# MGP15N38CL, MGB15N38CL1.

**Preferred Device** 

# **Ignition IGBT 15 Amps, 380 Volts**N-Channel TO-220 and D<sup>2</sup>PAK

This Logic Level Insulated Gate Bipolar Transistor (IGBT) features Gate-Emitter ESD protection, Gate Collector Over-Voltage Protection from monolithic circuitry for usage as an Ignition Coil Driver

- Temperature Compensated Gate Collector Clamp Limits Stress Applied to Load
- Integrated ESD Diode Protection
- Low Threshold Voltage to Interface Power Loads to Logic or Microprocessor Devices
- Low Saturation Voltage
- High Pulsed Current Capability

#### **MAXIMUM RATINGS** (T<sub>J</sub> = 25°C unless otherwise noted)

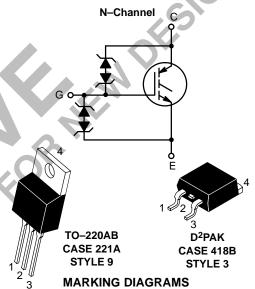
| Rating                                       | Symbol                            | Value       | Unit          |
|----------------------------------------------|-----------------------------------|-------------|---------------|
| Collector–Emitter Voltage                    | V <sub>CES</sub>                  | CLAMPED     | Vdc           |
| Collector-Gate Voltage                       | $V_{CER}$                         | CLAMPED Vdc |               |
| Gate-Emitter Voltage                         | V <sub>GE</sub>                   | CLAMPED     | Vdc           |
| Collector Current – Continuous               | I <sub>C</sub>                    | 15          | Adc           |
| Total Power Dissipation<br>Derate above 25°C | PD                                | 136<br>0.91 | Watts<br>W/°C |
| Operating and Storage Temperature Range      | T <sub>J</sub> , T <sub>stg</sub> | -55 to 175  | °C            |

# UNCLAMPED COLLECTOR-TO-EMITTER AVALANCHE CHARACTERISTICS ( $T_J < 150^{\circ}C$ )

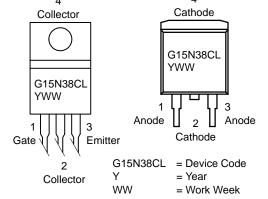
| Single Pulse Collector–to–Emitter  Avalanche Energy                               |     | mJ |
|-----------------------------------------------------------------------------------|-----|----|
| V <sub>CC</sub> = 50 V, V <sub>GE</sub> = 5.0 V, Peak                             | 300 |    |
| I <sub>L</sub> = 14.2 A, L = 3.0 mH,<br>Starting T <sub>J</sub> = 25°C            |     |    |
| V <sub>CC</sub> = 50 V, V <sub>GE</sub> = 5.0 V, Peak                             | 150 |    |
| $I_L = 10 \text{ A}, L = 3.0 \text{ mH},$<br>Starting $T_J = 150^{\circ}\text{C}$ |     |    |

#### THERMAL CHARACTERISTICS

| Thermal Resistance                      |                 |      | °C/W |
|-----------------------------------------|-----------------|------|------|
| <ul><li>– Junction–to–Case</li></ul>    | $R_{\theta JC}$ | 1.1  |      |
| <ul><li>– Junction–to–Ambient</li></ul> | $R_{\theta JA}$ | 62.5 |      |
| Maximum Lead Temperature for            | $T_L$           | 260  | °C   |
| Soldering Purposes, 1/8" from case      |                 |      |      |
| for 5 seconds                           |                 |      |      |




### ON Semiconductor™


http://onsemi.com

## 15 AMPERES 380 VOLTS (Clamped)

 $V_{CE(on)} = 1.8 \text{ m}\Omega$ 







#### **ORDERING INFORMATION**

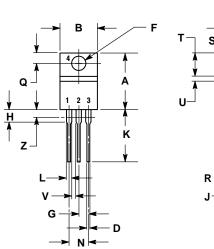
| Device       | Package | Shipping        |  |
|--------------|---------|-----------------|--|
| MGP15N38CL   | TO-220  | 50 Units/Rail   |  |
| MGB15N38CLT4 | D2PAK   | 800 Tape & Reel |  |

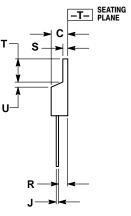
**Preferred** devices are recommended choices for future use and best overall value.

## MGP15N38CL, MGB15N38CL1.

#### **ELECTRICAL CHARACTERISTICS** (T<sub>J</sub> = 25°C unless otherwise noted)

| Cha                                                                                                                                                       | Symbol                                                                   | Min                   | Тур        | Max        | Unit         |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------|------------|------------|--------------|------|
| OFF CHARACTERISTICS                                                                                                                                       |                                                                          | <u> </u>              |            |            |              |      |
| Collector–Emitter Clamp Voltage<br>(I <sub>C</sub> = 1.0 mA, T <sub>J</sub> = -40°C to 175                                                                | V <sub>(BR)CES</sub>                                                     | 350                   | 380        | 410        | Vdc          |      |
| Zero Gate Voltage Collector Curre $(V_{CE} = 300 \text{ V}, V_{GE} = 0 \text{ V})$ $(V_{CE} = 300 \text{ V}, V_{GE} = 0 \text{ V}, T_{J} = 10 \text{ V})$ |                                                                          | I <sub>CES</sub>      | _<br>_     | _<br>_     | 10<br>150    | μAdc |
| Gate–Emitter Clamp Voltage (I <sub>G</sub> = 5.0 mA)                                                                                                      |                                                                          | V <sub>(BR)</sub> GES | 17         | _          | 22           | Vdc  |
| Gate–Emitter Leakage Current (V <sub>GE</sub> = 10 V)                                                                                                     | I <sub>GES</sub>                                                         | -                     | _          | 10         | μAdc         |      |
| ON CHARACTERISTICS (Note 1.)                                                                                                                              |                                                                          | •                     | •          | •          | •            | 2    |
| Gate Threshold Voltage $(V_{GE} = V_{CE}, I_C = 1.0 \text{ mA})$<br>Threshold Temperature Coefficients                                                    | V <sub>GE(th)</sub>                                                      | 1.3                   | 1.8<br>4.4 | 2.1        | Vdc<br>mV/°C |      |
| Collector-to-Emitter On-Voltage ( $V_{GE} = 3.5 \text{ V}, I_C = 6.0 \text{ A}$ ) ( $V_{GE} = 4.0 \text{ V}, I_C = 10 \text{ A}, T_J = 150 \text{ A}$ )   | V <sub>CE(on)</sub>                                                      | -<br>-                |            | 2.0<br>1.8 | Volts        |      |
| Forward Transconductance<br>(V <sub>CE</sub> = 5.0 V, I <sub>C</sub> = 10 A)                                                                              | 9 <sub>fe</sub>                                                          | 8.0                   | 19         | _          | Mhos         |      |
| DYNAMIC CHARACTERISTICS                                                                                                                                   |                                                                          |                       |            |            | •            | •    |
| Input Capacitance                                                                                                                                         |                                                                          | C <sub>ies</sub>      |            | TBD        | _            | pF   |
| Output Capacitance                                                                                                                                        | $(V_{CC} = 15 \text{ V}, V_{GE} = 0 \text{ V}, f = 1.0 \text{ MHz})$     | C <sub>oes</sub>      | <b>~</b> - | TBD        | -            |      |
| Transfer Capacitance                                                                                                                                      |                                                                          | C <sub>res</sub>      | _          | TBD        | -            |      |
| SWITCHING CHARACTERISTICS                                                                                                                                 | (Note 1.)                                                                |                       |            |            |              |      |
| Turn-Off Delay Time                                                                                                                                       | $(V_{CC} = 300 \text{ V}, I_{C} = 6.5 \text{ A},$                        | t <sub>d(off)</sub>   | _          | TBD        | _            | μSec |
| Fall Time                                                                                                                                                 | $R_G = 1.0 \text{ k}\Omega, L = 300 \mu\text{H}$                         | t <sub>f</sub>        | -          | TBD        | -            |      |
| Turn-On Delay Time                                                                                                                                        | $(V_{CC} = 10 \text{ V}, I_{C} = 6.5 \text{ A},$                         | t <sub>d(on)</sub>    | -          | TBD        | -            | μSec |
| Rise Time                                                                                                                                                 | $R_G = 1.0 \text{ k}\Omega, R_L = 1.0 \Omega$                            | t <sub>r</sub>        | -          | TBD        | -            |      |
| Gate Charge                                                                                                                                               |                                                                          | Q <sub>T</sub>        | -          | TBD        | -            | nC   |
|                                                                                                                                                           | $(V_{CC} = 300 \text{ V}, I_{C} = 15 \text{ A}, V_{GE} = 5.0 \text{ V})$ | Q <sub>1</sub>        | -          | TBD        | -            |      |
|                                                                                                                                                           | . GE                                                                     | $Q_2$                 | -          | TBD        | -            | 1    |


<sup>1.</sup> Pulse Test: Pulse Width ≤ 300 μS, Duty Cycle ≤ 2%.


## MGP15N38CL, MGB15N38CL1.

#### PACKAGE DIMENSIONS

#### **TO-220 THREE-LEAD** TO-220AB

CASE 221A-09 **ISSUE AA** 

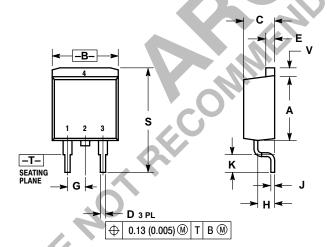




- NOTES:

  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

  2. CONTROLLING DIMENSION: INCH.


  3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

|     | INCHES |       | MILLIMETERS |       |
|-----|--------|-------|-------------|-------|
| DIM | MIN    | MAX   | MIN         | MAX   |
| Α   | 0.570  | 0.620 | 14.48       | 15.75 |
| В   | 0.380  | 0.405 | 9.66        | 10.28 |
| C   | 0.160  | 0.190 | 4.07        | 4.82  |
| D   | 0.025  | 0.035 | 0.64        | 0.88  |
| F   | 0.142  | 0.147 | 3.61        | 3.73  |
| G   | 0.095  | 0.105 | 2.42        | 2.66  |
| Н   | 0.110  | 0.155 | 2.80        | 3.93  |
| J   | 0.018  | 0.025 | 0.46        | 0.64  |
| K   | 0.500  | 0.562 | 12.70       | 14.27 |
| L   | 0.045  | 0.060 | 1.15        | 1.52  |
| N   | 0.190  | 0.210 | 4.83        | 5.33  |
| Q   | 0.100  | 0.120 | 2.54        | 3.04  |
| /R  | 0.080  | 0.110 | 2.04        | 2.79  |
| S   | 0.045  | 0.055 | 1.15        | 1.39  |
| T   | 0.235  | 0.255 | 5.97        | 6.47  |
| U   | 0.000  | 0.050 | 0.00        | 1.27  |
| V   | 0.045  |       | 1.15        |       |
| Z   |        | 0.080 |             | 2.04  |

# STYLE 9: PIN 1.

- COLLECTOR EMITTER COLLECTOR

**D<sup>2</sup>PAK** CASE 418B-03 ISSUE D



#### NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

|     | INC       | HES   | MILLIN   | IETERS |
|-----|-----------|-------|----------|--------|
| DIM | MIN       | MAX   | MIN      | MAX    |
| Α   | 0.340     | 0.380 | 8.64     | 9.65   |
| В   | 0.380     | 0.405 | 9.65     | 10.29  |
| С   | 0.160     | 0.190 | 4.06     | 4.83   |
| D   | 0.020     | 0.035 | 0.51     | 0.89   |
| Е   | 0.045     | 0.055 | 1.14     | 1.40   |
| G   | 0.100 BSC |       | 2.54 BSC |        |
| Н   | 0.080     | 0.110 | 2.03     | 2.79   |
| J   | 0.018     | 0.025 | 0.46     | 0.64   |
| K   | 0.090     | 0.110 | 2.29     | 2.79   |
| S   | 0.575     | 0.625 | 14.60    | 15.88  |
| ٧   | 0.045     | 0.055 | 1.14     | 1.40   |

- STYLE 3: PIN 1. ANODE 2. CATHODE 3. ANODE 4. CATHODE



alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

#### **PUBLICATION ORDERING INFORMATION**

#### NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

**Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

#### N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

#### EUROPEAN TOLL-FREE ACCESS\*: 00-800-4422-3781

\*Available from Germany, France, Italy, UK, Ireland

#### CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access -

then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

Email. Onlic-asia@nibberico.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

**Phone**: 81–3–5740–2700 **Email**: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.