PRELIMINARY # 16-Mbit (2M x 8) Static RAM #### **Features** - · High speed - $t_{AA} = 10 \text{ ns}$ - · Low active power - I_{CC} = 125 mA @ 10 ns - · Low CMOS standby power - $I_{SB2} = 25 \text{ mA}$ - Operating voltages of 3.3 ± 0.3V - 2.0V data retention - · Automatic power-down when deselected - TTL-compatible inputs and outputs - Easy memory expansion with $\overline{\text{CE}}_1$ and CE_2 features - Available in Pb-free 54-pin TSOP II package and 48-ball VFBGA packages # **Functional Description** The CY7C1069DV33 is a high-performance CMOS Static RAM organized as 2,097,152 words by 8 bits. Writing to the device is accomplished by enabling the chip (by taking $\overline{\text{CE}}_1$ LOW and $\overline{\text{CE}}_2$ HIGH) and Write Enable (WE) inputs LOW. Reading from the device is accomplished by enabling the chip (CE $_1$ LOW and CE $_2$ HIGH) as well as forcing the Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. See the truth table at the back of this data sheet for a complete description of Read and Write modes. The input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected ($\overline{\text{CE}}_1$ HIGH or CE_2 LOW), the outputs are disabled ($\overline{\text{OE}}$ HIGH), or during a Write operation ($\overline{\text{CE}}_1$ LOW, CE_2 HIGH, and WE LOW). The CY7C1069DV33 is available in a 54-pin TSOP II package with center power and ground (revolutionary) pinout, and a 48-ball very fine-pitch ball grid array (VFBGA) package. ### Selection Guide | | -10 | Unit | |------------------------------|-----|------| | Maximum Access Time | 10 | ns | | Maximum Operating Current | 125 | mA | | Maximum CMOS Standby Current | 25 | mA | # Pin Configurations^[1] #### 48-ball VFBGA #### Note: NC pins are not connected on the die #### **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C Supply Voltage on V_{CC} to Relative $\mbox{GND}^{[2]}\,...\,-\mbox{0.5V}$ to +4.6V DC Input Voltage $^{[2]}$-0.5V to V_{CC} + 0.5V | Current into Outputs (LOW) | 20 mA | |--------------------------------|---------| | Static Discharge Voltage | >2001V | | (per MIL-STD-883, Method 3015) | | | Latch-up Current | >200 mA | ### **Operating Range** | Range | Ambient
Temperature | V _{CC} | |------------|------------------------|-----------------| | Industrial | −40°C to +85°C | $3.3V\pm0.3V$ | # DC Electrical Characteristics Over the Operating Range | | | | _ | 10 | | |------------------|---|---|------|-----------------------|------| | Parameter | Description | Test Conditions | Min. | Max. | Unit | | V _{OH} | Output HIGH Voltage | $V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$ | 2.4 | | V | | V _{OL} | Output LOW Voltage | $V_{CC} = Min., I_{OL} = 8.0 \text{ mA}$ | | 0.4 | V | | V _{IH} | Input HIGH Voltage | | 2.0 | V _{CC} + 0.3 | V | | V _{IL} | Input LOW Voltage ^[2] | | -0.3 | 0.8 | V | | I _{IX} | Input Leakage Current | $GND \le V_1 \le V_{CC}$ | -1 | +1 | μΑ | | l _{OZ} | Output Leakage Current | $GND \le V_{OUT} \le V_{CC}$, Output Disabled | -1 | +1 | μΑ | | I _{CC} | V _{CC} Operating Supply Current | $V_{CC} = Max.$, $f = f_{MAX} = 1/t_{RC}$, $I_{OUT} = 0$ mA CMOS levels | | 125 | mA | | I _{SB1} | Automatic CE Power-down
Current —TTL Inputs | $CE_2 \le V_{IL}$, Max. V_{CC} , $\overline{CE} \ge V_{IH}$
$V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$ | | 30 | mA | | I _{SB2} | Automatic CE Power-down
Current —CMOS Inputs | $CE_2 \le 0.3V$, Max. V_{CC} , $\overline{CE} \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$, $f = 0$ | | 25 | mA | ## Capacitance^[3] | Parameter | Description | Test Conditions | TSOP II | VFBGA | Unit | |------------------|-------------------|--|---------|-------|------| | C _{IN} | Input Capacitance | $T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = 3.3$ V | 6 | 8 | pF | | C _{OUT} | I/O Capacitance | | 8 | 10 | pF | #### Thermal Resistance^[3] | Pa | arameter | Description | Test Conditions | | | | |----|-------------------|---------------------------------------|--|-----|------|--| | | Θ_{JA} | , | Still Air, soldered on a 3 x 4.5 inch, | TBD | °C/W | | | | $\Theta_{\sf JC}$ | Thermal Resistance (Junction to Case) | four-layer printed circuit board | TBD | °C/W | | # AC Test Loads and Waveforms^[4] #### Notes: - 2. V_{IL} (min.) = -2.0V and V_{IH} (max) = V_{CC} + 2V for pulse durations of less than 20 ns. - 3. Tested initially and after any design or process changes that may affect these parameters. - Valid SRAM operation does not occur until the power supplies have reached the minimum operating V_{DD} (3.0V). 100μs (t_{power}) after reaching the minimum operating V_{DD}, normal SRAM operation can begin including reduction in V_{DD} to the data retention (V_{CCDR}, 2.0V) voltage. Document #: 38-05478 Rev. *C # AC Switching Characteristics Over the Operating Range [5] | | | _ | 10 | | |--------------------------------|---|------|------|------| | Parameter | Description | Min. | Max. | Unit | | Read Cycle | | 1 | 1 | | | t _{power} | V _{CC} (typical) to the First Access ^[6] | 100 | | μS | | t _{RC} | Read Cycle Time | 10 | | ns | | t _{AA} | Address to Data Valid | | 10 | ns | | t _{OHA} | Data Hold from Address Change | 3 | | ns | | t _{ACE} | CE ₁ LOW/CE ₂ HIGH to Data Valid | | 10 | ns | | t _{DOE} | OE LOW to Data Valid | | 5 | ns | | t _{LZOE} | OE LOW to Low-Z ^[7] | 1 | | ns | | t _{HZOE} | OE HIGH to High-Z ^[7] | | 5 | ns | | t _{LZCE} | CE ₁ LOW/CE ₂ HIGH to Low-Z ^[7] | 3 | | ns | | t _{HZCE} | CE ₁ HIGH/CE ₂ LOW to High-Z ^[7] | | 5 | ns | | t _{PU} | CE ₁ LOW/CE ₂ HIGH to Power-up ^[8] | 0 | | ns | | t _{PD} | CE ₁ HIGH/CE ₂ LOW to Power-down ^[8] | | 10 | ns | | Write Cycle ^[9, 10] | | | | | | t _{WC} | Write Cycle Time | 10 | | ns | | t _{SCE} | CE ₁ LOW/CE ₂ HIGH to Write End | 7 | | ns | | t _{AW} | Address Set-up to Write End | 7 | | ns | | t _{HA} | Address Hold from Write End | 0 | | ns | | t _{SA} | Address Set-up to Write Start | 0 | | ns | | t _{PWE} | WE Pulse Width | 7 | | ns | | t _{SD} | Data Set-up to Write End | 5.5 | | ns | | t _{HD} | Data Hold from Write End | 0 | | ns | | t _{LZWE} | WE HIGH to Low-Z ^[7] | 3 | | ns | | t _{HZWE} | WE LOW to High-Z ^[7] | | 5 | ns | #### Notes: Notes: 5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V. Test conditions for the Read cycle use output loading shown in part a) of the AC test loads, unless specified otherwise. 6. t_{POWER} gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access can be performed. 7. t_{HZOCE}, t_{HZSCE}, t_{HZWE} and t_{LZOE}, t_{LZCE}, and t_{LZWE} are specified with a load capacitance of 5 pF as in (b) of AC Test Loads. Transition is measured ±200 mV from steady-state voltage. 8. These parameters are guaranteed by design and are not tested. 9. The internal Write time of the memory is defined by the overlap of CE₁ LOW/CE₂ HIGH, and WE LOW. CE₁ and WE must be LOW along with CE₂ HIGH to initiate a Write, and the transition of any of these signals can terminate the Write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the Write. 10. The minimum Write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}. ### **Data Retention Characteristics** (Over the Operating Range) | Parameter | Description | Conditions | Min. | Тур. | Max. | Unit | |--------------------------------|--------------------------------------|---|-----------------|------|------|------| | V_{DR} | V _{CC} for Data Retention | | 2 | | | V | | I _{CCDR} | Data Retention Current | $V_{CC} = 2V$, $\overline{CE}_1 \ge V_{CC} - 0.2V$,
$CE_2 \le 0.2V$, $V_{IN} \ge V_{CC} - 0.2V$ or
$V_{IN} \le 0.2V$ | | | 25 | mA | | CDIX | Chip Deselect to Data Retention Time | | 0 | | | ns | | t _R ^[11] | Operation Recovery Time | | t _{RC} | | | ns | #### **Data Retention Waveform** # **Switching Waveforms** Read Cycle No. 1^[12,13] # Read Cycle No. 2(OE Controlled)[13,14] - 11. Full device operation requires lin<u>ear</u> V_{CC} ramp from V_{DR} to V_{CC(min.)} ≥ 50 μs or stable at V_{CC(min.)} ≥ 50 μs 12. <u>Device</u> is continuously selected. $\overline{CE}_1 = V_{IL}$, $\overline{CE}_2 = V_{IH}$. 13. WE is HIGH for Read cycle. 14. Address valid prior to or coincident with \overline{CE}_1 transition LOW and \overline{CE}_2 transition HIGH. # Switching Waveforms (continued) Write Cycle No. 1(CE₁ Controlled)^[15,16,17] Write Cycle No.2($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)[15,16,17] # OE LOW) # **Truth Table** | CE ₁ | CE ₂ | OE | WE | I/O ₀ –I/O ₇ | Mode | Power | |-----------------|-----------------|----|----|------------------------------------|----------------------------|----------------------------| | Н | Х | Х | Х | High-Z | Power-down | Standby (I _{SB}) | | Х | L | Х | Х | High-Z | Power-down | Standby (I _{SB}) | | L | Н | L | Н | Data Out | Read All Bits | Active (I _{CC}) | | L | Н | Х | L | Data In | Write All Bits | Active (I _{CC}) | | L | Н | Н | Н | High-Z | Selected, Outputs Disabled | Active (I _{CC}) | Notes: 15. Data I/O is high-impedance if $\overline{OE} = V_{IH}$. 16. If \overline{CE}_1 goes HIGH/CE₂ LOW simultaneously with \overline{WE} going HIGH, the output remains in a high-impedance state. 17. CE above is defined as a combination of \overline{CE}_1 and \overline{CE}_2 . It is active low. # **Ordering Information** | Speed (ns) | Ordering Code | Package
Diagram | Package Type | Operating Range | |------------|---------------------|--------------------|--|-----------------| | 10 | CY7C1069DV33-10ZXI | 51-85160 | 54-pin TSOP II (Pb-Free) | Industrial | | | CY7C1069DV33-10BVXI | 51-85178 | 48-ball Very Fine Pitch Ball Grid Array (8 x 9.5 x 1 mm) (Pb-Free) | | # **Package Diagrams** # 54-pin TSOP Type II (51-85160) #### **Package Diagrams** #### 48-ball FBGA (8 x 9.5 x 1 mm) (51-85178) # **Document History Page** | REV. | ECN NO. | Issue Date | Orig. of
Change | Description of Change | |------|---------|------------|--------------------|---| | ** | 201560 | See ECN | SWI | Advance Data sheet for C9 IPP | | *A | 233748 | See ECN | RKF | 1.AC, DC parameters are modified as per EROS (Spec # 01-2165)
2.Pb-free Offering in the 'Ordering Information | | *B | 469420 | See ECN | NXR | Converted from Advance Information to Preliminary Removed –8 and –12 speed bins from product offering Removed Commercial Operating Range Changed 2G ball of FBGA and pin #40 of TSOPII from DNU to NC Included the Maximum ratings for Static Discharge Voltage and Latch UCurrent on page #3 Changed I _{CC(Max)} from 220 mA to 100 mA Changed I _{SB1(Max)} from 70 mA to 30 mA Changed I _{SB2(Max)} from 40 mA to 25 mA Specified the Overshoot spec in footnote # 1 Added Data Retention Characteristics table on page #5 Updated the ordering Information table. | | *C | 499604 | See ECN | NXR | Added note# 1 for NC pins Updated Test Condition for I _{CC} in DC Electrical Characteristics table Updated the 48-ball FBGA Package |