 V
"L" level input voltage	VIL	$\begin{gathered} \text { Port 2, 3, 4, } \\ 5,6,9, \mathrm{~A} \end{gathered}$	-	Vss	-	$V_{c c} \times 0.25$	V	
	Vıss	$\begin{aligned} & \text { Port 8, H, I, } \\ & \text { M, N, O, } \\ & \text { MDO, MD1, } \\ & \text { MD2, INIT, } \\ & \text { NMI } \end{aligned}$	-	Vss	-	$\mathrm{V} \mathrm{cc} \times 0.2$	V	Hysteresis input
	VILst	Port K, L	-	Vss	-	$\mathrm{V} \mathrm{cc} \times 0.2$	V	Hysteresis input with stand voltage of 5 V
"H" level output voltage	Vон	$\begin{gathered} \text { Port 2, 3, 4, } \\ 5,6,8,9, \text { A } \\ \text { H, I, J, K, M, } \\ \text { N, O } \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}, \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	$\mathrm{Vcc}-0.5$	-	Vcc	V	
"L" level output voltage	Volı	$\begin{gathered} \text { Port 2, 3, 4, } \\ 5,6,8,9, A \\ \text { H, I, K, M, N, } \\ \mathrm{O} \end{gathered}$	$\begin{aligned} & \mathrm{Vcc}=3.0 \mathrm{~V}, \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	Vss	-	0.4	V	
	Vol2	Port L	$\begin{aligned} & \mathrm{V} \mathrm{Cc}=3.0 \mathrm{~V}, \\ & \mathrm{loL}=15.0 \mathrm{~mA} \end{aligned}$	Vss	-	0.4	V	Nch open-drain
Input leak current (High-Z Output Leakage Current)	lL	All input pin	$\begin{aligned} & V_{c c}=3.6 \mathrm{~V}, \\ & 0<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	- 5	-	+ 5	$\mu \mathrm{A}$	
Pullup resistance	Rup	Setting pin INIT, Pull Up	$\begin{aligned} & V_{c c}=3.6 \mathrm{~V}, \\ & \mathrm{~V}_{1}=0.45 \mathrm{~V} \end{aligned}$	25	50	200	$\mathrm{k} \Omega$	

(Continued)

MB91350A Series

(Continued)
$\left(\mathrm{V} c \mathrm{c}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V} s \mathrm{~s}=\mathrm{DAvs}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Conditions		Value			Unit	Remarks
					Min	Typ	Max		
Power supply current	Icc	Voc	$\begin{aligned} & \mathrm{f}= \\ & 12.5 \mathrm{MHz}, \\ & \mathrm{Vcc}= \\ & 3.3 \mathrm{~V} \end{aligned}$	FLASH MASK	-	160 125	220 150	mA	Multiply by 4RUN When operating at CLKB : 50 MHz CLKT : 25 MHz CLKP : 25 MHz
			$\begin{aligned} & \mathrm{f}= \\ & 12.5 \mathrm{MHz}, \\ & \mathrm{Vcc}= \\ & 3.3 \mathrm{~V} \end{aligned}$	FLASH MASK	-	85 75	100 90	mA	Multiply by 2RUN When operating at CLKB : 25 MHz CLKT : 25 MHz CLKP : 12.5 MHz
	Icos		$\begin{aligned} & \mathrm{f}_{\mathrm{c}}=12.5 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{cc}}=3.3 \mathrm{~V} \end{aligned}$		-	100	140	mA	Multiply by 4RUN When operating at CLKB : 50 MHz CLKT : 25 MHz CLKP : 25 MHz
	Icch		$\begin{aligned} & \mathrm{Ta}=+25^{\circ} \mathrm{C}, \\ & \mathrm{~V} \mathrm{cc}=3.3 \mathrm{~V} \end{aligned}$		-	1	100	$\mu \mathrm{A}$	At stop
	Iccı		$\begin{aligned} & \mathrm{Ta}=+25^{\circ} \mathrm{C}, \\ & \mathrm{fc}=32.768 \mathrm{kHz}, \\ & \mathrm{Vcc}=3.3 \mathrm{~V} \end{aligned}$		-	0.3	3.0	mA	Sub RUN When operating at CLKB : 32.768 kHz CLKT : 32.768 kHz CLKP: 32.768 kHz
	Iccıs		$\begin{aligned} & \mathrm{Ta}=+25^{\circ} \mathrm{C}, \\ & \mathrm{f}_{\mathrm{c}}=32.768 \mathrm{kHz}, \\ & \mathrm{~V} \mathrm{cc}=3.3 \mathrm{~V} \end{aligned}$		-	0.2	2.0	mA	Sub-sleep When operating at CLKP : 32.768 kHz
	Ісст		$\begin{aligned} & \mathrm{Ta}=+25^{\circ} \mathrm{C}, \\ & \mathrm{f}_{\mathrm{c}}=32.768 \mathrm{kHz}, \\ & \mathrm{~V} \mathrm{cc}=3.3 \mathrm{~V} \end{aligned}$		-	5	120	$\mu \mathrm{A}$	At watch mode operating (Main Off, STOP)
Input capacitance	$\mathrm{ClH}_{\text {+ }}$	Other than Vcc, Vss, AVcc , $A V s s$, DAvc, DAvs	-		-	5	15	pF	

MB91350A Series

4. AC Characteristics

(1) Clock Timing
$\left(\mathrm{Vcc}=3.0 \mathrm{~V}\right.$ to 3.6 V , V ss $=\mathrm{DAvs}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Clock frequency	fc	$\begin{aligned} & \hline \mathrm{X0}, \\ & \mathrm{X} 1 \end{aligned}$	-	10	-	12.5	MHz	MAIN PLL (When operating at max in ternal frequency (50 MHz) $=12.5 \mathrm{MHz}$ self-oscillation with $\times 4$ PLL)
Clock cycle time	tc	$\begin{aligned} & \mathrm{X0}, \\ & \mathrm{X} 1 \end{aligned}$		80	-	100	ns	
Clock frequency	fc	$\begin{aligned} & \text { X0, } \\ & \text { X1 } \end{aligned}$	-	10	-	25	MHz	MAIN self-oscillation (frequency-halved input)
Internal operating clock frequency	fcp		When a minimum value of 12.5 MHz is input as the X0 clock frequency and $x 4$ multiplication is set for the PLL of the oscillator circuit	2.94*	-	50	MHz	CPU
	fcpp	-		2.94*	-	25	MHz	Peripheral
	fcpt			2.94*	-	25	MHz	External bus
Internal operating clock cycle time	tcp	-		20	-	340*	ns	CPU
	tcpp			40	-	340*	ns	Peripheral
	topt			40	-	340*	ns	External bus
Clock frequency	fc	$\begin{aligned} & \mathrm{XOA}, \\ & \mathrm{X} 1 \mathrm{~A} \end{aligned}$	-	30	32.768	35	kHz	SUB self-oscillation
Clock cycle time	tc	$\begin{aligned} & \mathrm{XOA}, \\ & \mathrm{X} 1 \mathrm{~A} \end{aligned}$	-	-	30.51	33.3	$\mu \mathrm{s}$	
Internal operating clock frequency	fCP, fcpp, fCPT	-	When a standard value of 32.768 kHz is input as the XOA clock frequency	2*	-	32.768	kHz	
Internal operating clock cycle time	tcp, tcpp, tcpt	-		30.51	-	500*	$\mu \mathrm{s}$	

* : The values assume a gear cycle of $1 / 16$.
- Conditions for measuring the clock timing ratings

MB91350A Series

- Operation Assurance Range

- External/internal clock setting range

Notes : - When the PLL is used, the external clock input must fall between 10.0 MHz and 12.5 MHz .

- Set the PLL oscillation stabilization wait time longer than $454.5 \mu \mathrm{~s}$.
- The internal clock gear setting should not exceed the relevant value in the table in "(1) Clock timing ratings".

MB91350A Series

(2) Clock Output Timing

$\left(\mathrm{V}\right.$ cc $=3.0 \mathrm{~V}$ to 3.6 V , V ss $=\mathrm{DAvs}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
Cycle time	tovc	SYSCLK	-	tcpt	-	ns	*1
SYSCLK $\uparrow \rightarrow$ SYSCLK \downarrow	tснсL	SYSCLK		tcyc - 5	tcrc +5	ns	*2
SYSCLK $\downarrow \rightarrow$ SYSCLK \uparrow	tclch	SYSCLK		tcyc - 5	tcrc +5	ns	*3

*1 : tcyc is the frequency of one clock cycle after gearing.
*2 : The following ratings are for the gear ratio set to $\times 1$. For the ratings when the gear ratio is set to between $1 / 2$, $1 / 4$ and $1 / 8$, substitute $1 / 2,1 / 4$ or $1 / 8$ for n in the following equation.
$(1 / 2 \times 1 / n) \times$ tcyc -10
*3 : The following rating are for the gear ratio set to $\times 1$.
Note : tcpt indicates the internal operating clock cycle time. See "(1) Clock Timing".

(3) Reset Ratings

$\left(\mathrm{V} c \mathrm{c}=3.0 \mathrm{~V}\right.$ to 3.6 V , V ss $=\mathrm{DAvs}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
$\overline{\text { INIT }}$ input time (at power-on)	tintı	$\overline{\text { INIT }}$	-	tc $\times 10$	-	ns	
$\begin{array}{\|l} \hline \text { INIT input time } \\ \text { (other than at power-on) } \\ \hline \end{array}$				tc $\times 10$		ns	

Note : tc indicates the clock cycle time. See "(1) Clock Timing".

MB91350A Series

(4) Normal Bus Access Read/Write Operation
$\left(\mathrm{Vcc}=3.0 \mathrm{~V}\right.$ to 3.6 V , $\mathrm{Vss}=\mathrm{DAvs}=\mathrm{AV} s \mathrm{~V}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
$\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS3}}$ setup	tcsich	$\frac{\text { SYSCLK, }}{\text { CS0 to } \overline{C S 3}}$	AWRxL : W02 = 0	3	-	ns	*3
	tcsolch		AWROL : W02 = 1	-3	-	ns	
$\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS} 3}$ hold	tchest		-	3	tcyc / $2+6$	ns	
Address setup	tasch	$\begin{aligned} & \text { SYSCLK, } \\ & \text { A20 to A00 } \end{aligned}$		3	-	ns	
	tasw	WRO, WR1, A20 to A00		3	-	ns	
	taskl	$\begin{gathered} \overline{\mathrm{RD}}, \\ \mathrm{~A} 20 \text { to A00 } \end{gathered}$		3	-	ns	
Address hold	tchax	SYSCLK, A20 to A00		3	tcyc / $2+6$	ns	
	twhax	WR0, WR1, A20 to A00	-	3	-	ns	
	trhax	$\begin{gathered} \overline{\mathrm{RD}}, \\ \mathrm{~A} 20 \text { to A00 } \end{gathered}$		3	-	ns	
Valid address \rightarrow Valid data input time	tavdv	A20 to A00, D31 to D16		-	$3 / 2 \times$ tcyc -15	ns	$\begin{aligned} & { }^{*} 1 \\ & { }^{2} \end{aligned}$
$\overline{\text { WR0, }}$ WR1 delay time	tchwL	$\frac{\text { SYSCLK, }}{\text { WR0, }}$		-	6	ns	
$\overline{\text { WR0, }}$ WR1 delay time	tchwh			-	6	ns	
$\overline{\mathrm{WRO}}, \overline{\mathrm{WR1}}$ minimum pulse width	twwwh	$\overline{\mathrm{WRO}}, \overline{\mathrm{WR1}}$		tcyc - 5	-	ns	
Data setup $\rightarrow \overline{\mathrm{WRx}} \uparrow$	toswh	WR0, $\overline{\text { WR1, }}$ D31 to D16		tcyc	-	ns	
	twhox			3	-	ns	
$\overline{\mathrm{RD}}$ delay time	tchri	$\frac{\mathrm{SYSCLK},}{\frac{\mathrm{RD}}{}}$		-	6	ns	
$\overline{\mathrm{RD}}$ delay time	tснrн			-	6	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ Valid data input time	trLDv	$\overline{\mathrm{RD}}$, D31 to D16		-	tcyc - 10	ns	*1
Data setup $\rightarrow \overline{\mathrm{RD}} \uparrow$ Time	toser			10	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ Data hold time	trhdx			0	-	ns	
$\overline{\overline{R D}}$ minimum pulse width	trLRH	$\overline{\mathrm{RD}}$		tcyc - 5	-	ns	
$\overline{\text { AS setup }}$	tastch	$\frac{\mathrm{SYSCLK}}{\overline{\mathrm{AS}}}$		3	-	ns	
$\overline{\text { AS }}$ hold	tchash			3	tcyc / $2+6$	ns	

*1 : When the bus timing is delayed by automatic wait insertion or RDY input, add the time (tcyc \times the number of cycles added for the delay) to this rating.
*2 : The following ratings are for the gear ratio set to $\times 1$. For the ratings when the gear ratio is set to between $1 / 2$ to $1 / 16$, substitute $1 / 2$ to $1 / 16$ for n in the following equation.
Calculation expression: $3 /(2 n) \times$ tcyc -15
*3 : AWRxL : Area Wait Register
Note : tcyc indicates the cycle time. See "(2) Clock Output Timing".

MB91350A Series

MB91350A Series

(5) Multiplex Bus Access Read/Write Operation

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
AD15 to AD0 Address AUDI setup time \rightarrow SYSCLK \uparrow	tasch	SYSCLK, D31 to D16	-	3	-	ns	
SYSCLK $\uparrow \rightarrow$ AD15 to AD0 Address AUDI Hold Time	tchax			3	tcrc/2 + 6	ns	
AD15 to AD0 Address AUDI setup time $\rightarrow \overline{\mathrm{AS}} \uparrow$	tasash	$\begin{aligned} & \text { SYSCLK, } \\ & \text { D31 to D16 } \end{aligned}$		12	-	ns	
$\overline{\mathrm{AS}} \uparrow \rightarrow$ AD15 to AD0 Address AUDI Hold Time	tashax			tcyc - 3	tcyc +3	ns	

Notes : •This rating is not guaranteed when the CS $\rightarrow \overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ Setup Delay setting by AWR: bit1 is " 0 ".

- Beside this rating, normal bus interface ratings are applicable.
- tcrc indicates the cycle time. See "(2) Clock Output Timing".

MB91350A Series

(6) Ready Input Timings

$\left(\mathrm{V} \mathrm{cc}=3.0 \mathrm{~V}\right.$ to 3.6 V, $\mathrm{V}_{\text {ss }}=\mathrm{DAvs}=\mathrm{AV} \mathrm{Ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
RDY setup time \rightarrow SYSCLK	trovs	$\begin{gathered} \hline \text { SYSCLK, } \\ \text { RDY } \end{gathered}$	-	15	-	ns	
SYSCLK $\uparrow \rightarrow$ RDY hold time	trovh	$\begin{gathered} \text { SYSCLK, } \\ \text { RDY } \end{gathered}$	-	0	-	ns	

MB91350A Series

(7) Hold Timing

$$
\left(\mathrm{V} \mathrm{cc}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{DAvs}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
BRQ setup time \rightarrow SYSCLK \uparrow	tbras	SYSCLK,BRQ	-	15	-	ns	
SYSCLK $\uparrow \rightarrow$ BRQ Hold Time	tвRaн			0	-	ns	
$\overline{\text { BGRNT }}$ delay time	tснвgL	$\begin{aligned} & \text { SYSCLK, } \\ & \text { BGRNTT } \end{aligned}$	-	tcyc / 2-6	tcyc / $2+6$	ns	
$\overline{\text { BGRNT }}$ delay time	тснвян			tcrc / 2 - 6	tcrc / $2+6$	ns	
Pin floating $\rightarrow \overline{\text { BGRNT }}$ fall time	txzBGL	$\overline{\text { BGRNT, }}$ D31 to D16, A23 to A00, $\overline{\mathrm{CS}}$ to $\overline{\mathrm{CSO}}{ }^{*}$		tcrc - 10	tcrc + 10	ns	
$\overline{\text { BGRNT } \uparrow \rightarrow}$ Pin valid time	tbghxv			tcrc - 10	tcrc + 10	ns	

*: These are applied to only the case that SREN bit of area select register (ACR) is set to " 1 ".
Notes: - It takes 1 cycle or more from when $B R Q$ is captured until $\overline{G B R N T}$ changes.

- tcrc indicates the cycle time. See "(2) Clock Output Timing".

MB91350A Series

(8) UART, SIO Timing
$\left(\mathrm{V} \mathrm{cc}=3.0 \mathrm{~V}\right.$ to 3.6 V , $\mathrm{V}_{\mathrm{ss}}=\mathrm{DAvs}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
Serial clock Cycle time	tscyc	SCK0 to SCK3, SCK6, SCK7	Internal shift lock mode	8 tcpp	-	ns	
SCK $\downarrow \rightarrow$ SO delay time	tsov	SCK0 to SCK3, SCK6, SCK7, SO0 to SO3, SO6, SO7		-80	+ 80	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SCK0 to SCK3, SCK6, SCK7, SIO to SI3, SI6, SI7		100	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	SCK0 to SCK3, SCK6, SCK7, SIO to SI3, SI6, SI7		60	-	ns	
serial clock "H" Pulse Width	tsHSL	SCK0 to SCK3, SCK6, SCK7	External shift clock mode	4 tcpp	-	ns	
serial clock "L" Pulse Width	tsısh	SCK0 to SCK3, SCK6, SCK7		4 tcpp	-	ns	
SCK $\downarrow \rightarrow$ SO delay time	tsov	SCK0 to SCK3, SCK6, SCK7, SO0 to SO3, SO6, SO7		-	150	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SCK0 to SCK3, SCK6, SCK7, SIO to SI3, SI6, SI7		60	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tsHIX	SCK0 to SCK3, SCK6, SCK7, SIO to SI3, SI6, SI7		60	-	ns	

Notes: - Above rating is for CLK synchronous mode.

- tcpp indicates the peripheral clock cycle time. See "(1) Clock Timing".

MB91350A Series

- Internal shift clock mode

- External shift clock mode

MB91350A Series

(9) Free-run Timer Clock, PPG Timer Input Timing

$\left(\mathrm{Vcc}=3.0 \mathrm{~V}\right.$ to 3.6 V , $\mathrm{V} \mathrm{ss}=\mathrm{DAvs}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
Input pulse width	ttiwn ttww	FRCK, TRG0 to TRG4, AINO, BINO, ZINO	-	2 tcpp	-	ns	

Note : tcpp indicates the peripheral clock cycle time. See "(1) Clock Timing".

(10) Trigger Input Timing
$\left(\mathrm{V} \mathrm{cc}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{DAvs}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
A/D activation trigger input time	tatgx	$\overline{\text { ATG }}$	-	5 tcpp	-	ns	
Input capture input trigger	tinp	IN0 to IN3	-	5 tcpp	-	ns	

Note : tcpp indicates the peripheral clock cycle time. See "(1) Clock Timing".

MB91350A Series

(11) $I^{2} C$ Timing
$\left(\mathrm{V}\right.$ cc $=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{DAvs}=\mathrm{AV}$ ss $=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	Standard-mode		Fast-mode*4		Unit
			Min	Max	Min	Max	
SCL clock frequency	fscl	$\begin{aligned} & \mathrm{R}=1.0 \mathrm{k} \Omega, \\ & \mathrm{C}=50 \mathrm{pF}^{* 1} \end{aligned}$	0	100	0	400	kHz
Hold time (repeated) START condition SDA $\downarrow \rightarrow$ SCL \downarrow	thdsta		4.0	-	0.6	-	$\mu \mathrm{s}$
"L" width of the SCL clock	tow		4.7	-	1.3	-	$\mu \mathrm{s}$
"H" width of the SCL clock	thiga		4.0	-	0.6	-	$\mu \mathrm{s}$
Set-up time for a repeated START condition SCL $\uparrow \rightarrow$ SDA \downarrow	tsusta		4.7	-	0.6	-	$\mu \mathrm{s}$
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	thdoat		0	$3.45{ }^{* 2}$	0	0.9*3	$\mu \mathrm{S}$
Data set-up time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	tsudat		250	-	100	-	ns
Set-up time for STOP condition SCL $\uparrow \rightarrow$ SDA \uparrow	tsusto		4.0	-	0.6	-	$\mu \mathrm{S}$
Bus free time between a STOP and START condition	tbus		4.7	-	1.3	-	$\mu \mathrm{S}$

*1: R,C : Pull-up resistor and load capacitor of the SCL and SDA lines.
*2 : The maximum thdoat only has to be met if the device does not stretch the "L" width (toow) of the SCL signal.
*3 : A Fast-mode $\mathrm{I}^{2} \mathrm{C}$-bus device can be used in a Standard-mode $\mathrm{I}^{2} \mathrm{C}$-bus system, but the requirement tsudat ≥ 250 ns must then be met.
*4 : For use at over 100 kHz , set the machine clock to at least 6 MHz .

MB91350A Series

5. Electrical Characteristics for the A/D Converter

$\left(\mathrm{Vcc}=\mathrm{AVcc}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{AVRH}=3.0 \mathrm{~V}$ to 3.6 V , V ss $=\mathrm{DAvs}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	$\begin{aligned} & \text { Sym- } \\ & \text { bol } \end{aligned}$	Pin	Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-	-	-	-	10	bit	
Total error *1	-	-	- 5.0	-	+ 5.0	LSB	$\begin{aligned} & \mathrm{At} \mathrm{AVCC=3.3V,} \\ & \mathrm{AVRH}=3.3 \mathrm{~V} \end{aligned}$
Nonlinear error *1	-	-	-3.5	-	+ 3.5	LSB	
Differential linear error *1	-	-	-2.5	-	+2.5	LSB	
Zero transition voltage *1	-	-	AVRL-2.0	AVRL + 1.0	AVRL + 6.0	LSB	
Full-transition voltage *1	-	-	AVRH - 5.5	AVRH + 1.5	AVRH + 3.0	LSB	
Conversion time	-	-	$1.48{ }^{\text {*2 }}$	-	300	$\mu \mathrm{s}$	
Analog power supply current (analog + digital)	IA	AVcc	-	7	-	mA	
	ІАн		-	-	5	$\mu \mathrm{A}$	At STOP
reference power supply current (between AVRH and AVRL)	IR	AVRH	-	470	-	$\mu \mathrm{A}$	$\text { At AVRH }=3.0 \mathrm{~V} \text {, }$ $\mathrm{AVRL}=0.0 \mathrm{~V}$
	IRH		-	-	10	$\mu \mathrm{A}$	At STOP
Analog input capacitance	-	$\begin{aligned} & \text { ANOto } \\ & \text { AN7 } \end{aligned}$	-	40	-	pF	
Interchannel disparity	-	ANOto AN7	-	-	4	LSB	

*1 : Measured in the CPU sleep state
*2 : When the peripheral resource clock frequency is 25.0 MHz , set the Conversion Time Setting Register (ADCT) to a value equal to or greater than 5334 н.
Set each bit as follow :
Sampling time : SAMP3 to SAMPO $\geq 5 \mathrm{H}$
Conversion time a: CV03 to CV0 \geq Зн
Conversion time b: CV13 to CV0 ≥ 3 н
Conversion time c: CV23 to CVO $\geq 4 \mathrm{H}$

MB91350A Series

- About the external impedance of the analog input and its sampling time

- A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage changed to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision.
- Analog input circuit model

	R	C
MB91353A	$0.18 \mathrm{k} \Omega$ (Max)	63.0 pF (Max)
MB91F353A	$0.18 \mathrm{k} \Omega$ (Max)	39.0 pF (Max)

Note : The values are reference values.

- To satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.
- The relationship between the external impedance and minimum sampling time

- If the sampling time cannot be sufficient, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.

- About errors

The smaller the | AVRH-AVss | , the greater the error would become relatively.

MB91350A Series

Definition of A/D Converter Terms

- Resolution

Analog variation that is recognized by an A/D converter.

- Linearity error

Zero transition point ("00 0000 0000" - "00 0000 0001") and full-scale transition point Difference between the line connected ("11 1111 1110" - "11 11111111") and actual conversion characteristics.

- Differential linear error

Deviation of input voltage, which is required for changing output code by 1 LSB , from an ideal value.

MB91350A Series

- Total error

This error indicates the difference between actual and ideal values, including the zero transition error/full-scale transition error/linearity error.

$1 \mathrm{LS}^{\prime}$ (Ideal value $=\frac{\mathrm{AVRH}-\mathrm{AV} \text { ss }}{1024}[\mathrm{~V}]$
Total error of digital output $\mathrm{N}=\frac{\mathrm{V}_{\mathrm{NT}}-\left\{1 \mathrm{LSB}^{\prime} \times(\mathrm{N}-1)+0.5 \mathrm{LSB}^{\prime}\right\}}{1 \mathrm{LSB}^{\prime}}$
V_{NT} : A voltage at which digital output transitions from $(\mathrm{N}+1)$ to N .
Vот' $($ Ideal value $)=\mathrm{AV}$ ss +0.5 LSB ' [V]
VFST $^{\prime}($ Ideal value $)=A V R H-1.5 L S B '[V]$

MB91350A Series

6. Electrical Characteristics for the D/A Converter

Parameter	Sym-bol	Pin	Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-	-	-	-	8	bit	
Nonlinear error	-	-	-2.0	-	+ 2.0	LSB	When the output is unloaded
Differential linear error	-	-	- 1.0	-	+ 1.0	LSB	When the output is unloaded
Convertion speed	-	-	-	0.6	-	$\mu \mathrm{s}$	When load capacitance $\left(C_{L}\right)=20 \mathrm{pF}$
	-	-	-	3.0	-	$\mu \mathrm{s}$	When load capacitance $\left(\mathrm{C}_{\mathrm{L}}\right)=100 \mathrm{pF}$
Output high impedance	-	$\begin{aligned} & \hline \text { DA0, } \\ & \text { DA1 } \end{aligned}$	2.0	2.9	3.8	k Ω	
Analog current	-	DAvc	-	40	-	$\mu \mathrm{A}$	10μ s conversion when the output is unloaded
	IAdA		-	-	460*	$\mu \mathrm{A}$	Input digital code, when fixed at $7 А$ н or 85 н
	Iadah		-	0.1	-	$\mu \mathrm{A}$	At power-down

*: This D/A converter varies in current consumption depending on each input digital code.
This rating indicates the current consumption when the digital code that maximizes current consumption is input.

MB91350A Series

FLASH MEMORY ERASE and PROGRAM PERFORMANCE

Parameter	Condition	Value			Unit	Remarks
		Min	Typ	Max		
Sector erase time	$\begin{aligned} & \mathrm{Ta}=+25^{\circ} \mathrm{C} \\ & \mathrm{Vcc}=3.3 \mathrm{~V} \end{aligned}$	-	1	15	s	Excludes 00_{H} programming prior erasure
Chip erase time		-	8	-	s	Excludes 00 н programming prior erasure
Half word (16-bit width) programming time		-	16	3600	$\mu \mathrm{S}$	Excludes system-level overhead
Erase/program cycle	-	10,000	-	-	cycle	
Flash data retention time	Average $\mathrm{Ta}=+85^{\circ} \mathrm{C}$	20	-	-	year	*

*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at $+85^{\circ} \mathrm{C}$).

MB91350A Series

EXAMPLE CHARACTERISTICS

- MB91F353A

(1) "H" level output voltage

Vон vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

(2) "L" level output voltage

Voli vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$
(3) "L"level output voltage (Nch open-drain)

Vol2 vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

(4) Input leak current
lıi vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

(5) Pull-up resistor

Rup vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

(Continued)

MB91350A Series

(6) Power supply current

Icc vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{fCP}=50 \mathrm{MHz}, \mathrm{fCPP}=25 \mathrm{MHz}$

(8) At sleep of power supply current

(10) At stop of power supply current

(12) Sub-sleep power supply current

Iccls Vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{fcP}=32 \mathrm{kHz}, \mathrm{fCPP}=\mathrm{fCPT}=32 \mathrm{kHz}$

(7) Power supply current

Icc vs. fc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{V} \mathrm{cc}=3.3 \mathrm{~V}, \mathrm{fcp}=4 \times \mathrm{fc}$ (multiplied by 4)

(9) At sleep of power supply current

Iccs vs. fc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{fcP}=4 \times \mathrm{fc}$ (multiplied by 4$)$

(11) Sub-run power supply current

Iccl vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{fcp}=32 \mathrm{kHz}, \mathrm{fcPP}=25 \mathrm{MHz}$

(13) Watch mode power supply current

Icct vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{fCP}=32 \mathrm{kHz}, \mathrm{fCPP}=\mathrm{f}_{\mathrm{CPT}}=32 \mathrm{kHz}$

(Continued)

MB91350A Series

(Continued)
(14) A / D conversion block power supply current

It vs. Vcc

(16) At stop of A/D conversion block power supply current

(18) D/A conversion block power supply current <per 1 channel>

Iada vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

(15) A / D conversion block reference power supply current

(17) At stop of A / D conversion block reference power supply current

Irh vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

(19) At power down of D/A conversion block power supply current

MB91350A Series

- MB91353A/352A/351A
(1) "H" level output voltage

Vон vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

(3) "L"level output voltage (Nch open-drain)

> Vol2 vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

(2) "L" level output voltage

Voli vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

(4) Input leak current
lıivs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

(5) Pull-up resistor

Rup vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

(Continued)

MB91350A Series

(6) Power supply current

(8) At sleep of power supply current

Iccs vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{fcp}=50 \mathrm{MHz}, \mathrm{fcPP}=25 \mathrm{MHz}$

(10) At stop of power supply current

Icch vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

(12) Sub-sleep power supply current

Iccls vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CP}}=32 \mathrm{kHz}, \mathrm{f}_{\mathrm{fPP}}=\mathrm{f}_{\mathrm{CPT}}=32 \mathrm{kHz}$

(7) Power supply current

Icc vs. fc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{fcp}=4 \times \mathrm{fc}$ (multiplied by 4)

(9) At sleep of power supply current

Iccs vs. fc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{fcp}=4 \times \mathrm{fc}$ (multiplied by 4$)$

(11) Sub-run power supply current Iccl vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{fcp}=32 \mathrm{kHz}, \mathrm{fcpp}=25 \mathrm{MHz}$

(13) Watch mode power supply current

Icct vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CP}}=32 \mathrm{kHz}, \mathrm{f}_{\mathrm{fPP}}=\mathrm{f}_{\mathrm{CPT}}=32 \mathrm{kHz}$

MB91350A Series

(Continued)
(14) A/D conversion block power supply current

Tavs. 25°
(16) At stop of A / D conversion block power supply current
$\mathrm{I}_{\text {ah vs. }} \mathrm{V}$ cc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

(18) D/A conversion block power supply current <per 1 channel>

Iada vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

(15) A/D conversion block reference power supply current

(17) At stop of A / D conversion block reference power supply current

Irh vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

(19) At power down of D/A conversion block power supply current
ladah vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

MB91350A Series

■ ORDERING INFORMATION

Part number	Package	Remarks
MB91F353APMT	120-pin plastic LQFP (FPT-120P-M21)	Lead-free Package
MB91351APMT	120-pin plastic LQFP (FPT-120P-M21)	Lead-free Package
MB91352APMT	120-pin plastic LQFP (FPT-120P-M21)	Lead-free Package
MB91353APMT	120-pin plastic LQFP (FPT-120P-M21)	Lead-free Package

MB91350A Series

PACKAGE DIMENSION

120-pin plastic LQFP
(FPT-120P-M21)

Note 1) *: These dimensions do not include resin protrusion. Resin protrusion is +0.25 (.010) MAX (each side) .
Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder.

© 2002 FUUTTSU LIMTED F120033S-C.4.4
Dimensions in mm (inches).
Note : The values in parentheses are reference values.

MB91350A Series

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

