## MBR30H100CT

## SWITCHMODE ${ }^{\text {™ }}$ <br> Power Rectifier 100 V, 30 A

## Features and Benefits

- Low Forward Voltage: 0.67 V @ $125^{\circ} \mathrm{C}$
- Low Power Loss/High Efficiency
- High Surge Capacity
- $175^{\circ} \mathrm{C}$ Operating Junction Temperature
- 30 A Total ( 15 A Per Diode Leg)
- Guard-Ring for Stress Protection
- Pb -Free Package is Available


## Applications

- Power Supply - Output Rectification
- Power Management
- Instrumentation


## Mechanical Characteristics:

- Case: Epoxy, Molded
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Weight: 1.9 Grams (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes:
$260^{\circ} \mathrm{C}$ Max. for 10 Seconds
- Shipped 50 Units Per Plastic Tube


## MAXIMUM RATINGS

Please See the Table on the Following Page

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com
SCHOTTKY BARRIER
RECTIFIER
30 AMPERES
100 VOLTS


YY
= Year
WW = Work Week
B30H100 = Device Code
AKA = Polarity Designator

ORDERING INFORMATION

| Device | Package | Shipping |
| :--- | :---: | :---: |
| MBR30H100CT | TO-220 | 50 Units/Rail |
| MBR30H100CTG | TO-220 <br> (Pb-Free) | 50 Units/Rail |

MAXIMUM RATINGS (Per Diode Leg)

| Rating | Symbol | Value | Unit |
| :---: | :---: | :---: | :---: |
| Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage | $V_{\text {RRM }}$ <br> $\mathrm{V}_{\mathrm{RWM}}$ $V_{R}$ | 100 | V |
| Average Rectified Forward Current (Rated $\mathrm{V}_{\mathrm{R}}$ ) $\mathrm{T}_{\mathrm{C}}=155^{\circ} \mathrm{C}$ | $\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$ | 15 | A |
| Peak Repetitive Forward Current (Rated $\mathrm{V}_{\mathrm{R}}$, Square Wave, 20 kHz ) $\mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$ | IFRM | 30 | A |
| Nonrepetitive Peak Surge Current <br> (Surge applied at rated load conditions halfwave, single phase, 60 Hz ) | $\mathrm{I}_{\text {FSM }}$ | 250 | A |
| Operating Junction Temperature (Note 1) | $\mathrm{T}_{\mathrm{J}}$ | +175 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature | $\mathrm{T}_{\text {stg }}$ | -65 to +175 | ${ }^{\circ} \mathrm{C}$ |
| Voltage Rate of Change (Rated $\mathrm{V}_{\mathrm{R}}$ ) | dv/dt | 10,000 | V/us |
| Controlled Avalanche Energy (see test conditions in Figures 10 and 11) | $\mathrm{W}_{\text {AVAL }}$ | 200 | mJ |
| ESD Ratings: Machine Model = C <br> Human Body Model = 3B |  | $\begin{aligned} & >400 \\ & >8000 \end{aligned}$ | V |

THERMAL CHARACTERISTICS

| Maximum Thermal Resistance - Junction-to-Case |  |  |
| ---: | ---: | :---: | :---: |
| - Junction-to-Ambient | $R_{\theta J C}$ <br> $R_{\theta J A}$ | 2.0 |
| 60 |  |  |

ELECTRICAL CHARACTERISTICS (Per Diode Leg)

| Maximum Instantaneous Forward Voltage (Note 2) | $\mathrm{v}_{\mathrm{F}}$ |  |
| :--- | :---: | :---: |
| $\left(\mathrm{I}_{\mathrm{F}}=15 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$ |  | V |
| $\left(\mathrm{I}_{\mathrm{F}}=15 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$ |  | 0.80 |
| $\left(\mathrm{I}_{\mathrm{F}}=30 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$ | 0.67 |  |
| $\left(\mathrm{I}_{\mathrm{F}}=30 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$ |  |  |
| Maximum Instantaneous Reverse Current (Note 2) | 0.93 |  |
| (Rated DC Voltage, $\left.\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$ | $\mathrm{i}_{\mathrm{R}}$ |  |
| (Rated DC Voltage, $\left.\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$ |  | mA |

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. The heat generated must be less than the thermal conductivity from Junction-to-Ambient: $d P_{D} / d T_{J}<1 / R_{\theta J A}$.
2. Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.

## MBR30H100CT



Figure 1. Typical Forward Voltage


Figure 2. Maximum Forward Voltage


Figure 3. Typical Reverse Current


Figure 4. Maximum Reverse Current


Figure 5. Current Derating


Figure 6. Forward Power Dissipation


Figure 7. Capacitance


Figure 8. Thermal Response Junction-to-Ambient


Figure 9. Thermal Response Junction-to-Case

## MBR30H100CT



Figure 10. Test Circuit

The unclamped inductive switching circuit shown in Figure 10 was used to demonstrate the controlled avalanche capability of this device. A mercury switch was used instead of an electronic switch to simulate a noisy environment when the switch was being opened.

When $S_{1}$ is closed at $t_{0}$ the current in the inductor $\mathrm{I}_{\mathrm{L}}$ ramps up linearly; and energy is stored in the coil. At $t_{1}$ the switch is opened and the voltage across the diode under test begins to rise rapidly, due to di/dt effects, when this induced voltage reaches the breakdown voltage of the diode, it is clamped at $\mathrm{BV}_{\text {DUT }}$ and the diode begins to conduct the full load current which now starts to decay linearly through the diode, and goes to zero at $t_{2}$.

By solving the loop equation at the point in time when $S_{1}$ is opened; and calculating the energy that is transferred to the diode it can be shown that the total energy transferred is equal to the energy stored in the inductor plus a finite amount of energy from the $\mathrm{V}_{\mathrm{DD}}$ power supply while the diode is in breakdown (from $\mathrm{t}_{1}$ to $\mathrm{t}_{2}$ ) minus any losses due to finite component resistances. Assuming the component resistive


Figure 11. Current-Voltage Waveforms
elements are small Equation (1) approximates the total energy transferred to the diode. It can be seen from this equation that if the $\mathrm{V}_{\mathrm{DD}}$ voltage is low compared to the breakdown voltage of the device, the amount of energy contributed by the supply during breakdown is small and the total energy can be assumed to be nearly equal to the energy stored in the coil during the time when $S_{1}$ was closed, Equation (2).

EQUATION (1):

$$
\mathrm{W}_{\mathrm{AVAL}} \approx \frac{1}{2} \mathrm{LI}_{\mathrm{LPK}}^{2}\left(\frac{\mathrm{BV}_{\mathrm{DUT}}}{\mathrm{BV}_{\mathrm{DUT}} \mathrm{~V}_{\mathrm{DD}}}\right)
$$

## EQUATION (2):

$$
\mathrm{W}_{\mathrm{AVAL}} \approx \frac{1}{2} \mathrm{LI}_{\mathrm{LPK}}^{2}
$$

## MBR30H100CT

## PACKAGE DIMENSIONS

TO-220
PLASTIC
CASE 221A-09
ISSUE AA


SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.
ON Semiconductor and 01 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada
Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

