ANALOG Low Power Precision Analog Microcontroller **DEVICES** ARM Cortex M3, with dual Sigma-Delta ADCs

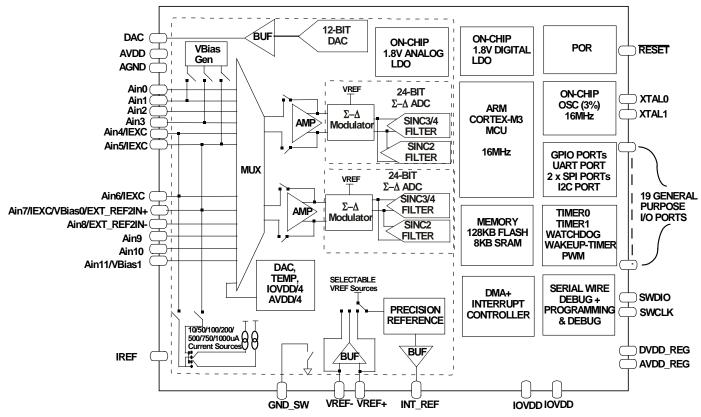
Preliminary Technical Data

FEATURES

Analog Input/Output Dual (24-bit) ADCs (ADuCM360) Single (24-bit) ADC (ADuCM361) Single Ended and fully Differential inputs Programmable ADC output rate (4 Hz to 4 kHz) Simultaneous 50Hz/60Hz rejection **50SPS Continuous Conversion Mode 16.67SPS Single Conversion Mode** Flexible input MUX for input channel selection to both ADCs Primary and Auxiliary (24-bit) ADC channel 6 differential or 11 Single-Ended input channels 4 internal channels for monitoring DAC, Temperature sensor, IOVDD and AVDD (ADC1 only) Programmable Gain (1 to 128) Selectable input range: ±6.64 mV to ±1.2 V RMS noise: 43nV @3.75Hz, 180nV @ 50Hz Programmable sensor excitation current sources 10/50/100/150/200/250/300/400/500/600/800uA and **1mA current source options** On-chip precision Voltage reference (±4 ppm/°C) Single 12-bit voltage output DAC NPN mode for 4-20mA loop applications Microcontroller ARM Cortex[™]-M3 32-bit processor Serial Wire download and debug Internal Watch crystal for wakeup timer 16 MHz Oscillator with 8-way Programmable Divider Memory

128k Bytes Flash/EE Memory, 8k Bytes SRAM In-circuit debug/download via Serial Wire and UART

ADuCM360/ADuCM361


Power **Operates directly from a 3.0V battery** Supply Range: 1.8V to 3.6V (max) **Power Consumption** MCU Active Mode: Core consumes 290µA / MHz Active Mode: 1.0mA (All peripherals active), core operating at 500KHz Power down mode: 4µA (WU Timer Active) **On-Chip Peripherals** UART, I2C and 2 x SPI Serial I/O **16-bit PWM Controller 19-Pin Multi-Function GPIO Port 2 General Purpose Timers** Wake-up Timer/Watchdog Timer Multi-Channel DMA and Interrupt Controller **Package and Temperature Range** 48 lead LFCSP (7mm x 7mm) package -40°C to 125°C **Development Tools** Low-Cost QuickStart[™] Development System **Third-Party Compiler and emulator tool Support Multiple Functional Safety features for improved diagnostics**

APPLICATIONS

Industrial automation and process control Intelligent, precision sensing systems 4 mA to 20 mA loop-powered smart sensor systems Medical devices, patient monitoring

Rev. Pr R

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

Figure 1. ADuCM360 Block Diagram

TABLE OF CONTENTS

Features1	
Functional Block Diagram2	
General Description4	
Specifications	
ADuCM360/ADuCM361 Microcontroller Electrical Specifications5	

Noise Resolution of Primary and Auxiliary ADCs10
I ² C Timing Diagrams12
SPI Timing Diagrams13
Absolute Maximum Ratings16
ESD Caution16
Outline Dimensions

GENERAL DESCRIPTION

The ADuCM360 is a fully integrated, 4 kSPS, 24-bit data acquisition system incorporating dual, high performance multichannel sigma-delta (Σ - Δ) analog-to-digital converters (ADCs), 32-bit ARM Cortex M3^{*} MCU, and Flash/EE memory on a single chip. The part is designed for direct interfacing to external precision sensors in both wired and battery powered applications.

The ADuCM361 contains all the features of the ADuCM360 except the primary ADC, ADC0 is not available – only the auxiliary ADC, ADC1 is available.

The device contains an on-chip 32 KHz oscillator and an internal 16MHz high-frequency oscillator. This clock is routed through a programmable clock divider from which the MCU core clock operating frequency is generated. The maximum core clock speed is 16MHz and this is not limited by operating voltage or temperature.

The microcontroller core is a low power Cortex-M3 core from ARM. It is a 32-bit RISC machine, offering up to 20 MIPS peak performance. The Cortex-M3 MCU incorporates a flexible 11channel DMA controller supporting all wired (SPI, UART, I²C) communication peripherals. 128k Bytes of non-volatile Flash/EE and 8k Bytes of SRAM are also integrated on-chip.

The Analog sub-system consists of dual ADCs each connected to a flexible input MUX. Both ADCs can operate in fully differential and single ended modes. Other on-chip ADC features include dual programmable excitation current sources, burn-out current sources and a bias voltage generator of AVDD_REG/2 (900mV) to set the common-mode voltage of an input channel. A low-side internal ground switch is provided to allow powering down of a bridge between conversions. The ADCs contain two parallel filters - a Sinc3 or Sinc4 in parallel with a Sinc2. The Sinc3 or Sinc4 filter is for precision measurements. The Sinc2 filter is for fast measurements and for detection of step changes in the input signal The device also contains a low noise, low drift internal band-gap reference or can be configured to accept up to 2 external reference sources in ratiometric measurement configurations. An option to buffer the external reference inputs is also provided on-chip. A singlechannel buffered voltage output DAC is also provided on chip.

The ADuCM360/ADuCM361 also integrates a range of on-chip peripherals which can be configured under microcontroller software control as required in the application. These peripherals include UART, I2C and dual SPI Serial I/O communication controllers, 19-Pin GPIO Ports, 2 General Purpose Timers, Wake-up Timer and System Watchdog Timer. A 16-bit PWM with six output channels is also provided.

The ADuCM360/ADuCM361 is specifically designed to operate in battery powered applications where low power operation is critical. The microcontroller core can be configured in a normal operating mode consuming 290μ A/MHz (including Flash/SRAM Idd) resulting in an overall system current consumption of 1mA when all peripherals are active.

The part can also be configured in a number of low power operating modes under direct program control, including hibernate mode (internal wake-up timer active) consuming only 4μ A. In hibernate mode, peripherals such as external interrupts or the internal wake up timer can wake up the device. This allows the part to operate in an ultra-low power operating mode and still respond to asynchronous external or periodic events.

On-chip factory firmware supports in-circuit serial download via a serial wire interface (2-pin JTAG system) and UART while non-intrusive emulation is also supported via the serial wire interface. These features are incorporated into a low-cost QuickStart Development System supporting this Precision Analog Microcontroller family.

The part operates from an external 1.8V to 3.6V voltage supply and is specified over an industrial temperature range of -40°C to 125°C.

SPECIFICATIONS

ADUCM360/ADUCM361 MICROCONTROLLER ELECTRICAL SPECIFICATIONS

AVDD/IOVDD = 1.8 V to 3.6V, Internal 1.2V reference, f_{CORE} = 16 MHz, all specifications $T_A = -40^{\circ}$ C to +125°C, unless otherwise noted.

Table 1. ADuCM360/ADuCM	· ·		_		
Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
ADC SPECIFICATIONS					
Conversion Rate ¹	Chop off	4		4000	Hz
	Chop on	4		1333	Hz
Both Primary & Auxiliary Channels					
No Missing Codes ¹	Chop off (f _{ADC} ≤ 500 Hz)	24			Bits
	Chop on $(f_{ADC} \le 250 \text{ Hz})$	24			Bits
RMS Noise and Data Output Rates	See Noise and Resolution tables in the User Guide				
Integral Nonlinearity ¹	Gain = 1 Gain = 2, 4, 8, 16, 32, 64, 128		±15 ±25		ppm of FSR ppm of FSR
Offset Error ^{2,3}	Chop off, offset error is in the order of the noise for the pro- grammed gain and update rate following calibration		±100/Gain		μV
Offset Error ^{1,2,3}	Chop on		±1.0		μV
Offset Error Drift vs. Temperature⁴	Chop off		100/ Gain		nV/°C
	Chop on		10		nV/°C
Offset Error Drift vs. Time			TBD		nV/1000 hours
Full-Scale Error ^{1,5,6,7}			±0.5/Gain	TBD	mV
Gain Drift vs. Temperature ⁴	Gain = 1 to 16, external reference		±1		ppm/°C
	Gain = 32 to 128 external reference		±3		
Gain Error Drift vs. Time			TBD		ppm/1000 hours
PGA Gain Mismatch Error			±0.15		%
Power Supply Rejection ^{1,8}	Chop on, ADC = 0.25 V (Gain = 4), ext. reference	85			dB
	Chop off, ADC = 7.8 mV (Gain = 128), ext. reference	100			dB
	Chop off, ADC = 1 V (Gain = 1), ext. reference	85			dB
Absolute Input Voltage Range					
Unbuffered Mode	Gain=1	AGND		Avdd	V
Buffered Mode	Gain =1	AGND+100mV		Avdd-100mV	V
Unbuffered Mode:	Gain >=2	AGND		Avdd	mV
Differential Input Voltage	Gain = 1			±VREF	mV
Ranges ¹	Gain = 2			±500	mV
	Gain = 4			±250	mV
	Gain = 8			±125	mV
	Gain = 16			±62.5	mV
	Gain = 32 (AVDD >= 2.0V)			±26.56	mV
	(AVDD < 2.0V)			±18.75	mV
	Gain = 64 (AVDD >=2.0V)	I		±13.28	mV

Table 1. ADuCM360/ADuCM361 Specifications

Rev. Pr R| Page 5 of 21

Preliminary Technical Data

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
	(AVDD <2.0V)			±9.375	mV
	Gain = 128 (AVDD >=2.0V)			±6.64	mV
	(AVDD <2.0V)			±4.6875	mV
Common mode Voltage, Vcm ¹	Vcm=(AIN(+)+AIN(-))/2,	AGND			v
_	Gain=2 to 128				
	Input current will be higher				
	when Vcm <0.5V				
Input Current ^{1,9}	Gain = 1, Buffered mode		1		nA
	(excluding pins with Vbias)				
	Gain >1, Buffered mode		2-		nA
	(excluding pins with Vbias)				
	Unbuffered mode. Input current will vary with input voltage		500		nA/V
Average Input Current Drift	Buffered mode:				
	AIN0, AIN1, AIN2, AIN3		±5		pA/°C
	AIN4, AIN5, AIN6, AIN7		±16		pA/°C
	AIN8, AIN9, AIN10, AIN11		±9		pA/°C
	Unbuffered mode		±250		pA/V/°C
Common-Mode Rejection DC ¹					
On ADC Input	ADC Gain =1	70	100		
	ADC Gain =2 to 128	80			dB
Common-Mode Rejection ¹	50 Hz/60 Hz ± 1 Hz,				
50 Hz/60 Hz	16.7 Hz update rate, chop on				
	50 Hz update rate, chop off				
	ADC Gain =1	97			dB
	ADC Gain =2 to 128	90			dB
Normal-Mode Rejection ¹ 50 Hz/60 Hz					
On ADC Input	50 Hz/60 Hz ± 1 Hz, 16.6 Hz f _{ADC/}	60	80		dB
on ADC input	chop on, 50 Hz f _{ADC} / chop off	00	80		UD
TEMPERATURE SENSOR	After user calibration	1			
Voltage Output at 25°C	MCU in power down or standby mode before measurement		82.1		mV
Voltage TC			250		mV/°C
Accuracy			6		℃
GROUND SWITCH			U U		
Ron			12		Ohms
Allowable Current	With 20K resistor off – direct		20		mA
Allowable Culterit	short to ground		20		IIIA
VOLTAGE REFERENCE		1			
ADC Precision Reference					
Internal V _{REF}			1.2		v
Initial Accuracy ¹	Measured at $T_A = 25^{\circ}C$	-0.05		0.05	%
Reference Temperature		-15	±8	+15	ppm/°C
Coefficient (Tempco) ^{1,8}			_•		-
Power Supply Rejection ¹			100		dB

Preliminary Technical Data

ADuCM360/ADuCM361

Parameter	Test Conditions/Comments	Min	Тур	Мах	Unit
External Reference Input	Buffered mode	0		AVDD-0.1	v
Range	Unbuffered mode	0		AVDD-0.1 AVDD	v
hange	onbullered mode	0		AVDD	v
	Minimum Differential voltage				
	between VREF+ and VREF- pins				
	is 400mV				
Input Current	Buffered mode		15		nA
	Unbuffered mode		500		nA/V
Normal Mode Rejection			80		
Common Mode Rejection			78		dB
Reference Detect Levels		-	400	_	mV
EXCITATION CURRENT SOURCES					
Output Current	Available from each current	10	50	1000	μA
· · · · · · · · · · · · · · · · · · ·	source – 10/50/200uA nominal				
Initial Tolerance at 25°C	lout >= 50uA		±5		%
Drift ¹	Using internal reference resistor		200		ppm/°C
	Using external 150 kΩ reference		75		ppm/°C
	resistor between IREF pin and				
	AGND. Resistor must have a drift				
	spec of 5ppm/°C				0/
Initial Current Matching at 25°C ¹	Matching between both current sources		±0.5		%
Drift Matching ¹	sources		50		ppm/°C
Load Regulation (AVDD) ¹	AVDD = 3.3 V		0.2		%/V
Output Compliance ¹	10uA to 210uA lout	AGND – 30 mV	0.2	AVDD – 0.85 V	V
output compliance	lout >210uA	AGND – 30 mV		AVDD - 1.1 V	v
DAC CHANNEL SPECIFICATIONS	$R_L = 5 k\Omega, C_L = 100 pF$				•
Voltage Range	Internal reference	0		V _{REF}	v
Voltage hange	External reference	0		1.8	v
DC Specifications ¹⁰	External reference	Ŭ		1.0	
Resolution		12			Bits
Relative Accuracy		12	±3		LSB
Differential Nonlinearity	Guaranteed monotonic		±0.5	±1	LSB
Offset Error	1.2 V internal reference		±2	±15	mV
Gain Error	V_{REF} range (reference = 1.2 V)			±1	%
NPN Mode					,
Resolution		12			Bits
Relative Accuracy			±1.0		LSB
Differential Nonlinearity			±0.5		LSB
Offset Error			±0.35		mA
Gain Error			±0.75		mA
Output Current Range ¹		0.008		23.6	mA
DAC AC CHARACTERISTICS					
Voltage Output Settling Time			10		μs
Digital-to-Analog Glitch Energy	1 LSB change at major carry		±20		nV-sec
	(where maximum number of bits simultaneously change in				
	the DAC0DAT register)				

Preliminary Technical Data

Parameter	Test Conditions/Comments	Min	Тур	Мах	Unit
POWER-ON RESET (POR)					
POR Trip Level	Refers to voltage at DVDD pin				
	Power-on level		1.6		V
	Power-down level		1.6		V
Timeout from POR			50		ms
WATCHDOG TIMER (WDT)					
Timeout Period ¹		0.00003		8192	sec
Timeout Step Size	T3CON[3:2]=[10]		7.8125		ms
FLASH/EE MEMORY ¹					
Endurance ¹¹		20,000			Cycles
Data Retention ¹²	Tj=85°C	10			Years
Digital Inputs	All digital inputs				
Logic 1 Input Current (leakage	$V_{\text{INH}} = VDD \text{ or } V_{\text{INH}} = 1.8V$		10		nA
current)	Internal pull-up disabled		100		μA
	RESET, SWCLK, SWDIO				•
Logic 0 Input Current (leakage	$V_{INL} = 0V$		10		nA
current)	Internal pull-up disabled		100		μA
	RESET , SWCLK, SWDIO				
Input Capacitance			10		pF
Logic Inputs					T.
VINL, Input Low Voltage				0.2 x VDD	v
VINH, Input High Voltage		0.7 x VDD			V
Logic Outputs					
VOH, Output High Voltage	Isource = 1mA	VDD – 400mV			v
VOL, Output Low Voltage	$I_{SINK} = 1 m A$	100 100		0.4	V
CRYSTAL OSCILLATOR ¹				0.1	-
Logic Inputs, XTALI Only ¹³					
Input Low Voltage (VINL)				0.8	v
Input High Voltage (VINE)		1.7		0.0	v
XTALI Capacitance		1.7	6		pF
XTALO Capacitance			6		pF
ON-CHIP Low Power Oscillator			0		рі
Oscillator			22 760		kHz
		20	32,768	- 20	кпz %
		-20		+20	%
ON-CHIP High Frequency Oscillator					
Oscillator		0.125	2	16	MHz
	To be confirmed across full	-1	Z		₩ΠZ %
Accuracy	temperature range of -40 to	-1		1	%
	+125C				
MCU CLOCK RATE	Eight programmable core clock	0.125	2	16	MHz
	selections within this range:		_		
Using an External Clock	_	0.032768		16	MHz
-					
MCU START-UP TIME					
At Power-On	Includes kernel power-on		41		ms
	execution time		וד		1115
After Reset Event	Includes kernel power-on		1.44		ms
	execution time				

Preliminary Technical Data

ADuCM360/ADuCM361

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
From MCU Power-Down (mode 1, 2 and 3)	Fclk is the Cortex-M3 core clock		3-5 x Fclk		
From TOTAL-HALT or HIBERNATE (mode 4 or mode 5) mode			30.8		μs
POWER REQUIREMENTS					
Power Supply Voltages					
VDD		1.8		3.6	V
Power Consumption					
I _{DD} (MCU Active Mode) ^{14,15}	MCU clock rate = 16 MHz, all peripherals on		5.5		mA
	MCU clock rate = 500 KHz, Both ADCs on (Input buffers off) with PGAs Gain = 4, 1 x SPI on, all timers on		1		mA
IDD (MCU Powered Down) ¹	Full temperature range HIBERNATE (mode 5)		4	10	μΑ
	Reduced temperature range −40°C to +85°C		2	5	μΑ
IDD (Primary ADC) (total) ¹⁵	PGA enabled – total, G>=32		320		μA
PGA	G=4/8/16 – PGA only		130		μA
	G=32/64/128 – PGA only		180		
Input Buffers Digital Interface +	2 x Input buffers is 70uA		70		μΑ
Modulator			70		μΑ
IDD (Auxiliary ADC)	Input buffers off, G=4/8/16 only		200		μA
External Reference Input buffers	60uA each		120		μΑ

¹These numbers are not production tested but are guaranteed by design and/or characterization data at production release.

²Tested at gain range = 4 after initial offset calibration.

³ Measured with an internal short. A system zero-scale calibration removes this error.

⁴ A recalibration at any temperature removes these errors.

⁵These numbers do not include internal reference temperature drift.

⁶ Factory calibrated at gain = 1.

⁷ System calibration at a specific gain range removes the error at this gain range.

⁸ Measured using the box method.

⁹ Input current measured with one ADC measuring a channel. If both ADCs measure the same input channel, then the input current will increase – approximately double

¹⁰ Reference DAC linearity is calculated using a reduced code range of 0x0AB to 0xF30.

¹¹Endurance is qualified to 20,000 cycles as per JEDEC Std. 22 Method A117 and measured at -40°C, +25°C, and +125°C. Typical endurance at 25°C is 170,000 cycles.

¹² Retention lifetime equivalent at junction temperature (T₂) = 85°C as per JEDEC Std. 22 Method A117. Retention lifetime derates with junction temperature. ¹³ Voltage input levels only relevant if driving XTAL input from a voltage source. If a crystal is connected directly, the internal crystal interface will determine the common mode voltage.

¹⁴ Typical additional supply current consumed during Flash/EE memory program and erase cycles is 7mA.

¹⁵ Total I_{DD} for ADC includes figures for PGA≥32, input buffers, digital interface and the Sigma Delta modulator.

NOISE RESOLUTION OF PRIMARY AND AUXILIARY ADCS

Table 2: RMS Noise (μV) vs. Gain and Output Update Rate

(Using an Internal Reference (1.2V) Both ADCs)

Update Rate (Hz)	Gain of 1	Gain of 2	Gain of 4	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
3.75 (Chop On) ADCxFLT = 0x8D7C	1.05	0.45	0.23	0.135	0.072	0.064	0.055	0.052
30 (Chop Off) ADCxFLT = 0x007E	2.1	1.37	0.63	0.37	0.22	0.2	0.16	0.155
50 (Chop Off) ADCxFLT = 0x007D	3.7	1.6	0.83	0.47	0.29	0.24	0.21	0.2
100 (Chop Off) ADCxFLT = 0x004D	5.45	2.41	1.13	0.63	0.38	0.32	0.27	0.25
488 (Chop Off Sinc4) ADCxFLT = 0x100F	10	4.7	2.2	1.3	0.79	0.67	0.58	0.57
976 (Chop Off Sinc4) ADCxFLT = 0x1007	13.5	6.5	3.3	1.7	1.1	0.91	0.74	0.7
1953 (Chop Off Sinc4) ADCxFLT = 0x1003	19.3	10	4.7	2.6	1.55	1.3	1.15	1.0
3906 (Chop Off Sinc4) ADCxFLT = 0x1001	67.0	36	16.6	8.8	4.9	2.68	1.76	1.4

Table 3: Typical Output RMS Effective Number of Bits in Normal Mode

(Using an Internal Reference (1.2V), Both ADCs, Peak-to-Peak Bits in Parentheses)

ADC	Data		Input Voltag	ge Noise (mV)					
Register	Update	±1.0 V	±500 mV	±250 mV	±125 mV	±62.5 mV	±31.25 mV	±15.625 mV	±7.8125 mV
Status	Rate	(PGA = 1)	(PGA = 2)	(PGA = 4)	(PGA = 8)	(PGA = 16)	(PGA = 32)	(PGA = 64)	(PGA = 128)
Chop On	3.75 Hz	21.1	21.3	21.3	21.1	21	20.2	19.4	18.5
Sinc3		(18.4p-p)	(18.6p-p)	(18.6p-p)	(18.4p-p)	(18.3p-p)	(17.4р-р)	(16.7p-p)	(15.7p-p)
Chop Off	30 Hz	20.1	19.7	19.8	19.6	19.4	18.5	17.8	16.9
Sinc3		(17.4p-p)	(17р-р)	(17.1p-p)	(16.9p-p)	(16.7р-р)	(15.8p-p)	(15.1p-p)	(14.2p-p)
Chop Off	50 Hz	19.3	19.5	19.5	19.3	19	18.3	17.4	16.5
Sinc3		(16.6p-p)	(16.8p-p)	(16.8p-p)	(16.6p-p)	(16.3p-p)	(15.5p-p)	(14.7p-p)	(13.8p-p)
Chop Off	100 Hz	18.7	18.9	19	18.9	18.6	17.8	17.1	16.2
Sinc3		(16p-p)	(16.2p-p)	(16.3p-p)	(16.2p-p)	(16.1р-р)	(15.1p-p)	(14.4p-p)	(13.5p-p)
Chop Off	488 Hz	17.9	18	18.1	17.8	17.5	16.8	16	15
Sinc4		(15.2p-p)	(15.2p-p)	(15.3p-p)	(15.1p-p)	(14.8p-p)	(14p-p)	(13.3p-p)	(12.3p-p)
Chop Off	976 Hz	17.4	17.5	17.5	17.4	17.1	16.3	15.6	14.7
Sinc4		(14.7p-p)	(14.8p-p)	(14.8p-p)	(14.7p-p)	(14.3p-p)	(13.6p-p)	(12.9p-p)	(12p-p)
Chop Off	1953	16.9	16.9	17	16.8	16.6	15.8	15	14.2
Sinc4	Hz	(14.2p-p)	(14.2p-p)	(14.3p-p)	(14p-p)	(13.8р-р)	(13.1p-p)	(13.1p-p)	(11.5p-p)
Chop Off	3906	15.1	15	15.1	15.1	14.9	14.8	14.4	13.7
Sinc4	Hz	(12.4p-p)	(12.3р-р)	(12.4р-р)	(12.4р-р)	(12.2p-p)	(12p-p)	(11.7р-р)	(11p-p)

Table 4: RMS Noise (μV) vs. Gain and Output Update Rate

(Using an External Reference (2.5V) Both ADCs)

Update Rate (Hz)	Gain of 1	Gain of 2	Gain of 4	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
4.55 (Chop On) ADCxFLT = 0x88FD	1.1	0.5	0.27	0.17	0.088	0.07	0.06	0.58
30 (Chop Off) ADCxFLT = 0x007E	3	1.4	0.85	0.44	0.27	0.22	0.19	0.17
50 (Chop Off) ADCxFLT = 0x007D	3.9	2.2	0.92	0.46	0.3	0.21	0.2	0.19
100 (Chop Off) ADCxFLT = 0x004F	5.2	2.8	1.25	0.63	0.38	0.32	0.28	0.26
488 (Chop Off Sinc4) ADCxFLT = 0x100F	9.3	5.0	2.5	1.2	0.75	0.7	0.57	0.5
976 (Chop Off Sinc4) ADCxFLT = 0x1007	12.5	7	3.5	1.75	1.2	0.83	0.77	0.75
1953 (Chop Off Sinc4) ADCxFLT = 0x1003	20.0	10	5.7	2.6	1.71	1.3	1.24	1.1
3906 (Chop Off Sinc4) ADCxFLT = 0x1001	140.0	70.0	35.0	17.2	8.9	4.8	2.65	1.88

Table 5: Typical Output RMS Effective Number of Bits in Normal Mode

(Using an External Reference (2.5V), Both ADCs, Peak-to-Peak Bits in Parentheses)

ADC	Data		Input Voltag	ge Noise (mV)					
Register	Update	±1.0 V	±500 mV	±250 mV	±125 mV	±62.5 mV	±31.25 mV	±15.625 mV	±7.8125 mV
Status	Rate	(PGA = 1)	(PGA = 2)	(PGA = 4)	(PGA = 8)	(PGA = 16)	(PGA = 32)	(PGA = 64)	(PGA = 128)
Chop On	3.75 Hz	22.1	22.3	22.1	21.8	21.8	21.1	20.3	19.4
Sinc3		(19.4р-р)	(19.5p-p)	(19.4p-p)	(19.1p-p)	(19.1p-p)	(18.4p-p)	(17.6p-p)	(16.6p-p)
Chop Off	30 Hz	20.7	20.7	20.5	20.5	20.1	19.4	18.6	17.8
Sinc3		(18p-p)	(18р-р)	(17.7р-р)	(17.7p-p)	(17.4p-p)	(16.7р-р)	(15.9p-p)	(15.1p-p)
Chop Off	50 Hz	20.3	20.1	20.4	20.4	20	19.5	18.6	17.6
Sinc3		(17.6p-p)	(17.4p-p)	(17.7р-р)	(17.7р-р)	(17.3р-р)	(16.8p-p)	(15.9р-р)	(14.9p-p)
Chop Off	100 Hz	19.9	19.8	19.9	19.9	19.6	18.9	18.1	17.2
Sinc3		(17.2p-p)	(17р-р)	(17.2p-p)	(17.2р-р)	(16.9p-p)	(16.2p-p)	(15.4p-p)	(14.5p-p)
Chop Off	488 Hz	19	18.9	18.9	19	18.7	17.8	17.1	16.3
Sinc4		(16.3p-p)	(16.2p-p)	(16.2p-p)	(16.3p-p)	(15.9p-p)	(15р-р)	(14.3p-p)	(13.5p-p)
Chop Off	976 Hz	18.6	18.4	18.4	18.4	18	17.5	16.6	15.7
Sinc4		(15.9p-p)	(15.7p-p)	(15.7p-p)	(15.7p-p)	(15.3p-p)	(14.8p-p)	(13.9p-p)	(12.9p-p)
Chop Off	1953	17.9	17.9	17.7	17.9	17.5	16.9	15.9	15.1
Sinc4	Hz	(15.2p-p)	(15.2p-p)	(15p-p)	(15.2p-p)	(14.8p-p)	(14.2p-p)	(13.2p-p)	(12.4p-p)
Chop Off	3906	15.1	15.1	15.1	15.1	15.1	15	14.8	14.3
Sinc4	Hz	(12.4p-p)	(12.4p-p)	(12.4p-p)	(12.4p-p)	(12.4p-p)	(12.3p-p)	(12.1p-p)	(11.6p-p)

I²C TIMING DIAGRAMS

Capacitive load for each of the I^2C^1 -bus line, Cb = 400pF maximum as per I^2C -bus specifications.

I²C timing is guaranteed by design and not production tested.

Table 6. I²C Timing in Fast Mode (400 kHz)

Parameter	Description	Min	Max	Unit
t∟	Serial Clock (SCL) low pulse width	1300	-	ns
t _H	SCL high pulse width	600	-	ns
t _{SHD}	Start condition hold time	600	-	ns
t _{DSU}	Data setup time	100	-	ns
t DHD	Data hold time	0	-	ns
t _{RSU}	Setup time for repeated start	600	-	ns
t _{PSU}	Stop condition setup time	600	-	ns
t _{BUF}	Bus-free time between a stop condition and a start condition	1.3	-	μs
t _R	Rise time for both SCL and serial data (SDA)	20 + 0.1 Cb	300	ns
t⊧	Fall time for both SCL and SDA	20 + 0.1 Cb	300	ns
tsup	Pulse width of spike suppressed	0	50	ns

Table 7. I²C Timing in Standard Mode (100 kHz)

Parameter	Description	Min	Max	Unit
tL	SCL low pulse width	4.7	-	μs
tн	SCL high pulse width	4.0	-	ns
t _{shd}	Start condition hold time	4.7	-	μs
t _{DSU}	Data setup time	250	-	ns
t DHD	Data hold time	0	-	μs
t _{RSU}	Setup time for repeated start	4.0	-	μs
t PSU	Stop condition setup time	4.0	-	μs
t BUF	Bus-free time between a stop condition and a start condition	4.7	-	μs
t _R	Rise time for both SCL and SDA	-	1	μs
tF	Fall time for both SCL and SDA	-	300	ns

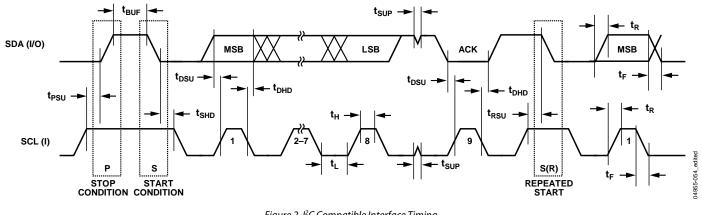


Figure 2. I²C Compatible Interface Timing

¹ I²C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

SPI TIMING DIAGRAMS

Table 8. SPI Master Mode Timing

Parameter	Description	Min	Тур	Max	Unit
tsL	SCLK low pulse width ¹	(SPIDIV + 1) × tuclk			ns
t _{sH}	SCLK high pulse width ¹	$(SPIDIV + 1) \times t_{UCLK}$			ns
t _{DAV}	Data output valid after SCLK edge	0 35.5		35.5	ns
t _{DOSU}	Data output setup before SCLK edge ¹	$(SPIDIV + 1) \times$			ns
		t uclk			
t _{DSU}	Data input setup time before SCLK edge	58.7			ns
t DHD	Data input hold time after SCLK edge	16			ns
t _{DF}	Data output fall time	12 35.5		35.5	ns
t _{DR}	Data output rise time 12 35.5		35.5	ns	
t _{sr}	SCLK rise time	12 35.5		35.5	ns
t _{SF}	SCLK fall time		12	35.5	ns

 1 t $_{\text{UCLK}}$ = 62.5 ns. It corresponds to the internal 16MHz clock before the clock divider.

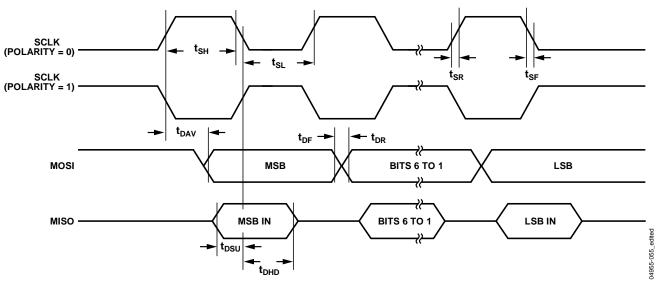
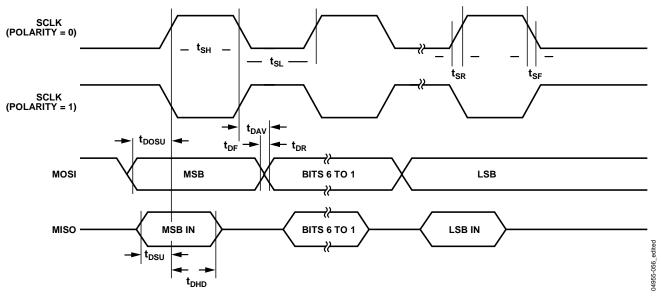
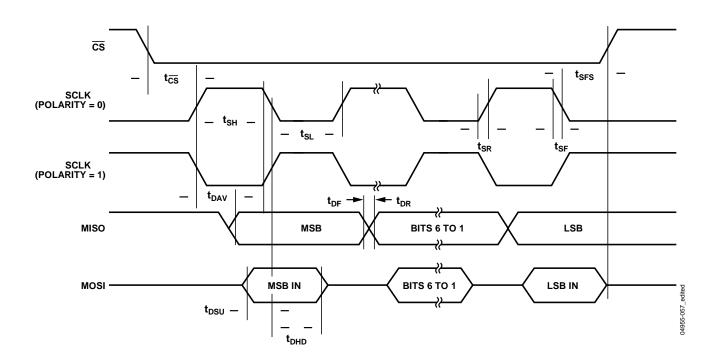


Figure 3. SPI Master Mode Timing (PHASE Mode = 1)

Preliminary Technical Data




Figure 4. SPI Master Mode Timing (PHASE Mode = 0)

Parameter	Description	Min	Тур	Max	Unit
t _{cs}	CS to SCLK edge	38			ns
tsL	SCLK low pulse width ¹		$(SPIDIV + 1) \times t_{UCLK}$		ns
t _{sн}	SCLK high pulse width ¹	62.5	$(SPIDIV + 1) \times t_{UCLK}$		ns
t _{DAV}	Data output valid after SCLK edge			49.1	ns
t _{DSU}	Data input setup time before SCLK edge	20.2			ns
t DHD	Data input hold time after SCLK edge	10.1			ns
t _{DF}	Data output fall time		12	35.5	ns
t _{DR}	Data output rise time		12	35.5	ns
t _{sr}	SCLK rise time		12	35.5	ns
t _{sF}	SCLK fall time		12	35.5	ns
tDOCS	Data output valid after CS edge			25	ns
tsfs	CS high after SCLK edge	0			ns

 1 t_{UCLK} = 62.5 ns. It corresponds to the internal 16MHz clock before the clock divider.

Preliminary Technical Data

ADuCM360/ADuCM361

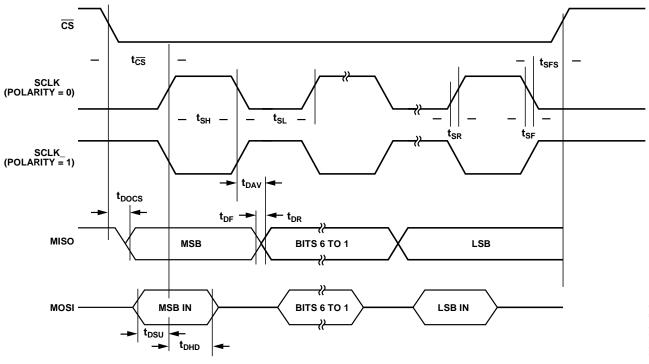


Figure 6. SPI Slave Mode Timing (PHASE Mode = 0)

ABSOLUTE MAXIMUM RATINGS

Table 1	0.
---------	----

1	
Parameter	Rating
AVDD/IOVDD to GND	–0.3 V to 3.96V
Digital Input Voltage to DGND	–0.3 V to 3.96V
Digital Output Voltage to DGND	–0.3 V to 3.96V
V _{REF} to AGND	–0.3 V to TBD
Analog Inputs to AGND	–0.3 V to TBD
Operating Temperature Range	-40°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
ESD (Human Body Model) rating	±2kV
All Pins	
θ_{JA} Thermal Impedance	
48-Pin LFCSP _VQ	27°C/W
Peak Solder Reflow Temperature	
SnPb Assemblies (10 sec to 30 sec)	240°C
Pb-Free Assemblies	260°C
(20 sec to 40 sec)	

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Pin Configuration and Function Descriptions

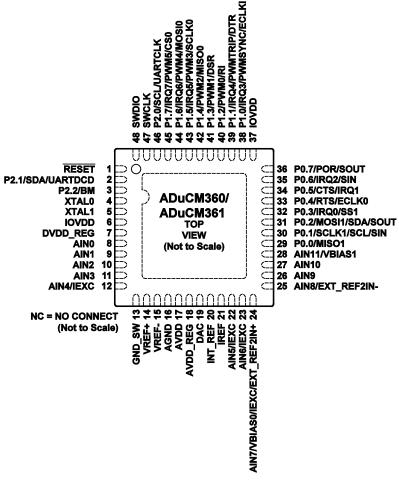


Figure 7. ADuCM360/ADuCM361 Pinout

Table 11. Pin Function Descriptions

Pin No.	Mnemonic	Description		
1	RESET	Reset. Input pin, active low. An internal pull-up is provided.		
2	P2.1/SDA/UARTDCD	General-Purpose Input and General-Purpose Output P2.1/ I ² C serial data Pin/Alternatively, this pin may be the UART Data carrier Detect pin. This is a multi function input/output pin.		
3	P2.2/BM	General-Purpose Input and General Purpose Output P2.2/ Boot mode input select pin. When this pin is held low during any reset sequence, the part will enter UART download mode. This is a dual function input/output pin.		
4	XTALO	External Crystal Oscillator Output Pin. Optional 32.768kHz source for Real time clock.		
5	XTAL1	External Crystal Oscillator Input Pin. Optional 32.768kHz source for Real time clock.		
6	IOVDD	Digital System Supply pin.		
7	DVDD_REG	Internal Digital Regulator Supply Output. This pin must be connected to ground via a 470nF capacitor.		
		Note: This pin must be connected to pin 18, AVDD_REG		
8	AINO	ADC Analog Input 0. This pin can be configured as a positive or negative input to either ADC in Differential or single ended modes.		
9	AIN1	ADC Analog Input 1. This pin can be configured as a positive or negative input to either ADC in Differential or single ended modes.		
10	AIN2	ADC Analog Input 2. This pin can be configured as a positive or negative input to either ADC in		
Rev. Pr R Page 17 of 21				

Pin No.	Mnemonic	Description
		Differential or single ended modes.
11	AIN3	ADC Analog Input 3. This pin can be configured as a positive or negative input to either ADC in Differential or single ended modes.
12	AIN4/IEXC	ADC Analog Input 4. This pin can be configured as a positive or negative input to either ADC in Differential or single ended modes.
		Or, it may be configured as the output pin for either Excitation current source 0 or 1.
13	GND_SW	Sensor Power Switch to Analog Ground Reference.
14	VREF+	External Reference Positive Input, an external reference can be applied between VREF+ and VREF
15	VREF-	External Reference Negative Input, an external reference can be applied between VREF+ and VREF
16	AGND	Analog System Ground reference pin.
17	AVDD	Analog System Supply pin.
18	AVDD_REG	Internal Analog Regulator Supply Output. This pin must be connected to ground via a 470nF capacitor.
10	DAG	Note: This pin must be connected to pin 7, DVDD_REG
19 20	DAC	DAC Voltage Output
20	INT_REF	This pin must be connected to ground via a 470nF decoupling capacitor.
21	IREF	Optional reference current resistor connection for the Excitation current sources. Reference current set by low drift external resistor (5ppm/C).
22	AIN5/IEXC	Multi-Function Pin: ADC Analog Input 5. This pin can be configured as a positive or negative input to either ADC in Differential or single ended modes. Alternatively, it may be configured as the output pin for either Excitation current source 0 or 1. Or, it may be configured as the output pin for either Excitation current source 0 or 1. Or, it may be configured as the output pin for either Excitation current source 0 or 1. Or, it may be configured as the output pin for either Excitation current source 0 or 1. Or, it may be configured as the output pin for either Excitation current source 0 or 1.
23	AIN6/IEXC	Multi-Function Pin: ADC Analog Input 6. This pin can be configured as a positive or negative input to either ADC in Differential or single ended modes.
24		Or, it may be configured as the output pin for either Excitation current source 0 or 1.
24	AIN7/VBIAS0/IEXC/EXT_REF2IN+	Multi-Function Pin: ADC Analog Input 7. This pin can be configured as a positive or negative input to either ADC in differential or single ended modes. Alternatively, this pin can be configured as an analog output pin to generate a Bias Voltage, VBIAS3 of AVDD_REG/2.
		Or, it may be configured as the output pin for either Excitation current source 0 or 1. Alternatively, this pin can be configured as an external reference 2 positive input.
25	AIN8/EXT_REF2IN-	Multi-Function Pin: ADC Analog Input 8. This pin can be configured as a positive or negative input to either ADC in Differential or single ended modes. Alternatively, this pin can be configured as an external reference 2 negative input.
26	AIN9	ADC Analog Input 9. This pin can be configured as a positive or negative input to either ADC in Differential or single ended modes. Alternatively, this pin can be configured as the non-inverting input to the DAC output buffer when the DAC is configured for NPN mode.
27	AIN10	ADC Analog Input 10. This pin can be configured as a positive or negative input to either ADC in Differential or single ended modes.
28	AIN11/VBIAS1	Multi-Function Pin: ADC Analog Input 11. This pin can be configured as a positive or negative input to either ADC in Differential or single ended modes. Alternatively, this pin can be configured as an
		analog output pin to generate a Bias Voltage, VBIAS5 of AVdd/2.
29	P0.0/MISO1	General-Purpose Input and General-Purpose Output P0.0/SPI1 Master In – Slave out Pin. This is a dual function input/output pin.
30	P0.1/SCLK1/SCL/SIN	General-Purpose Input and General-Purpose Output P0.1/SPI1 Serial Clock Pin/I ² C Serial Clocl Pin/ UART Serial Input. This is a multi function input/output pin.
		This pin will be the data input for the UART downloader.
31	P0.2/MOSI1/SDA/SOUT	General-Purpose Input and General-Purpose Output P0.2/ SPI1 Master Out – Slave In Pin /I ² C Serial Data Pin/ UART Serial output. This is a multi function input/output pin.
32	P0.3/IRQ0/CS1	<i>This pin will be the data output for the UART downloader.</i> General-Purpose Input and General-Purpose Output P0.3/ External Interrupt Request 0/ SPI1 Chip Select Pin (Active Low). This is a triple function input/output pin.
33	P0.4/RTS/ECLKO	General-Purpose Input and General-Purpose Output P0.4/ Request-to-Send Signal in UART Mode/ Clock out (for test purposes) pin. This is a triple function input/output pin.
34	P0.5/CTS/IRQ1	General-Purpose Input and General-Purpose Output P0.5/ Clear-to-Send Signal in UART Mode. / External Interrupt Request 1.

Preliminary Technical Data

Pin No.	Mnemonic	Description
		This is a dual function input/output pin.
35	P0.6/IRQ2/SIN	General-Purpose Input and General-Purpose Output P0.6/ External Interrupt Request 2/ UART Serial Input. This is a triple function input/output pin.
36	P0.7/POR/SOUT	General-Purpose Input and General-Purpose Output P0.7/ Power on Reset active high bit/ UART Serial output. This is a triple function input/output pin.
37	IOVDD	Digital System Supply pin.
38	P1.0/IRQ3/PWMSYNC/ECLKI	General-Purpose Input and General Purpose Output P1.0/ External Interrupt Request 3/ PWM external Sync input/External clock input pin. This is a Quad function input/output pin.
39	P1.1/IRQ4/PWMTRIP/DTR	General-Purpose Input and General Purpose Output P1.1/ External Interrupt Request 4/ PWM external trip input/UART Data terminal Ready pin.
		This is a multi function input/output pin.
40	P1.2/PWM0/RI	General-Purpose Input and General-Purpose Output P1.2/PWM0 Output/UART Ring Indicator pin.
		This is a triple function input/output pin.
41	P1.3/PWM1/DSR	General-Purpose Input and General-Purpose Output P1.3/PWM1 Output/UARTData Set Ready pin.
42	P1.4/PWM2/MISO0	This is a triple function input/output pin. General-Purpose Input and General-Purpose Output P1.4/PWM2 Output/ SPI0 Master In – Slave out Pin.
		This is a triple function input/output pin.
43	P1.5/IRQ5/PWM3/SCLK0	General-Purpose Input and General-Purpose Output P1.5/ External Interrupt Request 5/ PWM3 Output/ SPI0 Serial Clock Pin.
		This is a Quad function input/output pin.
44	P1.6/IRQ6/PWM4/MOSI0	General-Purpose Input and General-Purpose Output P1.6/ External Interrupt Request 6/ PWM4 Output/ SPI0 Master out, Slave in Pin.
		This is a Quad function input/output pin.
45	P1.7/IRQ7/PWM5/CS0	General-Purpose Input and General-Purpose Output P1.7/ External Interrupt Request 7/ PWM5 Output/ SPI0 Chip Select Pin (Active Low).
		This is a Quad function input/output pin.
46	P2.0/SCL/UARTCLK	General-Purpose Input and General Purpose Output P2.0/ I ² C Serial Clock Pin. Alternatively, this pin may be an optional input clock pin for the UART block only. This is a Triple function input/output pin.
47	SWCLK	Serial Wire debug clock input pin.
48	SWDIO	Serial Wire debug data input/output pin.
U	EP	**Exposed Paddle. The LFCSP_VQ has an exposed paddle that <u>MUST BE</u> connected to digital ground.

TYPICAL PERFORMANCE CHARACTERISTICS

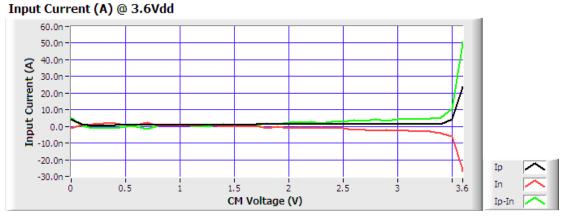


Figure 8. Common Mode Voltage (Vcm) in Volts vs Input Current in nA, Gain=4, ADC input 250mV, AVdd=3.6V, T=25C

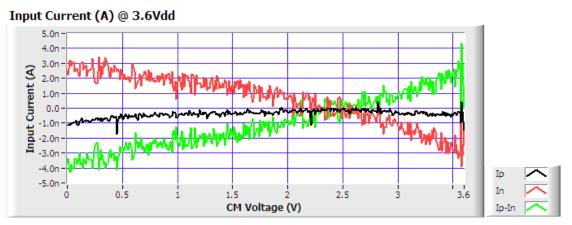


Figure 9. Common Mode Voltage (Vcm) in Volts vs Input Current in nA, Gain=128, ADC input 7.8125mV, AVdd=3.6V, T=25C

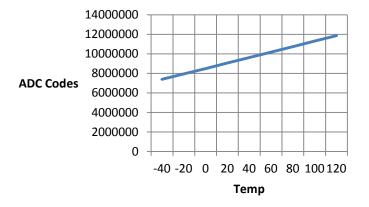
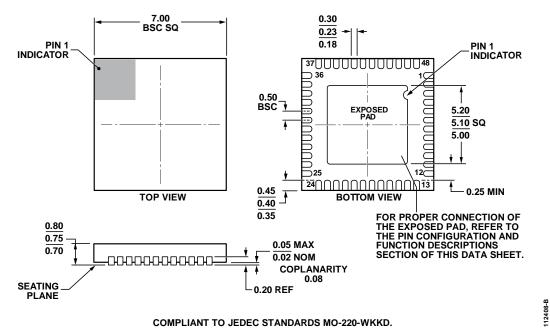



Figure 10. ADC Codes (decimal values) v Die temperature

OUTLINE DIMENSIONS

(CP-48-4)

Figure 11. 48-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 7 mm × 7 mm Body, Very Thin Quad Dimensions shown in millimeters

©2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. PR09743-0-5/12(PrR).

www.analog.com