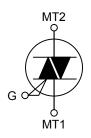
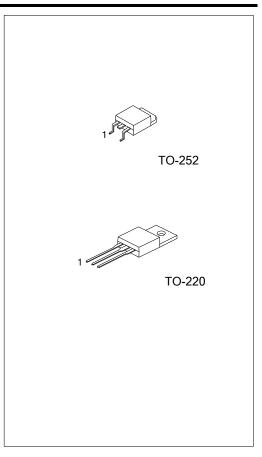


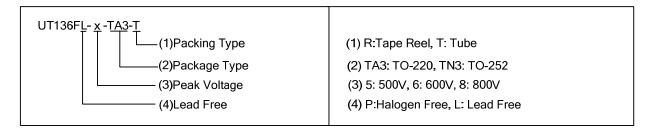
UTC UNISONIC TECHNOLOGIES CO., LTD


UT136F/G Preliminary **TRIAC**


TRIACS

DESCRIPTION

Passivated triacs in a plastic envelope, suitable for surface mounting, intended for use in applications requiring high bidirectional transient and blocking voltage capability and high thermal cycling performance. Typical applications include motor control, industrial and domestic lighting, heating and static switching.


SYMBOL

ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UT136FL-x-TA3-R	UT136FP-x-TA3-R	TO-220	MT1	MT2	G	Tube	
UT136GL-x-TA3-R	UT136GP-x-TA3-R	TO-220	MT1	MT2	G	Tube	
UT136FL-x-TN3-R	UT136FP-x-TN3-R	TO-252	MT1	MT2	G	Tape Reel	
UT136GL-x-TN3-R	UT136GP-x-TN3-R	TO-252	MT1	MT2	G	Tape Reel	

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT		
	UT136F/G-5		500 (Note 2)		
Repetitive Peak Off-State Voltages	UT136F/G-6	V_{DRM}	600 (Note 2)	V	
	UT136F/G-8		800		
RMS On-State Current Full Sine Wave, Tmb	≤107°C	I _{T(RMS)}	4	Α	
Non-Repetitive Peak On-State Current t = 20ms			25	^	
(Full Sine Wave, T _J =25°C Prior To Surge)	t = 16.7 ms	I _{TSM}	27	Α	
I ² t For Fusing (t =10ms)	l ² t	3.1	A^2s		
Demotitive Date of Disc of On State	T2+ G+	dl _⊤ /dt	50		
Repetitive Rate Of Rise Of On-State Current After Triggering I _{TM} =6A, I _G =0.2A,	T2+ G-		50	Λ/110	
	T2- G-		50	A/µs	
d _{IG} /dt=0.2A/μs	T2- G+		10		
Peak Gate Voltage	V_{GM}	5	V		
Peak Gate Current		I _{GM}	2	Α	
Peak Gate Power	P_{GM}	5	W		
Average Gate Power (Over Any 20ms Period)		$P_{G(AV)}$	0.5	W	
Junction Temperature		T_J	125	°C	
Storage Temperature		T _{STG}	-40 ~ +150	°C	

- Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. Although not recommended, off-state voltages up to 800V may be applied without damage, but the traic may switch to the on-state. The rate of rise of current should not exceed $3A/\mu s$.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
lunction to Ambient	TO-220	0	60	K/W
Junction to Ambient	TO-252	θ_{JA}	75	K /VV

■ STATIC CHARACTERISTICS (T_J=25°C, unless otherwise specified)

PARAMETER	SYMBOL TEST CONDITIONS		ONC	MIN	TYP	MAX		LINIT
PARAMETER	STIVIBUL	TEST CONDITIONS				UT136F	UT136G	UNIT
	I _{GT}	V _D =12V, I _T =0.1A	T2+G+		5	25	50	mA
Cata Triagar Current			T2+G-		8	25	50	
Gate Trigger Current			T2-G-		11	25	50	
			T2-G+		30	70	100	
Latching Current	ΙL	V _D =12V, I _{GT} =0.1A	T2+G+		7	20	30	mA
			T2+G-		16	30	45	
			T2-G-		5	20	30	
			T2-G+		7	30	45	
Holding Current	lΗ	V _D =12V, I _{GT} =0.1A			5	15	30	mA
On-State Voltage	V_{T}	I _T =5A			1.4	1.70		V
Gate Trigger Voltage	V_{GT}	V _D =12V, I _T =0.1A			0.7	1.5		V
		V _D =400V, I _T =0.1A, T _J =125°C		0.25	0.4			V
Off-State Leakage Current	I_D	V _D =V _{DRM(max)} , T _J =125°C			0.1	0.5		mA

■ DYNAMIC CHARACTERISTICS (T_J=25°C, unless otherwise specified)

DADAMETED	SYMBOL	TEST CONDITIONS	MIN		TYP	MAX	UNIT
PARAMETER SYME		TEST CONDITIONS	UT136F	UT136G	IIF		
Critical Rate Of Rise Of	dV _D /dt	V _{DM} =67% V _{DRM(max)} , T _J =125°C,	50	200	250		V/us
Off-State Voltage	uv _D /ut	exponential waveform, gate open circuit	50	200	230		v/µs
Critical Rate Of Change		\/ -400\/ T-05°C -44					
Of Commutating	dV _{com} /dt	_{DM} =400V, T _J =95°C, I _{T(RMS)} =4A, _{Com} /dt=1.8A/ms, gate open circuit		10	50		V/µs
Voltage		di _{com} /di=1.8A/ms, gate open circuit					
Gate Controlled	4	I _{TM} =6A, V _D =V _{DRM(max)} , I _G =0.1A,			2		
Turn-On Time	t _{gt}	dI _G /dt=5A/µs			2		μs

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.