
Instruction Set Manual Version 1.2, 12.97

Instruction Set Manual
for the C16x Family of
Siemens 16-Bit CMOS Single-Chip Microcontrollers

http
://w

ww.si
emens.d

e/

Semiconductor/

Version 1.2, 12.97
Published by Siemens AG,
Bereich Halbleiter, Marketing-
Kommunikation, Balanstraße 73,
81541 München
© Siemens AG 1997.
All Rights Reserved.

Attention please!
As far as patents or other rights of third par-
ties are concerned, liability is only assumed
for components, not for applications, pro-
cesses and circuits implemented within com-
ponents or assemblies.
The information describes the type of compo-
nent and shall not be considered as assured
characteristics.
Terms of delivery and rights to change design
reserved.
For questions on technology, delivery and
prices please contact the Semiconductor
Group Offices in Germany or the Siemens
Companies and Representatives worldwide
(see address list).
Due to technical requirements components
may contain dangerous substances. For in-
formation on the types in question please
contact your nearest Siemens Office, Semi-
conductor Group.
Siemens AG is an approved CECC manufac-
turer.
Packing
Please use the recycling operators known to
you. We can also help you – get in touch with
your nearest sales office. By agreement we
will take packing material back, if it is sorted.
You must bear the costs of transport.
For packing material that is returned to us un-
sorted or which we are not obliged to accept,
we shall have to invoice you for any costs in-
curred.
Components used in life-support devices
or systems must be expressly authorized
for such purpose!
Critical components1 of the Semiconductor
Group of Siemens AG, may only be used in
life-support devices or systems2 with the ex-
press written approval of the Semiconductor
Group of Siemens AG.
1 A critical component is a component used

in a life-support device or system whose
failure can reasonably be expected to
cause the failure of that life-support de-
vice or system, or to affect its safety or ef-
fectiveness of that device or system.

2 Life support devices or systems are in-
tended (a) to be implanted in the human
body, or (b) to support and/or maintain
and sustain human life. If they fail, it is
reasonable to assume that the health of
the user may be endangered.

C166 Family Microcontroller Instruction Set Manual
Revision History: Version 1.2, 12.97

Previous Releases: Version 1.1, 09.95
03.94

Page Subjects

8 BFLD* code size corrected

35 ADDCB: spelling corrected

38 ASHR: "operation" corrected

43, 44 BFLD*: Note improved, format corrected

51 CALLI: "operation" corrected

67 EINIT: Syntax corrected

75 JBC: Condition flags corrected

77 JMPI: "operation" corrected

81 JNBS: Condition flags corrected

86, 87 MUL(U): Flag N corrected

95 PRIOR: "Operation" corrected

104 SCXT: Data Type added

108 SRVWDT: Syntax corrected

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:

mcdocu.comments@hl.siemens.de

C166 Family Instruction Set
Table of Contents

Table of Contents Page

Semiconductor Group 4 Version 1.2, 12.97

1 Introduction . 5

2 Short Instruction Summary. 6

3 Instruction Set Summary . 9

4 Instruction Opcodes . 21

5 Instruction Description . 26

6 Addressing Modes. 116

7 Instruction State Times . 123

30Mar98@15:00h C166 Family Instruction Set
Introduction
1 Introduction

The Siemens family of 16-bit microcontrollers offers devices that provide various levels of peripheral
performance and programmability. This allows to equip each specific application with the
microcontroller that fits best to the required functionality and performance.

Still the Siemens family concept provides an easy path to upgrade existing applications or to climb
the next level of performance in order to realize a subsequent more sophisticated design. Two
major characteristics enable this upgrade path to save and reuse almost all of the engineering
efforts that have been made for previous designs:

• All family members are based on the same basic architecture

• All family members execute the same instructions (except for upgrades for new members)

The fact that all members execute the same instructions (almost) saves knowhow with respect to
the understanding of the controller itself and also with respect to the used tools (assembler,
disassembler, compiler, etc.).

This instruction set manual provides an easy and direct access to the instructions of the Siemens
16-bit microcontrollers by listing them according to different criteria, and also unloads the technical
manuals for the different devices from redundant information.

This manual also describes the different addressing mechanisms and the relation between the
logical addresses used in a program and the resulting physical addresses.
There is also information provided to calculate the execution time for specific instructions depending
on the used address locations and also specific exceptions to the standard rules.

Description Levels

In the following sections the instructions are compiled according to different criteria in order to
provide different levels of precision:

• Cross Reference Tables summarize all instructions in condensed tables

• The Instruction Set Summary groups the individual instructions into functional groups

• The Opcode Table references the instructions by their hexadecimal opcode

• The Instruction Description describes each instruction in full detail

All instructions listed in this manual are executed by the following devices (new derivatives will be
added to this list):

C161V, C161K, C161O, C161RI, C161SI, C161CI, C163, C163F, C164CI, C165, C167, C167CR,
C167SR, C167S, C167CS.

A few instructions (ATOMIC and EXTended instructions) have been added for these devices and
are not recognized by the following devices:

SAB 80C166, SAB 80C166W, SAB 83C166, SAB 83C166W, SAB 88C166, SAB 88C166W.

These differences are noted for each instruction, where applicable.
Semiconductor Group 5 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Short Instruction Summary
2 Short Instruction Summary

The following compressed cross-reference tables quickly identify a specific instruction and provide
basic information about it. Two ordering schemes are included:

The first table (two pages) is a compressed cross-reference table that quickly identifies a specific
hexadecimal opcode with the respective mnemonic.

The second table lists the instructions by their mnemonic and identifies the addressing modes that
may be used with a specific instruction and the instruction length depending on the selected
addressing mode. This reference helps to optimize instruction sequences in terms of code size and/
or execution time.

• 0x 1x 2x 3x 4x 5x 6x 7x

x0 ADD ADDC SUB SUBC CMP XOR AND OR

x1 ADDB ADDCB SUBB SUBCB CMPB XORB ANDB ORB

x2 ADD ADDC SUB SUBC CMP XOR AND OR

x3 ADDB ADDCB SUBB SUBCB CMPB XORB ANDB ORB

x4 ADD ADDC SUB SUBC - XOR AND OR

x5 ADDB ADDCB SUBB SUBCB - XORB ANDB ORB

x6 ADD ADDC SUB SUBC CMP XOR AND OR

x7 ADDB ADDCB SUBB SUBCB CMPB XORB ANDB ORB

x8 ADD ADDC SUB SUBC CMP XOR AND OR

x9 ADDB ADDCB SUBB SUBCB CMPB XORB ANDB ORB

xA BFLDL BFLDH BCMP BMOVN BMOV BOR BAND BXOR

xB MUL MULU PRIOR - DIV DIVU DIVL DIVLU

xC ROL ROL ROR ROR SHL SHL SHR SHR

xD JMPR JMPR JMPR JMPR JMPR JMPR JMPR JMPR

xE BCLR BCLR BCLR BCLR BCLR BCLR BCLR BCLR

xF BSET BSET BSET BSET BSET BSET BSET BSET
Semiconductor Group 6 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Short Instruction Summary
Note: Both ordering schemes (hexadecimal opcode and mnemonic) are provided in more detailled
lists in the following sections of this manual.

Note: The ATOMIC and EXTended instructions are not available in the SAB 8XC166(W) devices.
They are marked in the cross-reference table.

8x 9x Ax Bx Cx Dx Ex Fx

x0 CMPI1 CMPI2 CMPD1 CMPD2 MOVBZ MOVBS MOV MOV

x1 NEG CPL NEGB CPLB - AT/EXTR MOVB MOVB

x2 CMPI1 CMPI2 CMPD1 CMPD2 MOVBZ MOVBS PCALL MOV

x3 - - - - - - - MOVB

x4 MOV MOV MOVB MOVB MOV MOV MOVB MOVB

x5 - - DISWDT EINIT MOVBZ MOVBS - -

x6 CMPI1 CMPI2 CMPD1 CMPD2 SCXT SCXT MOV MOV

x7 IDLE PWRDN SRVWDT SRST - EXTP/S/R MOVB MOVB

x8 MOV MOV MOV MOV MOV MOV MOV -

x9 MOVB MOVB MOVB MOVB MOVB MOVB MOVB -

xA JB JNB JBC JNBS CALLA CALLS JMPA JMPS

xB - TRAP CALLI CALLR RET RETS RETP RETI

xC - JMPI ASHR ASHR NOP EXTP/S/R PUSH POP

xD JMPR JMPR JMPR JMPR JMPR JMPR JMPR JMPR

xE BCLR BCLR BCLR BCLR BCLR BCLR BCLR BCLR

xF BSET BSET BSET BSET BSET BSET BSET BSET
Semiconductor Group 7 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Short Instruction Summary

1) Byte oriented instructions (suffix ‘B’) use Rb instead of Rw (not with [Rwn]!).
2) Byte oriented instructions (suffix ‘B’) use #data8 instead of #data16.
3) The ATOMIC and EXTended instructions are not available in the SAB 8XC166(W) devices.

Mnemonic Addressing ModesBytes Mnemonic Addressing ModesBytes
ADD[B]
ADDC[B]
AND[B]
OR[B]
SUB[B]
SUBC[B]
XOR[B]

Rwn Rwm 1)

Rwn [Rwi] 1)

Rwn [Rwi+] 1)

Rwn #data3 1)

reg #data16 2)

reg mem
mem reg

2
2
2
2

4
4
4

CPL[B]
NEG[B]

Rwn 1) 2

DIV
DIVL
DIVLU
DIVU

Rwn 2

MUL
MULU

Rwn Rwm 2

ASHR
ROL / ROR
SHL / SHR

Rwn Rwm
Rwn #data4

2
2

CMPD1/2
CMPI1/2

Rwn #data4
Rwn #data16
Rwn mem

2
4
4

BAND
BCMP
BMOV
BMOVN
BOR /
BXOR

bitaddrZ.z bitaddrQ.q 4 CMP[B] Rwn Rwm 1)

Rwn [Rwi] 1)

Rwn [Rwi+] 1)

Rwn #data3 1)

reg #data16 2)

reg mem

2
2
2
2
4
4

BCLR
BSET

bitaddrQ.q 2 CALLA
JMPA

cc caddr 4

BFLDH
BFLDL

bitoffQ #mask8 #data8 4 CALLI
JMPI

cc [Rwn] 2

MOV[B] Rwn Rwm 1)

Rwn #data4 1)

Rwn [Rwm] 1)

Rwn [Rwm+] 1)

[Rwm] Rwn 1)

[-Rwm] Rwn 1)

[Rwn] [Rwm]
[Rwn+] [Rwm]
[Rwn] [Rwm+]

reg #data16 2)

Rwn [Rwm+#d16] 1)

[Rwm+#d16] Rwn 1)

[Rwn] mem
mem [Rwn]
reg mem
mem reg

2
2
2
2
2
2
2
2
2

4
4
4
4
4
4
4

CALLS
JMPS

seg caddr 4

CALLR rel 2
JMPR cc rel 2
JB
JBC
JNB
JNBS

bitaddrQ.q rel 4

PCALL reg caddr 4
POP
PUSH
RETP

reg 2

SCXT reg #data16
reg mem

4
4

PRIOR Rwn Rwm 2

MOVBS
MOVBZ

Rwn Rbm
reg mem
mem reg

2
4
4

TRAP #trap7 2
ATOMIC
EXTR

#irang2 3) 2

EXTS
EXTSR

Rwm #irang2 3)

#seg #irang2
2
4

EXTP
EXTPR

Rwm #irang2 3)

#pag #irang2
2
4

NOP
RET
RETI
RETS

- 2 SRST/IDLE
PWRDN
SRVWDT
DISWDT
EINIT

- 4
Semiconductor Group 8 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Set Summary
3 Instruction Set Summary

This chapter summarizes the instructions by listing them according to their functional class. This
allows to identify the right instruction(s) for a specific required function.

The following notes apply to this summary:

Data Addressing Modes

Rw: – Word GPR (R0, R1, … , R15)

Rb: – Byte GPR (RL0, RH0, …, RL7, RH7)

reg: – SFR or GPR
(in case of a byte operation on an SFR, only the low byte can be accessed via ‘reg’)

mem: – Direct word or byte memory location

[…]: – Indirect word or byte memory location
(Any word GPR can be used as indirect address pointer, except for the arithmetic,
logical and compare instructions, where only R0 to R3 are allowed)

bitaddr: – Direct bit in the bit-addressable memory area

bitoff: – Direct word in the bit-addressable memory area

#data: – Immediate constant
(The number of significant bits which can be specified by the user is represented by
the respective appendix ’x’)

#mask8: – Immediate 8-bit mask used for bit-field modifications

Multiply and Divide Operations

The MDL and MDH registers are implicit source and/or destination operands of the multiply and
divide instructions.

Branch Target Addressing Modes

caddr: – Direct 16-bit jump target address (Updates the Instruction Pointer)

seg: – Direct 2-bit segment address
(Updates the Code Segment Pointer)

rel: – Signed 8-bit jump target word offset address relative to the Instruction Pointer of the
following instruction

#trap7: – Immediate 7-bit trap or interrupt number.
Semiconductor Group 9 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Set Summary
Extension Operations

The EXT* instructions override the standard DPP addressing scheme:

#pag10: – Immediate 10-bit page address.

#seg8: – Immediate 8-bit segment address.

Note: The EXTended instructions are not available in the SAB 8XC166(W) devices.

Branch Condition Codes

cc: Symbolically specifiable condition codes

cc_UC – Unconditional
cc_Z – Zero
cc_NZ – Not Zero
cc_V – Overflow
cc_NV – No Overflow
cc_N – Negative
cc_NN – Not Negative
cc_C – Carry
cc_NC – No Carry
cc_EQ – Equal
cc_NE – Not Equal
cc_ULT – Unsigned Less Than
cc_ULE – Unsigned Less Than or Equal
cc_UGE – Unsigned Greater Than or Equal
cc_UGT – Unsigned Greater Than
cc_SLE – Signed Less Than or Equal
cc_SGE – Signed Greater Than or Equal
cc_SGT – Signed Greater Than
cc_NET – Not Equal and Not End-of-Table

Semiconductor Group 10 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Set Summary
Instruction Set Summary

Mnemonic Description Bytes

Arithmetic Operations

ADD Rw, Rw Add direct word GPR to direct GPR 2

ADD Rw, [Rw] Add indirect word memory to direct GPR 2

ADD Rw, [Rw +] Add indirect word memory to direct GPR and post-
increment source pointer by 2

2

ADD Rw, #data3 Add immediate word data to direct GPR 2

ADD reg, #data16 Add immediate word data to direct register 4

ADD reg, mem Add direct word memory to direct register 4

ADD mem, reg Add direct word register to direct memory 4

ADDB Rb, Rb Add direct byte GPR to direct GPR 2

ADDB Rb, [Rw] Add indirect byte memory to direct GPR 2

ADDB Rb, [Rw +] Add indirect byte memory to direct GPR and
post-increment source pointer by 1

2

ADDB Rb, #data3 Add immediate byte data to direct GPR 2

ADDB reg, #data8 Add immediate byte data to direct register 4

ADDB reg, mem Add direct byte memory to direct register 4

ADDB mem, reg Add direct byte register to direct memory 4

ADDC Rw, Rw Add direct word GPR to direct GPR with Carry 2

ADDC Rw, [Rw] Add indirect word memory to direct GPR with Carry 2

ADDC Rw, [Rw +] Add indirect word memory to direct GPR with Carry and
post-increment source pointer by 2

2

ADDC Rw, #data3 Add immediate word data to direct GPR with Carry 2

ADDC reg, #data16 Add immediate word data to direct register with Carry 4

ADDC reg, mem Add direct word memory to direct register with Carry 4

ADDC mem, reg Add direct word register to direct memory with Carry 4

ADDCB Rb, Rb Add direct byte GPR to direct GPR with Carry 2

ADDCB Rb, [Rw] Add indirect byte memory to direct GPR with Carry 2

ADDCB Rb, [Rw +] Add indirect byte memory to direct GPR with Carry and
post-increment source pointer by 1

2

ADDCB Rb, #data3 Add immediate byte data to direct GPR with Carry 2

ADDCB reg, #data8 Add immediate byte data to direct register with Carry 4

ADDCB reg, mem Add direct byte memory to direct register with Carry 4
Semiconductor Group 11 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Set Summary
Arithmetic Operations (cont’d)

ADDCB mem, reg Add direct byte register to direct memory with Carry 4

SUB Rw, Rw Subtract direct word GPR from direct GPR 2

SUB Rw, [Rw] Subtract indirect word memory from direct GPR 2

SUB Rw, [Rw +] Subtract indirect word memory from direct GPR and
post-increment source pointer by 2

2

SUB Rw, #data3 Subtract immediate word data from direct GPR 2

SUB reg, #data16 Subtract immediate word data from direct register 4

SUB reg, mem Subtract direct word memory from direct register 4

SUB mem, reg Subtract direct word register from direct memory 4

SUBB Rb, Rb Subtract direct byte GPR from direct GPR 2

SUBB Rb, [Rw] Subtract indirect byte memory from direct GPR 2

SUBB Rb, [Rw +] Subtract indirect byte memory from direct GPR and
post-increment source pointer by 1

2

SUBB Rb, #data3 Subtract immediate byte data from direct GPR 2

SUBB reg, #data8 Subtract immediate byte data from direct register 4

SUBB reg, mem Subtract direct byte memory from direct register 4

SUBB mem, reg Subtract direct byte register from direct memory 4

SUBC Rw, Rw Subtract direct word GPR from direct GPR with Carry 2

SUBC Rw, [Rw] Subtract indirect word memory from direct GPR with Carry 2

SUBC Rw, [Rw +] Subtract indirect word memory from direct GPR with
Carry and post-increment source pointer by 2

2

SUBC Rw, #data3 Subtract immediate word data from direct GPR with Carry 2

SUBC reg, #data16 Subtract immediate word data from direct register with
Carry

4

SUBC reg, mem Subtract direct word memory from direct register with Carry 4

SUBC mem, reg Subtract direct word register from direct memory with Carry 4

SUBCB Rb, Rb Subtract direct byte GPR from direct GPR with Carry 2

SUBCB Rb, [Rw] Subtract indirect byte memory from direct GPR with Carry 2

SUBCB Rb, [Rw +] Subtract indirect byte memory from direct GPR with Carry
and post-increment source pointer by 1

2

SUBCB Rb, #data3 Subtract immediate byte data from direct GPR with Carry 2

SUBCB reg, #data8 Subtract immediate byte data from direct register with Carry 4

Instruction Set Summary (cont’d)*

Mnemonic Description Bytes
Semiconductor Group 12 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Set Summary
Arithmetic Operations (cont’d)

SUBCB reg, mem Subtract direct byte memory from direct register with Carry 4

SUBCB mem, reg Subtract direct byte register from direct memory with Carry 4

MUL Rw, Rw Signed multiply direct GPR by direct GPR (16-16-bit) 2

MULU Rw, Rw Unsigned multiply direct GPR by direct GPR (16-16-bit) 2

DIV Rw Signed divide register MDL by direct GPR (16-/16-bit) 2

DIVL Rw Signed long divide register MD by direct GPR (32-/16-bit) 2

DIVLU Rw Unsigned long divide register MD by direct GPR
(32-/16-bit)

2

DIVU Rw Unsigned divide register MDL by direct GPR (16-/16-bit) 2

CPL Rw Complement direct word GPR 2

CPLB Rb Complement direct byte GPR 2

NEG Rw Negate direct word GPR 2

NEGB Rb Negate direct byte GPR 2

Logical Instructions

AND Rw, Rw Bitwise AND direct word GPR with direct GPR 2

AND Rw, [Rw] Bitwise AND indirect word memory with direct GPR 2

AND Rw, [Rw +] Bitwise AND indirect word memory with direct GPR and
post-increment source pointer by 2

2

AND Rw, #data3 Bitwise AND immediate word data with direct GPR 2

AND reg, #data16 Bitwise AND immediate word data with direct register 4

AND reg, mem Bitwise AND direct word memory with direct register 4

AND mem, reg Bitwise AND direct word register with direct memory 4

ANDB Rb, Rb Bitwise AND direct byte GPR with direct GPR 2

ANDB Rb, [Rw] Bitwise AND indirect byte memory with direct GPR 2

ANDB Rb, [Rw +] Bitwise AND indirect byte memory with direct GPR
and post-increment source pointer by 1

2

ANDB Rb, #data3 Bitwise AND immediate byte data with direct GPR 2

ANDB reg, #data8 Bitwise AND immediate byte data with direct register 4

ANDB reg, mem Bitwise AND direct byte memory with direct register 4

ANDB mem, reg Bitwise AND direct byte register with direct memory 4

Instruction Set Summary (cont’d)*

Mnemonic Description Bytes
Semiconductor Group 13 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Set Summary
Logical Instructions (cont’d)

OR Rw, Rw Bitwise OR direct word GPR with direct GPR 2

OR Rw, [Rw] Bitwise OR indirect word memory with direct GPR 2

OR Rw, [Rw +] Bitwise OR indirect word memory with direct GPR
and post-increment source pointer by 2

2

OR Rw, #data3 Bitwise OR immediate word data with direct GPR 2

OR reg, #data16 Bitwise OR immediate word data with direct register 4

OR reg, mem Bitwise OR direct word memory with direct register 4

OR mem, reg Bitwise OR direct word register with direct memory 4

ORB Rb, Rb Bitwise OR direct byte GPR with direct GPR 2

ORB Rb, [Rw] Bitwise OR indirect byte memory with direct GPR 2

ORB Rb, [Rw +] Bitwise OR indirect byte memory with direct GPR and
post-increment source pointer by 1

2

ORB Rb, #data3 Bitwise OR immediate byte data with direct GPR 2

ORB reg, #data8 Bitwise OR immediate byte data with direct register 4

ORB reg, mem Bitwise OR direct byte memory with direct register 4

ORB mem, reg Bitwise OR direct byte register with direct memory 4

XOR Rw, Rw Bitwise XOR direct word GPR with direct GPR 2

XOR Rw, [Rw] Bitwise XOR indirect word memory with direct GPR 2

XOR Rw, [Rw +] Bitwise XOR indirect word memory with direct GPR and
post-increment source pointer by 2

2

XOR Rw, #data3 Bitwise XOR immediate word data with direct GPR 2

XOR reg, #data16 Bitwise XOR immediate word data with direct register 4

XOR reg, mem Bitwise XOR direct word memory with direct register 4

XOR mem, reg Bitwise XOR direct word register with direct memory 4

XORB Rb, Rb Bitwise XOR direct byte GPR with direct GPR 2

XORB Rb, [Rw] Bitwise XOR indirect byte memory with direct GPR 2

XORB Rb, [Rw +] Bitwise XOR indirect byte memory with direct GPR and
post-increment source pointer by 1

2

XORB Rb, #data3 Bitwise XOR immediate byte data with direct GPR 2

XORB reg, #data8 Bitwise XOR immediate byte data with direct register 4

XORB reg, mem Bitwise XOR direct byte memory with direct register 4

XORB mem, reg Bitwise XOR direct byte register with direct memory 4

Instruction Set Summary (cont’d)*

Mnemonic Description Bytes
Semiconductor Group 14 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Set Summary
Boolean Bit Manipulation Operations

BCLR bitaddr Clear direct bit 2

BSET bitaddr Set direct bit 2

BMOV bitaddr, bitaddr Move direct bit to direct bit 4

BMOVN bitaddr, bitaddr Move negated direct bit to direct bit 4

BAND bitaddr, bitaddr AND direct bit with direct bit 4

BOR bitaddr, bitaddr OR direct bit with direct bit 4

BXOR bitaddr, bitaddr XOR direct bit with direct bit 4

BCMP bitaddr, bitaddr Compare direct bit to direct bit 4

BFLDH bitoff, #mask8,
#data8

Bitwise modify masked high byte of bit-addressable
direct word memory with immediate data

4

BFLDL bitoff, #mask8,
#data8

Bitwise modify masked low byte of bit-addressable
direct word memory with immediate data

4

CMP Rw, Rw Compare direct word GPR to direct GPR 2

CMP Rw, [Rw] Compare indirect word memory to direct GPR 2

CMP Rw, [Rw +] Compare indirect word memory to direct GPR and
post-increment source pointer by 2

2

CMP Rw, #data3 Compare immediate word data to direct GPR 2

CMP reg, #data16 Compare immediate word data to direct register 4

CMP reg, mem Compare direct word memory to direct register 4

CMPB Rb, Rb Compare direct byte GPR to direct GPR 2

CMPB Rb, [Rw] Compare indirect byte memory to direct GPR 2

CMPB Rb, [Rw +] Compare indirect byte memory to direct GPR and
post-increment source pointer by 1

2

CMPB Rb, #data3 Compare immediate byte data to direct GPR 2

CMPB reg, #data8 Compare immediate byte data to direct register 4

CMPB reg, mem Compare direct byte memory to direct register 4

Compare and Loop Control Instructions

CMPD1 Rw, #data4 Compare immediate word data to direct GPR and
decrement GPR by 1

2

CMPD1 Rw, #data16 Compare immediate word data to direct GPR and
decrement GPR by 1

4

Instruction Set Summary (cont’d)*

Mnemonic Description Bytes
Semiconductor Group 15 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Set Summary
Compare and Loop Control Instructions (cont’d)

CMPD1 Rw, mem Compare direct word memory to direct GPR and
decrement GPR by 1

4

CMPD2 Rw, #data4 Compare immediate word data to direct GPR and
decrement GPR by 2

2

CMPD2 Rw, #data16 Compare immediate word data to direct GPR and
decrement GPR by 2

4

CMPD2 Rw, mem Compare direct word memory to direct GPR and
decrement GPR by 2

4

CMPI1 Rw, #data4 Compare immediate word data to direct GPR and
increment GPR by 1

2

CMPI1 Rw, #data16 Compare immediate word data to direct GPR and
increment GPR by 1

4

CMPI1 Rw, mem Compare direct word memory to direct GPR and
increment GPR by 1

4

CMPI2 Rw, #data4 Compare immediate word data to direct GPR and
increment GPR by 2

2

CMPI2 Rw, #data16 Compare immediate word data to direct GPR and
increment GPR by 2

4

CMPI2 Rw, mem Compare direct word memory to direct GPR and
increment GPR by 2

4

Prioritize Instruction

PRIOR Rw, Rw Determine number of shift cycles to normalize direct
word GPR and store result in direct word GPR

2

Shift and Rotate Instructions

SHL Rw, Rw Shift left direct word GPR;
number of shift cycles specified by direct GPR

2

SHL Rw, #data4 Shift left direct word GPR;
number of shift cycles specified by immediate data

2

SHR Rw, Rw Shift right direct word GPR;
number of shift cycles specified by direct GPR

2

Instruction Set Summary (cont’d)*

Mnemonic Description Bytes
Semiconductor Group 16 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Set Summary
Shift and Rotate Instructions (cont’d)

SHR Rw, #data4 Shift right direct word GPR;
number of shift cycles specified by immediate data

2

ROL Rw, Rw Rotate left direct word GPR;
number of shift cycles specified by direct GPR

2

ROL Rw, #data4 Rotate left direct word GPR;
number of shift cycles specified by immediate data

2

ROR Rw, Rw Rotate right direct word GPR;
number of shift cycles specified by direct GPR

2

ROR Rw, #data4 Rotate right direct word GPR;
number of shift cycles specified by immediate data

2

ASHR Rw, Rw Arithmetic (sign bit) shift right direct word GPR;
number of shift cycles specified by direct GPR

2

ASHR Rw, #data4 Arithmetic (sign bit) shift right direct word GPR;
number of shift cycles specified by immediate data

2

Data Movement

MOV Rw, Rw Move direct word GPR to direct GPR 2

MOV Rw, #data4 Move immediate word data to direct GPR 2

MOV reg, #data16 Move immediate word data to direct register 4

MOV Rw, [Rw] Move indirect word memory to direct GPR 2

MOV Rw, [Rw +] Move indirect word memory to direct GPR and
post-increment source pointer by 2

2

MOV [Rw], Rw Move direct word GPR to indirect memory 2

MOV [-Rw], Rw Pre-decrement destination pointer by 2 and move direct
word GPR to indirect memory

2

MOV [Rw], [Rw] Move indirect word memory to indirect memory 2

MOV [Rw +], [Rw] Move indirect word memory to indirect memory and
post-increment destination pointer by 2

2

MOV [Rw], [Rw +] Move indirect word memory to indirect memory and
post-increment source pointer by 2

2

MOV Rw,
[Rw + #data16]

Move indirect word memory by base plus constant to
direct GPR

4

MOV [Rw + #data16],
Rw

Move direct word GPR to indirect memory by base plus
constant

4

Instruction Set Summary (cont’d)*

Mnemonic Description Bytes
Semiconductor Group 17 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Set Summary
Data Movement (cont’d)

MOV [Rw], mem Move direct word memory to indirect memory 4

MOV mem, [Rw] Move indirect word memory to direct memory 4

MOV reg, mem Move direct word memory to direct register 4

MOV mem, reg Move direct word register to direct memory 4

MOVB Rb, Rb Move direct byte GPR to direct GPR 2

MOVB Rb, #data4 Move immediate byte data to direct GPR 2

MOVB reg, #data8 Move immediate byte data to direct register 4

MOVB Rb, [Rw] Move indirect byte memory to direct GPR 2

MOVB Rb, [Rw +] Move indirect byte memory to direct GPR and
post-increment source pointer by 1

2

MOVB [Rw], Rb Move direct byte GPR to indirect memory 2

MOVB [-Rw], Rb Pre-decrement destination pointer by 1 and move
direct byte GPR to indirect memory

2

MOVB [Rw], [Rw] Move indirect byte memory to indirect memory 2

MOVB [Rw +], [Rw] Move indirect byte memory to indirect memory and
post-increment destination pointer by 1

2

MOVB [Rw], [Rw +] Move indirect byte memory to indirect memory and
post-increment source pointer by 1

2

MOVB Rb,
[Rw + #data16]

Move indirect byte memory by base plus constant to
direct GPR

4

MOVB [Rw + #data16],
Rb

Move direct byte GPR to indirect memory by base plus
constant

4

MOVB [Rw], mem Move direct byte memory to indirect memory 4

MOVB mem, [Rw] Move indirect byte memory to direct memory 4

MOVB reg, mem Move direct byte memory to direct register 4

MOVB mem, reg Move direct byte register to direct memory 4

MOVBS Rw, Rb Move direct byte GPR with sign extension to direct
word GPR

2

MOVBS reg, mem Move direct byte memory with sign extension to direct
word register

4

MOVBS mem, reg Move direct byte register with sign extension to direct
word memory

4

Instruction Set Summary (cont’d)*

Mnemonic Description Bytes
Semiconductor Group 18 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Set Summary
Data Movement (cont’d)

MOVBZ Rw, Rb Move direct byte GPR with zero extension to direct
word GPR

2

MOVBZ reg, mem Move direct byte memory with zero extension to direct
word register

4

MOVBZ mem, reg Move direct byte register with zero extension to direct
word memory

4

Jump and Call Operations

JMPA cc, caddr Jump absolute if condition is met 4

JMPI cc, [Rw] Jump indirect if condition is met 2

JMPR cc, rel Jump relative if condition is met 2

JMPS seg, caddr Jump absolute to a code segment 4

JB bitaddr, rel Jump relative if direct bit is set 4

JBC bitaddr, rel Jump relative and clear bit if direct bit is set 4

JNB bitaddr, rel Jump relative if direct bit is not set 4

JNBS bitaddr, rel Jump relative and set bit if direct bit is not set 4

CALLA cc, caddr Call absolute subroutine if condition is met 4

CALLI cc, [Rw] Call indirect subroutine if condition is met 2

CALLR rel Call relative subroutine 2

CALLS seg, caddr Call absolute subroutine in any code segment 4

PCALL reg, caddr Push direct word register onto system stack and call
absolute subroutine

4

TRAP #trap7 Call interrupt service routine via immediate trap number 2

System Stack Operations

POP reg Pop direct word register from system stack 2

PUSH reg Push direct word register onto system stack 2

SCXT reg, #data16 Push direct word register onto system stack und update
register with immediate data

4

SCXT reg, mem Push direct word register onto system stack und update
register with direct memory

4

Instruction Set Summary (cont’d)*

Mnemonic Description Bytes
Semiconductor Group 19 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Set Summary
*) The EXTended instructions are not available in the SAB 8XC166(W) devices.

Return Operations

RET Return from intra-segment subroutine 2

RETS Return from inter-segment subroutine 2

RETP reg Return from intra-segment subroutine and pop direct
word register from system stack

2

RETI Return from interrupt service subroutine 2

System Control

SRST Software Reset 4

IDLE Enter Idle Mode 4

PWRDN Enter Power Down Mode
(supposes NMI-pin being low)

4

SRVWDT Service Watchdog Timer 4

DISWDT Disable Watchdog Timer 4

EINIT Signify End-of-Initialization on RSTOUT-pin 4

ATOMIC #irang2 Begin ATOMIC sequence *) 2

EXTR #irang2 Begin EXTended Register sequence *) 2

EXTP Rw, #irang2 Begin EXTended Page sequence *) 2

EXTP #pag10, #irang2 Begin EXTended Page sequence *) 4

EXTPR Rw, #irang2 Begin EXTended Page and Register sequence *) 2

EXTPR #pag10, #irang2 Begin EXTended Page and Register sequence *) 4

EXTS Rw, #irang2 Begin EXTended Segment sequence *) 2

EXTS #seg8, #irang2 Begin EXTended Segment sequence *) 4

EXTSR Rw, #irang2 Begin EXTended Segment and Register sequence *) 2

EXTSR #seg8, #irang2 Begin EXTended Segment and Register sequence *) 4

Miscellaneous

NOP Null operation 2

Instruction Set Summary (cont’d)*

Mnemonic Description Bytes
Semiconductor Group 20 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Opcodes
4 Instruction Opcodes

The following pages list the instructions of the 16-bit microcontrollers ordered by their hexadecimal
opcodes. This helps to identify specific instructions when reading executable code, ie. during the
debugging phase.

Notes for Opcode Lists

1) These instructions are encoded by means of additional bits in the operand field of the
instruction

x0H – x7H: Rw, #data3 or Rb, #data3
x8H – xBH: Rw, [Rw] or Rb, [Rw]
xCH – xFH: Rw, [Rw +] or Rb, [Rw +]

For these instructions only the lowest four GPRs, R0 to R3, can be used as indirect address
pointers.

2) These instructions are encoded by means of additional bits in the operand field of the
instruction

00xx.xxxxB: EXTS or ATOMIC
01xx.xxxxB: EXTP
10xx.xxxxB: EXTSR or EXTR
11xx.xxxxB: EXTPR

The ATOMIC and EXTended instructions are not available in the SAB 8XC166(W) devices.

Notes on the JMPR Instructions

The condition code to be tested for the JMPR instructions is specified by the opcode.
Two mnemonic representation alternatives exist for some of the condition codes.

Notes on the BCLR and BSET Instructions

The position of the bit to be set or to be cleared is specified by the opcode. The operand
‘bitoff.n’ (n = 0 to 15) refers to a particular bit within a bit-addressable word.

Notes on the Undefined Opcodes

A hardware trap occurs when one of the undefined opcodes signified by ‘----’ is decoded by
the CPU.
Semiconductor Group 21 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Opcodes

Hex-
code

Num-
ber of
Bytes

Mnemonic Operands Hex-
code

Num-
ber of
Bytes

Mnemonic Operands

00 2 ADD Rw, Rw 20 2 SUB Rw, Rw
01 2 ADDB Rb, Rb 21 2 SUBB Rb, Rb
02 4 ADD reg, mem 22 4 SUB reg, mem
03 4 ADDB reg, mem 23 4 SUBB reg, mem
04 4 ADD mem, reg 24 4 SUB mem, reg

05 4 ADDB mem, reg 25 4 SUBB mem, reg
06 4 ADD reg, #data16 26 4 SUB reg, #data16
07 4 ADDB reg, #data8 27 4 SUBB reg, #data8
08 2 ADD Rw, [Rw +] or

Rw, [Rw] or
Rw, #data3 1)

28 2 SUB Rw, [Rw +] or
Rw, [Rw] or
Rw, #data3 1)

09 2 ADDB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3 1)

29 2 SUBB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3 1)

0A 4 BFLDL bitoff, #mask8,
#data8

2A 4 BCMP bitaddr, bitaddr

0B 2 MUL Rw, Rw 2B 2 PRIOR Rw, Rw
0C 2 ROL Rw, Rw 2C 2 ROR Rw, Rw
0D 2 JMPR cc_UC, rel 2D 2 JMPR cc_EQ, rel or

cc_Z, rel
0E 2 BCLR bitoff.0 2E 2 BCLR bitoff.2
0F 2 BSET bitoff.0 2F 2 BSET bitoff.2
10 2 ADDC Rw, Rw 30 2 SUBC Rw, Rw
11 2 ADDCB Rb, Rb 31 2 SUBCB Rb, Rb
12 4 ADDC reg, mem 32 4 SUBC reg, mem
13 4 ADDCB reg, mem 33 4 SUBCB reg, mem
14 4 ADDC mem, reg 34 4 SUBC mem, reg
15 4 ADDCB mem, reg 35 4 SUBCB mem, reg
16 4 ADDC reg, #data16 36 4 SUBC reg, #data16
17 4 ADDCB reg, #data8 37 4 SUBCB reg, #data8
18 2 ADDC Rw, [Rw +] or

Rw, [Rw] or
Rw, #data3 1)

38 2 SUBC Rw, [Rw +] or
Rw, [Rw] or
Rw, #data3 1)

19 2 ADDCB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3 1)

39 2 SUBCB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3 1)

1A 4 BFLDH bitoff, #mask8,
#data8

3A 4 BMOVN bitaddr, bitaddr

1B 2 MULU Rw, Rw 3B - - -
1C 2 ROL Rw, #data4 3C 2 ROR Rw, #data4
1D 2 JMPR cc_NET, rel 3D 2 JMPR cc_NE, rel or

cc_NZ, rel
1E 2 BCLR bitoff.1 3E 2 BCLR bitoff.3
1F 2 BSET bitoff.1 3F 2 BSET bitoff.3
Semiconductor Group 22 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Opcodes

Hex-
code

Num-
ber of
Bytes

Mnemonic Operands Hex-
code

Num-
ber of
Bytes

Mnemonic Operands

40 2 CMP Rw, Rw 60 2 AND Rw, Rw
41 2 CMPB Rb, Rb 61 2 ANDB Rb, Rb
42 4 CMP reg, mem 62 4 AND reg, mem
43 4 CMPB reg, mem 63 4 ANDB reg, mem
44 - - - 64 4 AND mem, reg

45 - - - 65 4 ANDB mem, reg
46 4 CMP reg, #data16 66 4 AND reg, #data16
47 4 CMPB reg, #data8 67 4 ANDB reg, #data8
48 2 CMP Rw, [Rw +] or

Rw, [Rw] or
Rw, #data3 1)

68 2 AND Rw, [Rw +] or
Rw, [Rw] or
Rw, #data3 1)

49 2 CMPB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3 1)

69 2 ANDB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3 1)

4A 4 BMOV bitaddr, bitaddr 6A 4 BAND bitaddr, bitaddr

4B 2 DIV Rw 6B 2 DIVL Rw
4C 2 SHL Rw, Rw 6C 2 SHR Rw, Rw
4D 2 JMPR cc_V, rel 6D 2 JMPR cc_N, rel

4E 2 BCLR bitoff.4 6E 2 BCLR bitoff.6
4F 2 BSET bitoff.4 6F 2 BSET bitoff.6
50 2 XOR Rw, Rw 70 2 OR Rw, Rw
51 2 XORB Rb, Rb 71 2 ORB Rb, Rb
52 4 XOR reg, mem 72 4 OR reg, mem
53 4 XORB reg, mem 73 4 ORB reg, mem
54 4 XOR mem, reg 74 4 OR mem, reg
55 4 XORB mem, reg 75 4 ORB mem, reg
56 4 XOR reg, #data16 76 4 OR reg, #data16
57 4 XORB reg, #data8 77 4 ORB reg, #data8
58 2 XOR Rw, [Rw +] or

Rw, [Rw] or
Rw, #data3 1)

78 2 OR Rw, [Rw +] or
Rw, [Rw] or
Rw, #data3 1)

59 2 XORB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3 1)

79 2 ORB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3 1)

5A 4 BOR bitaddr, bitaddr 7A 4 BXOR bitaddr, bitaddr

5B 2 DIVU Rw 7B 2 DIVLU Rw
5C 2 SHL Rw, #data4 7C 2 SHR Rw, #data4
5D 2 JMPR cc_NV, rel 7D 2 JMPR cc_NN, rel

5E 2 BCLR bitoff.5 7E 2 BCLR bitoff.7
5F 2 BSET bitoff.5 7F 2 BSET bitoff.7
Semiconductor Group 23 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Opcodes

Hex-
code

Num-
ber of
Bytes

Mnemonic Operands Hex-
code

Num-
ber of
Bytes

Mnemonic Operands

80 2 CMPI1 Rw, #data4 A0 2 CMPD1 Rw, #data4
81 2 NEG Rw A1 2 NEGB Rb
82 4 CMPI1 Rw, mem A2 4 CMPD1 Rw, mem
83 - - - A3 - - -
84 4 MOV [Rw], mem A4 4 MOVB [Rw], mem

85 - - - A5 4 DISWDT
86 4 CMPI1 Rw, #data16 A6 4 CMPD1 Rw, #data16
87 4 IDLE A7 4 SRVWDT
88 2 MOV [-Rw], Rw A8 2 MOV Rw, [Rw]

89 2 MOVB [-Rw], Rb A9 2 MOVB Rb, [Rw]

8A 4 JB bitaddr, rel AA 4 JBC bitaddr, rel

8B - - - AB 2 CALLI cc, [Rw]
8C - - - AC 2 ASHR Rw, Rw
8D 2 JMPR cc_C, rel or

cc_ULT, rel
AD 2 JMPR cc_SGT, rel

8E 2 BCLR bitoff.8 AE 2 BCLR bitoff.10
8F 2 BSET bitoff.8 AF 2 BSET bitoff.10
90 2 CMPI2 Rw, #data4 B0 2 CMPD2 Rw, #data4
91 2 CPL Rw B1 2 CPLB Rb

92 4 CMPI2 Rw, mem B2 4 CMPD2 Rw, mem
93 - - - B3 - - -
94 4 MOV mem, [Rw] B4 4 MOVB mem, [Rw]

95 - - - B5 4 EINIT
96 4 CMPI2 Rw, #data16 B6 4 CMPD2 Rw, #data16
97 4 PWRDN B7 4 SRST

98 2 MOV Rw, [Rw+] B8 2 MOV [Rw], Rw
99 2 MOVB Rb, [Rw+] B9 2 MOVB [Rw], Rb
9A 4 JNB bitaddr, rel BA 4 JNBS bitaddr, rel

9B 2 TRAP #trap7 BB 2 CALLR rel
9C 2 JMPI cc, [Rw] BC 2 ASHR Rw, #data4

9D 2 JMPR cc_NC, rel or
cc_UGE, rel

BD 2 JMPR cc_SLE, rel

9E 2 BCLR bitoff.9 BE 2 BCLR bitoff.11
9F 2 BSET bitoff.9 BF 2 BSET bitoff.11
Semiconductor Group 24 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Opcodes

Hex-
code

Num-
ber of
Bytes

Mnemonic Operands Hex-
code

Num-
ber of
Bytes

Mnemonic Operands

C0 2 MOVBZ Rw, Rb E0 2 MOV Rw, #data4
C1 - - - E1 2 MOVB Rb, #data4
C2 4 MOVBZ reg, mem E2 4 PCALL reg, caddr
C3 - - - E3 - - -
C4 4 MOV [Rw+#data16],

Rw
E4 4 MOVB [Rw+#data16],

Rb
C5 4 MOVBZ mem, reg E5 - - -
C6 4 SCXT reg, #data16 E6 4 MOV reg, #data16
C7 - - - E7 4 MOVB reg, #data8
C8 2 MOV [Rw], [Rw] E8 2 MOV [Rw], [Rw+]

C9 2 MOVB [Rw], [Rw] E9 2 MOVB [Rw], [Rw+]

CA 4 CALLA cc, addr EA 4 JMPA cc, caddr

CB 2 RET EB 2 RETP reg
CC 2 NOP EC 2 PUSH reg
CD 2 JMPR cc_SLT, rel ED 2 JMPR cc_UGT, rel

CE 2 BCLR bitoff.12 EE 2 BCLR bitoff.14
CF 2 BSET bitoff.12 EF 2 BSET bitoff.14
D0 2 MOVBS Rw, Rb F0 2 MOV Rw, Rw
D1 2 ATOMIC or

EXTR
#irang2 2) F1 2 MOVB Rb, Rb

D2 4 MOVBS reg, mem F2 4 MOV reg, mem
D3 - - - F3 4 MOVB reg, mem
D4 4 MOV Rw,

[Rw + #data16]
F4 4 MOVB Rb,

[Rw + #data16]
D5 4 MOVBS mem, reg F5 - - -
D6 4 SCXT reg, mem F6 4 MOV mem, reg
D7 4 EXTP(R),

EXTS(R)
#pag10,#irang2
#seg8, #irang2
 2)

F7 4 MOVB mem, reg

D8 2 MOV [Rw+], [Rw] F8 - - -
D9 2 MOVB [Rw+], [Rw] F9 - - -
DA 4 CALLS seg, caddr FA 4 JMPS seg, caddr

DB 2 RETS FB 2 RETI
DC 2 EXTP(R),

EXTS(R)
Rw, #irang2 2) FC 2 POP reg

DD 2 JMPR cc_SGE, rel FD 2 JMPR cc_ULE, rel

DE 2 BCLR bitoff.13 FE 2 BCLR bitoff.15
DF 2 BSET bitoff.13 FF 2 BSET bitoff.15
Semiconductor Group 25 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
5 Instruction Description

This chapter describes each instruction in detail. The instructions are ordered alphabetically, and
the description contains the following elements:

•Instruction Name• Specifies the mnemonic opcode of the instruction in oversized bold lettering for
easy reference. The mnemonics have been chosen with regard to the particular operation which is
performed by the specified instruction.

•Syntax• Specifies the mnemonic opcode and the required formal operands of the instruction as
used in the following subsection ’Operation’. There are instructions with either none, one, two or
three operands, which must be separated from each other by commas:

MNEMONIC {op1 {,op2 {,op3 } } }

The syntax for the actual operands of an instruction depends on the selected addressing mode. All
of the addressing modes available are summarized at the end of each single instruction description.
In contrast to the syntax for the instructions described in the following, the assembler provides much
more flexibility in writing C166 Family programs (e.g. by generic instructions and by automatically
selecting appropriate addressing modes whenever possible), and thus it eases the use of the
instruction set. For more information about this item please refer to the Assembler manual.

•Operation• This part presents a logical description of the operation performed by an instruction by
means of a symbolic formula or a high level language construct.

The following symbols are used to represent data movement, arithmetic or logical operators.

Diadic operations: (opX) operator (opY)

← (opY) is MOVED into (opX)

+ (opX) is ADDED to (opY)

- (opY) is SUBTRACTED from (opX)

* (opX) is MULTIPLIED by (opY)

/ (opX) is DIVIDED by (opY)

∧ (opX) is logically ANDed with (opY)

∨ (opX) is logically ORed with (opY)

⊕ (opX) is logically EXCLUSIVELY ORed with (opY)

⇔ (opX) is COMPARED against (opY)

mod (opX) is divided MODULO (opY)

Monadic operations: operator (opX)
¬ (opX) is logically COMPLEMENTED
Semiconductor Group 26 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
Missing or existing parentheses signify whether the used operand specifies an immediate constant
value, an address or a pointer to an address as follows:

opX Specifies the immediate constant value of opX

(opX) Specifies the contents of opX

(opXn) Specifies the contents of bit n of opX

((opX)) Specifies the contents of the contents of opX
(ie. opX is used as pointer to the actual operand)

The following operands will also be used in the operational description:

CP Context Pointer register

CSP Code Segment Pointer register

IP Instruction Pointer

MD Multiply/Divide register
(32 bits wide, consists of MDH and MDL)

MDL, MDH Multiply/Divide Low and High registers (each 16 bit wide)

PSW Program Status Word register

SP System Stack Pointer register

SYSCON System Configuration register

C Carry condition flag in the PSW register

V Overflow condition flag in the PSW register

SGTDIS Segmentation Disable bit in the SYSCON register

count Temporary variable for an intermediate storage of
the number of shift or rotate cycles which remain
to complete the shift or rotate operation

tmp Temporary variable for an intermediate result

0, 1, 2,... Constant values due to the data format
of the specified operation

•Data Types• This part specifies the particular data type according to the instruction. Basically, the
following data types are possible:

BIT, BYTE, WORD, DOUBLEWORD

Except for those instructions which extend byte data to word data, all instructions have only one
particular data type. Note that the data types mentioned in this subsection do not consider accesses
to indirect address pointers or to the system stack which are always performed with word data.
Moreover, no data type is specified for System Control Instructions and for those of the branch
instructions which do not access any explicitly addressed data.
Semiconductor Group 27 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
•Description• This part provides a brief verbal description of the action that is executed by the
respective instruction.

•Condition Code• This notifies that the respective instruction contains a condition code, so it is
executed, if the specified condition is true, and is skipped, if it is false. The table below summarizes
the 16 possible condition codes that can be used within Call and Branch instructions. The table
shows the mnemonic abbreviations, the test that is executed for a specific condition and the internal
representation by a 4-bit number.

Condition Code
Mnemonic cc

Test Description Condition Code
Number c

cc_UC 1 = 1 Unconditional 0H

cc_Z Z = 1 Zero 2H

cc_NZ Z = 0 Not zero 3H

cc_V V = 1 Overflow 4H

cc_NV V = 0 No overflow 5H

cc_N N = 1 Negative 6H

cc_NN N = 0 Not negative 7H

cc_C C = 1 Carry 8H

cc_NC C = 0 No carry 9H

cc_EQ Z = 1 Equal 2H

cc_NE Z = 0 Not equal 3H

cc_ULT C = 1 Unsigned less than 8H

cc_ULE (Z∨C) = 1 Unsigned less than or equal FH

cc_UGE C = 0 Unsigned greater than or equal 9H

cc_UGT (Z∨C) = 0 Unsigned greater than EH

cc_SLT (N⊕V) = 1 Signed less than CH

cc_SLE (Z∨(N⊕V)) = 1 Signed less than or equal BH

cc_SGE (N⊕V) = 0 Signed greater than or equal DH

cc_SGT (Z∨(N⊕V)) = 0 Signed greater than AH

cc_NET (Z∨E) = 0 Not equal AND not end of table 1H
Semiconductor Group 28 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
•Condition Flags• This part reflects the state of the N, C, V, Z and E flags in the PSW register which
is the state after execution of the corresponding instruction, except if the PSW register itself was
specified as the destination operand of that instruction (see Note).

The resulting state of the flags is represented by symbols as follows:

’*’ The flag is set due to the following standard rules for the corresponding flag:

N = 1 : MSB of the result is set

N = 0 : MSB of the result is not set

C = 1 : Carry occured during operation

C = 0 : No Carry occured during operation

V = 1 : Arithmetic Overflow occured during operation

V = 0 : No Arithmetic Overflow occured during operation

Z = 1 : Result equals zero

Z = 0 : Result does not equal zero

E = 1 : Source operand represents the lowest negative number
(either 8000h for word data or 80h for byte data)

E = 0 : Source operand does not represent the lowest negative
number for the specified data type

’S’ The flag is set due to rules which deviate from the described standard.
For more details see instruction pages (below) or the ALU status flags description.

’-’ The flag is not affected by the operation.

’0’ The flag is cleared by the operation.

’NOR’ The flag contains the logical NORing of the two specified bit operands.

’AND’ The flag contains the logical ANDing of the two specified bit operands.

’OR’ The flag contains the logical ORing of the two specified bit operands.

’XOR’ The flag contains the logical XORing of the two specified bit operands.

’B’ The flag contains the original value of the specified bit operand.

’B’ The flag contains the complemented value of the specified bit operand.

Note: If the PSW register was specified as the destination operand of an instruction, the condition
flags can not be interpreted as just described, because the PSW register is modified
depending on the data format of the instruction as follows:
For word operations, the PSW register is overwritten with the word result. For byte
operations, the non-addressed byte is cleared and the addressed byte is overwritten. For bit
or bit-field operations on the PSW register, only the specified bits are modified. Supposed
that the condition flags were not selected as destination bits, they stay unchanged. This
means that they keep the state after execution of the previous instruction.
In any case, if the PSW was the destination operand of an instruction, the PSW flags do NOT
represent the condition flags of this instruction as usual.
Semiconductor Group 29 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
•Addressing Modes• This part specifies which combinations of different addressing modes are
available for the required operands. Mostly, the selected addressing mode combination is specified
by the opcode of the corresponding instruction. However, there are some arithmetic and logical
instructions where the addressing mode combination is not specified by the (identical) opcodes but
by particular bits within the operand field.

The addressing mode entries are made up of three elements:

Mnemonic Shows an example of what operands the respective instruction will accept.

Format This part specifies the format of the instructions as it is represented in the assembler listing.
The figure below shows the reference between the instruction format representation of the
assembler and the corresponding internal organization of such an instruction format (N = nibble =
4 bits).

The following symbols are used to describe the instruction formats:

00H through FFH : Instruction Opcodes

0, 1 : Constant Values

:.... : Each of the 4 characters immediately following a colon represents a single bit

:..ii : 2-bit short GPR address (Rwi)

SS : Code segment number (seg). 8-bit for C165/7, 2-bit (:..ss) for SAB8xC166

:..## : 2-bit immediate constant (#irang2)

:.### : 3-bit immediate constant (#data3)

c : 4-bit condition code specification (cc)

n : 4-bit short GPR address (Rwn or Rbn)

m : 4-bit short GPR address (Rwm or Rbm)

q : 4-bit position of the source bit within the word specified by QQ

z : 4-bit position of the destination bit within the word specified by ZZ

: 4-bit immediate constant (#data4)

t:ttt0 : 7-bit trap number (#trap7)

QQ : 8-bit word address of the source bit (bitoff)

rr : 8-bit relative target address word offset (rel)

RR : 8-bit word address reg

ZZ : 8-bit word address of the destination bit (bitoff)

: 8-bit immediate constant (#data8)

xx : 8-bit immediate constant (represented by #data16, byte xx is not significant)

@@ : 8-bit immediate constant (#mask8)

MM MM : 16-bit address (mem or caddr; low byte, high byte)

: 16-bit immediate constant (#data16; low byte, high byte)

Number of Bytes Specifies the size of an instruction in bytes. All C166 Family instructions consist
of either 2 or 4 bytes. Regarding the instruction size, all instructions can be classified as either single
word or double word instructions.
Semiconductor Group 30 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description

Figure 5-1: Instruction Format Representation

Notes on the ATOMIC and EXTended Instructions

These instructions (ATOMIC, EXTR, EXTP, EXTS, EXTPR, EXTSR) disable standard and PEC
interrupts and class A traps during a sequence of the following 1...4 instructions. The length of the
sequence is determined by an operand (op1 or op2, depending on the instruction). The EXTended
instruction additionally change the addressing mechanism during this sequence (see detailled
instruction description).
The ATOMIC and EXTended instructions become active immediately, so no additional NOPs are
required. All instructions requiring multiple cycles or hold states to be executed are regarded as one
instruction in this sense. Any instruction type can be used with the ATOMIC and EXTended
instructions.

CAUTION: When a Class B trap interupts an ATOMIC or EXTended sequence, this sequence is
terminated, the interrupt lock is removed and the standard condition is restored, before the trap
routine is executed! The remaining instructions of the terminated sequence that are executed after
returning from the trap routine will run under standard conditions!

CAUTION: Be careful, when using the ATOMIC and EXTended instructions with other system
control or branch instructions.

CAUTION: Be careful, when using nested ATOMIC and EXTended instructions. There is ONE
counter to control the length of such a sequence, ie. issuing an ATOMIC or EXTended instruction
within a sequence will reload the counter with value of the new instruction.

Note: The ATOMIC and EXTended instructions are not available in the SAB 8XC166(W) devices.

The following pages of this section contain a detailled description of each instruction of the C166
Family in alphabetical order.

Bits in ascending order LSBMSB

Representation in the
Assembler Listing:

N2N1 N4N3 N6N5 N8N7

High Byte 2nd word

Low Byte 2nd word

High Byte 1st word

Low Byte 1st word

Internal Organization:

N8 N7 N6 N5 N4 N3 N2 N1
Semiconductor Group 31 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
ADD Integer Addition ADD

Syntax ADD op1, op2

Operation (op1) ← (op1) + (op2)

Data Types WORD

Description Performs a 2’s complement binary addition of the source operand speci-
fied by op2 and the destination operand specified by op1. The sum is then
stored in op1.

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic overflow occurred, ie. the result cannot be repre-
sented in the specified data type. Cleared otherwise.

C Set if a carry is generated from the most significant bit of the specified
data type. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

ADD Rwn, Rwm 00 nm 2

ADD Rwn, [Rwi] 08 n:10ii 2

ADD Rwn, [Rwi+] 08 n:11ii 2

ADD Rwn, #data3 08 n:0### 2

ADD reg, #data16 06 RR ## ## 4

ADD reg, mem 02 RR MM MM 4

ADD mem, reg 04 RR MM MM 4

Condition Flags E Z V C N

* * * * *
Semiconductor Group 32 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
ADDB Integer Addition ADDB

Syntax ADDB op1, op2

Operation (op1) ← (op1) + (op2)

Data Types BYTE

Description Performs a 2’s complement binary addition of the source operand speci-
fied by op2 and the destination operand specified by op1. The sum is then
stored in op1.

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic overflow occurred, ie. the result cannot be repre-
sented in the specified data type. Cleared otherwise.

C Set if a carry is generated from the most significant bit of the specified
data type. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

ADDB Rbn, Rbm 01 nm 2

ADDB Rbn, [Rwi] 09 n:10ii 2

ADDB Rbn, [Rwi+] 09 n:11ii 2

ADDB Rbn, #data3 09 n:0### 2

ADDB reg, #data16 07 RR ## xx 4

ADDB reg, mem 03 RR MM MM 4

ADDB mem, reg 05 RR MM MM 4

Condition Flags E Z V C N

* * * * *
Semiconductor Group 33 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
ADDC Integer Addition with Carry ADDC

Syntax ADDC op1, op2

Operation (op1) ← (op1) + (op2) + (C)

Data Types WORD

Description Performs a 2’s complement binary addition of the source operand speci-
fied by op2, the destination operand specified by op1 and the previously
generated carry bit. The sum is then stored in op1. This instruction can be
used to perform multiple precision arithmetic.

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero and previous Z flag was set. Cleared other-
wise.

V Set if an arithmetic overflow occurred, ie. the result cannot be repre-
sented in the specified data type. Cleared otherwise.

C Set if a carry is generated from the most significant bit of the specified
data type. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

ADDC Rwn, Rwm 10 nm 2

ADDC Rwn, [Rwi] 18 n:10ii 2

ADDC Rwn, [Rwi+] 18 n:11ii 2

ADDC Rwn, #data3 18 n:0### 2

ADDC reg, #data16 16 RR ## ## 4

ADDC reg, mem 12 RR MM MM 4

ADDC mem, reg 14 RR MM MM 4

Condition Flags E Z V C N

* S * * *
Semiconductor Group 34 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
ADDCB Integer Addition with Carry ADDCB

Syntax ADDCB op1, op2

Operation (op1) ← (op1) + (op2) + (C)

Data Types BYTE

Description Performs a 2’s complement binary addition of the source operand speci-
fied by op2, the destination operand specified by op1 and the previously
generated carry bit. The sum is then stored in op1. This instruction can be
used to perform multiple precision arithmetic.

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero and previous Z flag was set.. Cleared other-
wise.

V Set if an arithmetic overflow occurred, ie. the result cannot be repre-
sented in the specified data type. Cleared otherwise.

C Set if a carry is generated from the most significant bit of the specified
data type. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

ADDCB Rbn, Rbm 11 nm 2

ADDCB Rbn, [Rwi] 19 n:10ii 2

ADDCB Rbn, [Rwi+] 19 n:11ii 2

ADDCB Rbn, #data3 19 n:0### 2

ADDCB reg, #data16 17 RR ## xx 4

ADDCB reg, mem 13 RR MM MM 4

ADDCB mem, reg 15 RR MM MM 4

Condition Flags E Z V C N

* S * * *
Semiconductor Group 35 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
AND Logical AND AND

Syntax AND op1, op2

Operation (op1) ← (op1) ∧ (op2)

Data Types WORD

Description Performs a bitwise logical AND of the source operand specified by op2
and the destination operand specified by op1. The result is then stored in
op1.

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

AND Rwn, Rwm 60 nm 2

AND Rwn, [Rwi] 68 n:10ii 2

AND Rwn, [Rwi+] 68 n:11ii 2

AND Rwn, #data3 68 n:0### 2

AND reg, #data16 66 RR ## ## 4

AND reg, mem 62 RR MM MM 4

AND mem, reg 64 RR MM MM 4

Condition Flags E Z V C N

* * 0 0 *
Semiconductor Group 36 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
ANDB Logical AND ANDB

Syntax ANDB op1, op2

Operation (op1) ← (op1) ∧ (op2)

Data Types BYTE

Description Performs a bitwise logical AND of the source operand specified by op2
and the destination operand specified by op1. The result is then stored in
op1.

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

ANDB Rbn, Rbm 61 nm 2

ANDB Rbn, [Rwi] 69 n:10ii 2

ANDB Rbn, [Rwi+] 69 n:11ii 2

ANDB Rbn, #data3 69 n:0### 2

ANDB reg, #data16 67 RR ## xx 4

ANDB reg, mem 63 RR MM MM 4

ANDB mem, reg 65 RR MM MM 4

Condition Flags E Z V C N

* * 0 0 *
Semiconductor Group 37 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
ASHR Arithmetic Shift Right ASHR

Syntax ASHR op1, op2

Operation (count) ← (op2)
(V) ← 0
(C) ← 0
DO WHILE (count) ≠ 0
 (V) ← (C) ∨ (V)
 (C) ← (op10)
 (op1n) ← (op1n+1) [n=0...14]
 (count) ← (count) - 1
END WHILE

Data Types WORD

Description Arithmetically shifts the destination word operand op1 right by as many
times as specified in the source operand op2. To preserve the sign of the
original operand op1, the most significant bits of the result are filled with
zeros if the original MSB was a 0 or with ones if the original MSB was a 1.
The Overflow flag is used as a Rounding flag. The LSB is shifted into the
Carry. Only shift values between 0 and 15 are allowed. When using a
GPR as the count control, only the least significant 4 bits are used.

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if in any cycle of the shift operation a 1 is shifted out of the carry
flag. Cleared for a shift count of zero.

C The carry flag is set according to the last LSB shifted out of op1.
Cleared for a shift count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

ASHR Rwn, Rwm AC nm 2

ASHR Rwn, #data4 BC #n 2

Condition Flags E Z V C N

0 * S S *
Semiconductor Group 38 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
ATOMIC Begin ATOMIC Sequence ATOMIC

Syntax ATOMIC op1

Operation (count) ← (op1) [1 ≤ op1 ≤ 4]
Disable interrupts and Class A traps
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)
 Next Instruction
 (count) ← (count) - 1
END WHILE
(count) = 0
Enable interrupts and traps

Description Causes standard and PEC interrupts and class A hardware traps to be
disabled for a specified number of instructions. The ATOMIC instruction
becomes immediately active such that no additional NOPs are required.
Depending on the value of op1, the period of validity of the ATOMIC
sequence extends over the sequence of the next 1 to 4 instructions being
executed after the ATOMIC instruction. All instructions requiring multiple
cycles or hold states to be executed are regarded as one instruction in this
sense. Any instruction type can be used with the ATOMIC instruction.

Note The ATOMIC instruction must be used carefully (see introductory note).
The ATOMIC instruction is not available in the SAB 8XC166(W) devices.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

ATOMIC #irang2 D1 :00##-0 2

Condition Flags E Z V C N

- - - - -
Semiconductor Group 39 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
BAND Bit Logical AND BAND

Syntax BAND op1, op2

Operation (op1) ← (op1) ∧ (op2)

Data Types BIT

Description Performs a single bit logical AND of the source bit specified by op2 and
the destination bit specified by op1. The result is then stored in op1.

E Always cleared.

Z Contains the logical NOR of the two specified bits.

V Contains the logical OR of the two specified bits.

C Contains the logical AND of the two specified bits.

N Contains the logical XOR of the two specified bits.

Addressing Modes Mnemonic Format Bytes

BAND bitaddrZ.z, bitaddrQ.q 6A QQ ZZ qz 4

Condition Flags E Z V C N

0 NOR OR AND XOR
Semiconductor Group 40 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
BCLR Bit Clear BCLR

Syntax BCLR op1

Operation (op1) ← 0

Data Types BIT

Description CLears the bit specified by op1. This instruction is primarily used for
peripheral and system control.

E Always cleared.

Z Contains the logical negation of the previous state of the specified bit.

V Always cleared.

C Always cleared.

N Contains the previous state of the specified bit.

Addressing Modes Mnemonic Format Bytes

BCLR bitaddrQ.q qE QQ 2

Condition Flags E Z V C N

0 B 0 0 B
Semiconductor Group 41 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
BCMP Bit to Bit Compare BCMP

Syntax BCMP op1, op2

Operation (op1) ⇔ (op2)

Data Types BIT

Description Performs a single bit comparison of the source bit specified by operand
op1 to the source bit specified by operand op2. No result is written by this
instruction. Only the condition codes are updated.

Note: The meaning of the condition flags for the BCMP instruction is different
from the meaning of the flags for the other compare instructions.

E Always cleared.

Z Contains the logical NOR of the two specified bits.

V Contains the logical OR of the two specified bits.

C Contains the logical AND of the two specified bits.

N Contains the logical XOR of the two specified bits.

Addressing Modes Mnemonic Format Bytes

BCMP bitaddrZ.z, bitaddrQ.q 2A QQ ZZ qz 4

Condition Flags E Z V C N

0 NOR OR AND XOR
Semiconductor Group 42 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
BFLDH Bit Field High Byte BFLDH

Syntax BFLDH op1, op2, op3

Operation (tmp) ← (op1)

(high byte (tmp)) ← ((high byte (tmp) ∧ ¬op2) ∨ op3)

(op1) ← (tmp)

Data Types WORD

Description Replaces those bits in the high byte of the destination word operand op1
which are selected by a ’1’ in the AND mask op2 with the bits at the corre-
sponding positions in the OR mask specified by op3.

Note: op1 bits which shall remain unchanged must have a ’0’ in the respective
bit of both the AND mask op2 and the OR mask op3.
Otherwise a ’1’ in op3 will set the corresponding op1 bit (see „Operation“).

E Always cleared.

Z Set if the word result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the word result is set. Cleared other-
wise.

Addressing Modes Mnemonic Format Bytes

BFLDH bitoffQ, #mask8, #data8 1A QQ ## @@ 4

Condition Flags E Z V C N

0 * 0 0 *
Semiconductor Group 43 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
BFLDL Bit Field Low Byte BFLDL

Syntax BFLDL op1, op2, op3

Operation (tmp) ← (op1)

(low byte (tmp)) ← ((low byte (tmp) ∧ ¬op2) ∨ op3)

(op1) ← (tmp)

Data Types WORD

Description Replaces those bits in the low byte of the destination word operand op1
which are selected by a ’1’ in the AND mask op2 with the bits at the corre-
sponding positions in the OR mask specified by op3.

Note: op1 bits which shall remain unchanged must have a ’0’ in the respective
bit of both the AND mask op2 and the OR mask op3.
Otherwise a ’1’ in op3 will set the corresponding op1 bit (see „Operation“).

E Always cleared.

Z Set if the word result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the word result is set. Cleared other-
wise.

Addressing Modes Mnemonic Format Bytes

BFLDL bitoffQ, #mask8, #data8 0A QQ @@ ## 4

Condition Flags E Z V C N

0 * 0 0 *
Semiconductor Group 44 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
BMOV Bit to Bit Move BMOV

Syntax BMOV op1, op2

Operation (op1) ← (op2)

Data Types BIT

Description Moves a single bit from the source operand specified by op2 into the des-
tination operand specified by op1. The source bit is examined and the
flags are updated accordingly.

E Always cleared.

Z Contains the logical negation of the previous state of the source bit.

V Always cleared.

C Always cleared.

N Contains the previous state of the source bit.

Addressing Modes Mnemonic Format Bytes

BMOV bitaddrZ.z, bitaddrQ.q 4A QQ ZZ qz 4

Condition Flags E Z V C N

0 B 0 0 B
Semiconductor Group 45 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
BMOVN Bit to Bit Move and Negate BMOVN

Syntax BMOVN op1, op2

Operation (op1) ← ¬(op2)

Data Types BIT

Description Moves the complement of a single bit from the source operand specified
by op2 into the destination operand specified by op1. The source bit is
examined and the flags are updated accordingly.

E Always cleared.

Z Contains the logical negation of the previous state of the source bit.

V Always cleared.

C Always cleared.

N Contains the previous state of the source bit.

Addressing Modes Mnemonic Format Bytes

BMOVN bitaddrZ.z, bitaddrQ.q 3A QQ ZZ qz 4

Condition Flags E Z V C N

0 B 0 0 B
Semiconductor Group 46 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
BOR Bit Logical OR BOR

Syntax BOR op1, op2

Operation (op1) ← (op1) ∨ (op2)

Data Types BIT

Description Performs a single bit logical OR of the source bit specified by operand op2
with the destination bit specified by operand op1. The ORed result is then
stored in op1.

E Always cleared.

Z Contains the logical NOR of the two specified bits.

V Contains the logical OR of the two specified bits.

C Contains the logical AND of the two specified bits.

N Contains the logical XOR of the two specified bits.

Addressing Modes Mnemonic Format Bytes

BOR bitaddrZ.z, bitaddrQ.q 5A QQ ZZ qz 4

Condition Flags E Z V C N

0 NOR OR AND XOR
Semiconductor Group 47 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
BSET Bit Set BSET

Syntax BSET op1

Operation (op1) ← 1

Data Types BIT

Description Sets the bit specified by op1. This instruction is primarily used for periph-
eral and system control.

E Always cleared.

Z Contains the logical negation of the previous state of the specified bit.

V Always cleared.

C Always cleared.

N Contains the previous state of the specified bit.

Addressing Modes Mnemonic Format Bytes

BSET bitaddrQ.q qF QQ 2

Condition Flags E Z V C N

0 B 0 0 B
Semiconductor Group 48 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
BXOR Bit Logical XOR BXOR

Syntax BXOR op1, op2

Operation (op1) ← (op1) ⊕ (op2)

Data Types BIT

Description Performs a single bit logical EXCLUSIVE OR of the source bit specified by
operand op2 with the destination bit specified by operand op1. The
XORed result is then stored in op1.

E Always cleared.

Z Contains the logical NOR of the two specified bits.

V Contains the logical OR of the two specified bits.

C Contains the logical AND of the two specified bits.

N Contains the logical XOR of the two specified bits.

Addressing Modes Mnemonic Format Bytes

BXOR bitaddrZ.z, bitaddrQ.q 7A QQ ZZ qz 4

Condition Flags E Z V C N

0 NOR OR AND XOR
Semiconductor Group 49 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
CALLA Call Subroutine Absolute CALLA

Syntax CALLA op1, op2

Operation IF (op1) THEN

(SP) ← (SP) - 2

((SP)) ← (IP)

(IP) ← op2

ELSE

next instruction

END IF

Description If the condition specified by op1 is met, a branch to the absolute memory
location specified by the second operand op2 is taken. The value of the
instruction pointer, IP, is placed onto the system stack. Because the IP
always points to the instruction following the branch instruction, the value
stored on the system stack represents the return address of the calling
routine. If the condition is not met, no action is taken and the next instruc-
tion is executed normally.

Condition Codes See condition code table.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

CALLA cc, caddr CA c0 MM MM 4

Condition Flags E Z V C N

- - - - -
Semiconductor Group 50 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
CALLI Call Subroutine Indirect CALLI

Syntax CALLI op1, op2

Operation IF (op1) THEN

(SP) ← (SP) - 2

((SP)) ← (IP)

(IP) ← op2

ELSE

next instruction

END IF

Description If the condition specified by op1 is met, a branch to the location specified
indirectly by the second operand op2 is taken. The value of the instruction
pointer, IP, is placed onto the system stack. Because the IP always points
to the instruction following the branch instruction, the value stored on the
system stack represents the return address of the calling routine. If the
condition is not met, no action is taken and the next instruction is executed
normally.

Condition Codes See condition code table.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

CALLI cc, [Rwn] AB cn 2

Condition Flags E Z V C N

- - - - -
Semiconductor Group 51 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
CALLR Call Subroutine Relative CALLR

Syntax CALLR op1

Operation (SP) ← (SP) - 2

((SP)) ← (IP)

(IP) ← (IP) + sign_extend (op1)

Description A branch is taken to the location specified by the instruction pointer, IP,
plus the relative displacement, op1. The displacement is a two’s comple-
ment number which is sign extended and counts the relative distance in
words. The value of the instruction pointer (IP) is placed onto the system
stack. Because the IP always points to the instruction following the branch
instruction, the value stored on the system stack represents the return
address of the calling routine. The value of the IP used in the target
address calculation is the address of the instruction following the CALLR
instruction.

Condition Codes See condition code table.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

CALLR rel BB rr 2

Condition Flags E Z V C N

- - - - -
Semiconductor Group 52 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
CALLS Call Inter-Segment Subroutine CALLS

Syntax CALLS op1, op2

Operation (SP) ← (SP) - 2

((SP)) ← (CSP)

(SP) ← (SP) - 2

((SP)) ← (IP)

(CSP) ← op1

(IP) ← op1

Description A branch is taken to the absolute location specified by op2 within the seg-
ment specified by op1. The value of the instruction pointer (IP) is placed
onto the system stack. Because the IP always points to the instruction fol-
lowing the branch instruction, the value stored on the system stack repre-
sents the return address to the calling routine. The previous value of the
CSP is also placed on the system stack to insure correct return to the call-
ing segment.

Condition Codes See condition code table.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

CALLS seg, caddr DA SS MM MM 4

Condition Flags E Z V C N

- - - - -
Semiconductor Group 53 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
CMP Integer Compare CMP

Syntax CMP op1, op2

Operation (op1) ⇔ (op2)

Data Types WORD

Description The source operand specified by op1 is compared to the source operand
specified by op2 by performing a 2’s complement binary subtraction of
op2 from op1. The flags are set according to the rules of subtraction. The
operands remain unchanged.

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be repre-
sented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

CMP Rwn, Rwm 40 nm 2

CMP Rwn, [Rwi] 48 n:10ii 2

CMP Rwn, [Rwi+] 48 n:11ii 2

CMP Rwn, #data3 48 n:0### 2

CMP reg, #data16 46 RR ## ## 4

CMP reg, mem 42 RR MM MM 4

Condition Flags E Z V C N

* * * S *
Semiconductor Group 54 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
CMPB Integer Compare CMPB

Syntax CMPB op1, op2

Operation (op1) ⇔ (op2)

Data Types BYTE

Description The source operand specified by op1 is compared to the source operand
specified by op2 by performing a 2’s complement binary subtraction of
op2 from op1. The flags are set according to the rules of subtraction. The
operands remain unchanged.

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be repre-
sented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

CMPB Rbn, Rbm 41 nm 2

CMPB Rbn, [Rwi] 49 n:10ii 2

CMPB Rbn, [Rwi+] 49 n:11ii 2

CMPB Rbn, #data3 49 n:0### 2

CMPB reg, #data16 47 RR ## xx 4

CMPB reg, mem 43 RR MM MM 4

Condition Flags E Z V C N

* * * S *
Semiconductor Group 55 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
CMPD1 Integer Compare and Decrement by 1 CMPD1

Syntax CMPD1 op1, op2

Operation (op1) ⇔ (op2)

(op1) ← (op1) - 1

Data Types WORD

Description This instruction is used to enhance the performance and flexibility of
loops. The source operand specified by op1 is compared to the source
operand specified by op2 by performing a 2’s complement binary subtrac-
tion of op2 from op1. Operand op1 may specify ONLY GPR registers.
Once the subtraction has completed, the operand op1 is decremented by
one. Using the set flags, a branch instruction can then be used in conjunc-
tion with this instruction to form common high level language FOR loops of
any range.

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be repre-
sented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

CMPD1 Rwn, #data4 A0 #n 2

CMPD1 Rwn, #data16 A6 Fn ## ## 4

CMPD1 Rwn, mem A2 Fn MM MM 4

Condition Flags E Z V C N

* * * S *
Semiconductor Group 56 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
CMPD2 Integer Compare and Decrement by 2 CMPD2

Syntax CMPD2 op1, op2

Operation (op1) ⇔ (op2)

(op1) ← (op1) - 2

Data Types WORD

Description This instruction is used to enhance the performance and flexibility of
loops. The source operand specified by op1 is compared to the source
operand specified by op2 by performing a 2’s complement binary subtrac-
tion of op2 from op1. Operand op1 may specify ONLY GPR registers.
Once the subtraction has completed, the operand op1 is decremented by
two. Using the set flags, a branch instruction can then be used in conjunc-
tion with this instruction to form common high level language FOR loops of
any range.

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be repre-
sented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

CMPD2 Rwn, #data4 B0 #n 2

CMPD2 Rwn, #data16 B6 Fn ## ## 4

CMPD2 Rwn, mem B2 Fn MM MM 4

Condition Flags E Z V C N

* * * S *
Semiconductor Group 57 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
CMPI1 Integer Compare and Increment by 1 CMPI1

Syntax CMPI1 op1, op2

Operation (op1) ⇔ (op2)

(op1) ← (op1) + 1

Data Types WORD

Description This instruction is used to enhance the performance and flexibility of
loops. The source operand specified by op1 is compared to the source
operand specified by op2 by performing a 2’s complement binary subtrac-
tion of op2 from op1. Operand op1 may specify ONLY GPR registers.
Once the subtraction has completed, the operand op1 is incremented by
one. Using the set flags, a branch instruction can then be used in conjunc-
tion with this instruction to form common high level language FOR loops of
any range.

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be repre-
sented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

CMPI1 Rwn, #data4 80 #n 2

CMPI1 Rwn, #data16 86 Fn ## ## 4

CMPI1 Rwn, mem 82 Fn MM MM 4

Condition Flags E Z V C N

* * * S *
Semiconductor Group 58 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
CMPI2 Integer Compare and Increment by 2 CMPI2

Syntax CMPI2 op1, op2

Operation (op1) ⇔ (op2)

(op1) ← (op1) + 2

Data Types WORD

Description This instruction is used to enhance the performance and flexibility of
loops. The source operand specified by op1 is compared to the source
operand specified by op2 by performing a 2’s complement binary subtrac-
tion of op2 from op1. Operand op1 may specify ONLY GPR registers.
Once the subtraction has completed, the operand op1 is incremented by
two. Using the set flags, a branch instruction can then be used in conjunc-
tion with this instruction to form common high level language FOR loops of
any range.

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be repre-
sented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

CMPI2 Rwn, #data4 90 #n 2

CMPI2 Rwn, #data16 96 Fn ## ## 4

CMPI2 Rwn, mem 92 Fn MM MM 4

Condition Flags E Z V C N

* * * S *
Semiconductor Group 59 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
CPL Integer One’s Complement CPL

Syntax CPL op1

Operation (op1) ← ¬(op1)

Data Types WORD

Description Performs a 1’s complement of the source operand specified by op1. The
result is stored back into op1.

E Set if the value of op1 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

CPL Rwn 91 n0 2

Condition Flags E Z V C N

* * 0 0 *
Semiconductor Group 60 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
CPLB Integer One’s Complement CPLB

Syntax CPL op1

Operation (op1) ← ¬(op1)

Data Types BYTE

Description Performs a 1’s complement of the source operand specified by op1. The
result is stored back into op1.

E Set if the value of op1 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

CPLB Rbn B1 n0 2

Condition Flags E Z V C N

* * 0 0 *
Semiconductor Group 61 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
DISWDT Disable Watchdog Timer DISWDT

Syntax DISWDT

Operation Disable the watchdog timer

Description This instruction disables the watchdog timer. The watchdog timer is ena-
bled by a reset. The DISWDT instruction allows the watchdog timer to be
disabled for applications which do not require a watchdog function. Fol-
lowing a reset, this instruction can be executed at any time until either a
Service Watchdog Timer instruction (SRVWDT) or an End of Initialization
instruction (EINIT) are executed. Once one of these instructions has been
executed, the DISWDT instruction will have no effect. To insure that this
instruction is not accidentally executed, it is implemented as a protected
instruction.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

DISWDT A5 5A A5 A5 4

Condition Flags E Z V C N

- - - - -
Semiconductor Group 62 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
DIV 16-by-16 Signed Division DIV

Syntax DIV op1

Operation (MDL) ← (MDL) / (op1)

(MDH) ← (MDL) mod (op1)

Data Types WORD

Description Performs a signed 16-bit by 16-bit division of the low order word stored in
the MD register by the source word operand op1. The signed quotient is
then stored in the low order word of the MD register (MDL) and the
remainder is stored in the high order word of the MD register (MDH).

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic overflow occurred, ie. the result cannot be repre-
sented in a word data type, or if the divisor (op1) was zero. Cleared
otherwise.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

DIV Rwn 4B nn 2

Condition Flags E Z V C N

0 * S 0 *
Semiconductor Group 63 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
DIVL 32-by-16 Signed Division DIVL

Syntax DIVL op1

Operation (MDL) ← (MD) / (op1)

(MDH) ← (MD) mod (op1)

Data Types WORD, DOUBLEWORD

Description Performs an extended signed 32-bit by 16-bit division of the two words
stored in the MD register by the source word operand op1. The signed
quotient is then stored in the low order word of the MD register (MDL) and
the remainder is stored in the high order word of the MD register (MDH).

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic overflow occurred, ie. the result cannot be repre-
sented in a word data type, or if the divisor (op1) was zero. Cleared
otherwise.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

DIVL Rwn 6B nn 2

Condition Flags E Z V C N

0 * S 0 *
Semiconductor Group 64 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
DIVLU 32-by-16 Unsigned Division DIVLU

Syntax DIVLU op1

Operation (MDL) ← (MD) / (op1)

(MDH) ← (MD) mod (op1)

Data Types WORD, DOUBLEWORD

Description Performs an extended unsigned 32-bit by 16-bit division of the two words
stored in the MD register by the source word operand op1. The unsigned
quotient is then stored in the low order word of the MD register (MDL) and
the remainder is stored in the high order word of the MD register (MDH).

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic overflow occurred, ie. the result cannot be repre-
sented in a word data type, or if the divisor (op1) was zero. Cleared
otherwise.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

DIVLU Rwn 7B nn 2

Condition Flags E Z V C N

0 * S 0 *
Semiconductor Group 65 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
DIVU 16-by-16 Unsigned Division DIVU

Syntax DIVU op1

Operation (MDL) ← (MDL) / (op1)

(MDH) ← (MDL) mod (op1)

Data Types WORD

Description Performs an unsigned 16-bit by 16-bit division of the low order word
stored in the MD register by the source word operand op1. The signed
quotient is then stored in the low order word of the MD register (MDL) and
the remainder is stored in the high order word of the MD register (MDH).

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic overflow occurred, ie. the result cannot be repre-
sented in a word data type, or if the divisor (op1) was zero. Cleared
otherwise.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

DIVU Rwn 5B nn 2

Condition Flags E Z V C N

0 * S 0 *
Semiconductor Group 66 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
EINIT End of Initialization EINIT

Syntax EINIT

Operation End of Initialization

Description This instruction is used to signal the end of the initialization portion of a
program. After a reset, the reset output pin RSTOUT is pulled low. It
remains low until the EINIT instruction has been executed at which time it
goes high. This enables the program to signal the external circuitry that it
has successfully initialized the microcontroller. After the EINIT instruction
has been executed, execution of the Disable Watchdog Timer instruction
(DISWDT) has no effect. To insure that this instruction is not accidentally
executed, it is implemented as a protected instruction.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

EINIT B5 4A B5 B5 4

Condition Flags E Z V C N

- - - - -
Semiconductor Group 67 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
EXTR Begin EXTended Register Sequence EXTR

Syntax EXTR op1

Operation (count) ← (op1) [1 ≤ op1 ≤ 4]
Disable interrupts and Class A traps
SFR_range = Extended
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)
 Next Instruction
 (count) ← (count) - 1
END WHILE
(count) = 0
SFR_range = Standard
Enable interrupts and traps

Description Causes all SFR or SFR bit accesses via the ’reg’, ’bitoff’ or ’bitaddr’
addressing modes being made to the Extended SFR space for a specified
number of instructions. During their execution, both standard and PEC
interrupts and class A hardware traps are locked.
The value of op1 defines the length of the effected instruction sequence.

Note The EXTR instruction must be used carefully (see introductory note).
The EXTR instruction is not available in the SAB 8XC166(W) devices.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

EXTR #irang2 D1 :10##-0 2

Condition Flags E Z V C N

- - - - -
Semiconductor Group 68 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
EXTP Begin EXTended Page Sequence EXTP

Syntax EXTP op1, op2

Operation (count) ← (op2) [1 ≤ op2 ≤ 4]
Disable interrupts and Class A traps
Data_Page = (op1)
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)
 Next Instruction
 (count) ← (count) - 1
END WHILE
(count) = 0
Data_Page = (DPPx)
Enable interrupts and traps

Description Overrides the standard DPP addressing scheme of the long and indirect
addressing modes for a specified number of instructions. During their exe-
cution, both standard and PEC interrupts and class A hardware traps are
locked. The EXTP instruction becomes immediately active such that no
additional NOPs are required.
For any long (’mem’) or indirect ([...]) address in the EXTP instruction
sequence, the 10-bit page number (address bits A23-A14) is not deter-
mined by the contents of a DPP register but by the value of op1 itself. The
14-bit page offset (address bits A13-A0) is derived from the long or indi-
rect address as usual.
The value of op2 defines the length of the effected instruction sequence.

Note The EXTP instruction must be used carefully (see introductory note).
The EXTP instruction is not available in the SAB 8XC166(W) devices.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

EXTP Rwm, #irang2 DC :01##-m 2

EXTP #pag, #irang2 D7 :01##-0 pp 0:00pp 4

Condition Flags E Z V C N

- - - - -
Semiconductor Group 69 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
EXTPR Begin EXTended Page and Register Sequence EXTPR

Syntax EXTPR op1, op2

Operation (count) ← (op2) [1 ≤ op2 ≤ 4]
Disable interrupts and Class A traps
Data_Page = (op1) AND SFR_range = Extended
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)
 Next Instruction
 (count) ← (count) - 1
END WHILE
(count) = 0
Data_Page = (DPPx) AND SFR_range = Standard
Enable interrupts and traps

Description Overrides the standard DPP addressing scheme of the long and indirect
addressing modes and causes all SFR or SFR bit accesses via the ’reg’,
’bitoff’ or ’bitaddr’ addressing modes being made to the Extended SFR
space for a specified number of instructions. During their execution, both
standard and PEC interrupts and class A hardware traps are locked.
For any long (’mem’) or indirect ([...]) address in the EXTP instruction
sequence, the 10-bit page number (address bits A23-A14) is not deter-
mined by the contents of a DPP register but by the value of op1 itself. The
14-bit page offset (address bits A13-A0) is derived from the long or indi-
rect address as usual.
The value of op2 defines the length of the effected instruction sequence.

Note The EXTPR instruction must be used carefully (see introductory note).
The EXTPR instruction is not available in the SAB 8XC166(W) devices.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

EXTPR Rwm, #irang2 DC :11##-m 2

EXTPR #pag, #irang2 D7 :11##-0 pp 0:00pp 4

Condition Flags E Z V C N

- - - - -
Semiconductor Group 70 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
EXTS Begin EXTended Segment Sequence EXTS

Syntax EXTS op1, op2

Operation (count) ← (op2) [1 ≤ op2 ≤ 4]
Disable interrupts and Class A traps
Data_Segment = (op1)
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)
 Next Instruction
 (count) ← (count) - 1
END WHILE
(count) = 0
Data_Page = (DPPx)
Enable interrupts and traps

Description Overrides the standard DPP addressing scheme of the long and indirect
addressing modes for a specified number of instructions. During their exe-
cution, both standard and PEC interrupts and class A hardware traps are
locked. The EXTS instruction becomes immediately active such that no
additional NOPs are required.
For any long (’mem’) or indirect ([...]) address in an EXTS instruction
sequence, the value of op1 determines the 8-bit segment (address bits
A23-A16) valid for the corresponding data access. The long or indirect
address itself represents the 16-bit segment offset (address bits A15-A0).
The value of op2 defines the length of the effected instruction sequence.

Note The EXTS instruction must be used carefully (see introductory note).
The EXTS instruction is not available in the SAB 8XC166(W) devices.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

EXTS Rwm, #irang2 DC :00##-m 2

EXTS #seg, #irang2 D7 :00##-0 ss 00 4

Condition Flags E Z V C N

- - - - -
Semiconductor Group 71 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
EXTSRBegin EXTended Segment and Register SequenceEXTSR

Syntax EXTSR op1, op2

Operation (count) ← (op2) [1 ≤ op2 ≤ 4]
Disable interrupts and Class A traps
Data_Segment = (op1) AND SFR_range = Extended
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)
 Next Instruction
 (count) ← (count) - 1
END WHILE
(count) = 0
Data_Page = (DPPx) AND SFR_range = Standard
Enable interrupts and traps

Description Overrides the standard DPP addressing scheme of the long and indirect
addressing modes and causes all SFR or SFR bit accesses via the ’reg’,
’bitoff’ or ’bitaddr’ addressing modes being made to the Extended SFR
space for a specified number of instructions. During their execution, both
standard and PEC interrupts and class A hardware traps are locked. The
EXTSR instruction becomes immediately active such that no additional
NOPs are required.
For any long (’mem’) or indirect ([...]) address in an EXTSR instruction
sequence, the value of op1 determines the 8-bit segment (address bits
A23-A16) valid for the corresponding data access. The long or indirect
address itself represents the 16-bit segment offset (address bits A15-A0).
The value of op2 defines the length of the effected instruction sequence.

Note The EXTSR instruction must be used carefully (see introductory note).
The EXTSR instruction is not available in the SAB 8XC166(W) devices.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
EXTSR Rwm, #irang2 DC :10##-m 2
EXTSR #seg, #irang2 D7 :10##-0 ss 00 4

Condition Flags E Z V C N

- - - - -
Semiconductor Group 72 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
IDLE Enter Idle Mode IDLE

Syntax IDLE

Operation Enter Idle Mode

Description This instruction causes the part to enter the idle mode. In this mode, the
CPU is powered down while the peripherals remain running. It remains
powered down until a peripheral interrupt or external interrupt occurs. To
insure that this instruction is not accidentally executed, it is implemented
as a protected instruction.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

IDLE 87 78 87 87 4

Condition Flags E Z V C N

- - - - -
Semiconductor Group 73 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
JB Relative Jump if Bit Set JB

Syntax JB op1, op2

Operation IF (op1) = 1 THEN

 (IP) ← (IP) + sign_extend (op2)

ELSE

 Next Instruction

END IF

Data Types BIT

Description If the bit specified by op1 is set, program execution continues at the loca-
tion of the instruction pointer, IP, plus the specified displacement, op2.
The displacement is a two’s complement number which is sign extended
and counts the relative distance in words. The value of the IP used in the
target address calculation is the address of the instruction following the JB
instruction. If the specified bit is clear, the instruction following the JB
instruction is executed.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

JB bitaddrQ.q, rel 8A QQ rr q0 4

Condition Flags E Z V C N

- - - - -
Semiconductor Group 74 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
JBC Relative Jump if Bit Set and Clear Bit JBC

Syntax JBC op1, op2

Operation IF (op1) = 1 THEN

 (op1) = 0

 (IP) ← (IP) + sign_extend (op2)

ELSE

 Next Instruction

END IF

Data Types BIT

Description If the bit specified by op1 is set, program execution continues at the loca-
tion of the instruction pointer, IP, plus the specified displacement, op2.
The bit specified by op1 is cleared, allowing implementation of semaphore
operations. The displacement is a two’s complement number which is sign
extended and counts the relative distance in words. The value of the IP
used in the target address calculation is the address of the instruction fol-
lowing the JBC instruction. If the specified bit was clear, the instruction fol-
lowing the JBC instruction is executed.

E Always cleared.

Z Contains logical negation of the previous state of the specified bit.

V Always cleared.

C Always cleared.

N Contains the previous state of the specified bit.

Addressing Modes Mnemonic Format Bytes

JBC bitaddrQ.q, rel AA QQ rr q0 4

Condition Flags E Z V C N

0 B 0 0 B
Semiconductor Group 75 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
JMPA Absolute Conditional Jump JMPA

Syntax JMPA op1, op2

Operation IF (op1) = 1 THEN

 (IP) ← op2

ELSE

 Next Instruction

END IF

Description If the condition specified by op1 is met, a branch to the absolute address
specified by op2 is taken. If the condition is not met, no action is taken,
and the instruction following the JMPA instruction is executed normally.

Condition Codes See condition code table.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

JMPA cc, caddr EA c0 MM MM 4

Condition Flags E Z V C N

- - - - -
Semiconductor Group 76 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
JMPI Indirect Conditional Jump JMPI

Syntax JMPI op1, op2

Operation IF (op1) = 1 THEN

 (IP) ← op2

ELSE

 Next Instruction

END IF

Description If the condition specified by op1 is met, a branch to the absolute address
specified by op2 is taken. If the condition is not met, no action is taken,
and the instruction following the JMPI instruction is executed normally.

Condition Codes See condition code table.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

JMPI cc, [Rwn] 9C cn 2

Condition Flags E Z V C N

- - - - -
Semiconductor Group 77 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
JMPR Relative Conditional Jump JMPR

Syntax JMPR op1, op2

Operation IF (op1) = 1 THEN

 (IP) ← (IP) + sign_extend (op2)

ELSE

 Next Instruction

END IF

Description If the condition specified by op1 is met, program execution continues at
the location of the instruction pointer, IP, plus the specified displacement,
op2. The displacement is a two’s complement number which is sign
extended and counts the relative distance in words. The value of the IP
used in the target address calculation is the address of the instruction fol-
lowing the JMPR instruction. If the specified condition is not met, program
execution continues normally with the instruction following the JMPR
instruction.

Condition Codes See condition code table.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

JMPR cc, rel cD rr 2

Condition Flags E Z V C N

- - - - -
Semiconductor Group 78 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
JMPS Absolute Inter-Segment Jump JMPS

Syntax JMPS op1, op2

Operation (CSP) ← op1

(IP) ← op2

Description Branches unconditionally to the absolute address specified by op2 within
the segment specified by op1.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

JMPS seg, caddr FA SS MM MM 4

Condition Flags E Z V C N

- - - - -
Semiconductor Group 79 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
JNB Relative Jump if Bit Clear JNB

Syntax JNB op1, op2

Operation IF (op1) = 0 THEN

 (IP) ← (IP) + sign_extend (op2)

ELSE

 Next Instruction

END IF

Data Types BIT

Description If the bit specified by op1 is clear, program execution continues at the
location of the instruction pointer, IP, plus the specified displacement, op2.
The displacement is a two’s complement number which is sign extended
and counts the relative distance in words. The value of the IP used in the
target address calculation is the address of the instruction following the
JNB instruction. If the specified bit is set, the instruction following the JNB
instruction is executed.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

JNB bitaddrQ.q, rel 9A QQ rr q0 4

Condition Flags E Z V C N

- - - - -
Semiconductor Group 80 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
JNBS Relative Jump if Bit Clear and Set Bit JNBS

Syntax JNBS op1, op2

Operation IF (op1) = 0 THEN

 (op1) = 1

 (IP) ← (IP) + sign_extend (op2)

ELSE

 Next Instruction

END IF

Data Types BIT

Description If the bit specified by op1 is clear, program execution continues at the
location of the instruction pointer, IP, plus the specified displacement, op2.
The bit specified by op1 is set, allowing implementation of semaphore
operations. The displacement is a two’s complement number which is sign
extended and counts the relative distance in words. The value of the IP
used in the target address calculation is the address of the instruction fol-
lowing the JNBS instruction. If the specified bit was set, the instruction fol-
lowing the JNBS instruction is executed.

E Always cleared.

Z Contains logical negation of the previous state of the specified bit.

V Always cleared.

C Always cleared.

N Contains the previous state of the specified bit.

Addressing Modes Mnemonic Format Bytes

JNBS bitaddrQ.q, rel BA QQ rr q0 4

Condition Flags E Z V C N

0 B 0 0 B
Semiconductor Group 81 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
MOV Move Data MOV

Syntax MOV op1, op2

Operation (op1) ← (op2)

Data Types WORD

Description Moves the contents of the source operand specified by op2 to the location
specified by the destination operand op1. The contents of the moved data
is examined, and the condition codes are updated accordingly.

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if the value of the source operand op2 equals zero. Cleared other-
wise.

V Not affected.

C Not affected.

N Set if the most significant bit of the source operand op2 is set. Cleared
otherwise.

Addressing Modes Mnemonic Format Bytes
MOV Rwn, Rwm F0 nm 2
MOV Rwn, #data4 E0 #n 2
MOV reg, #data16 E6 RR ## ## 4
MOV Rwn, [Rwm] A8 nm 2
MOV Rwn, [Rwm+] 98 nm 2
MOV [Rwm], Rwn B8 nm 2
MOV [-Rwm], Rwn 88 nm 2
MOV [Rwn], [Rwm] C8 nm 2
MOV [Rwn+], [Rwm] D8 nm 2
MOV [Rwn], [Rwm+] E8 nm 2
MOV Rwn, [Rwm+#data16] D4 nm ## ## 4
MOV [Rwm+#data16], Rwn C4 nm ## ## 4
MOV [Rwn], mem 84 0n MM MM 4
MOV mem, [Rwn] 94 0n MM MM 4
MOV reg, mem F2 RR MM MM 4
MOV mem, reg F6 RR MM MM 4

Condition Flags E Z V C N

* * - - *
Semiconductor Group 82 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
MOVB Move Data MOVB

Syntax MOVB op1, op2

Operation (op1) ← (op2)

Data Types BYTE

Description Moves the contents of the source operand specified by op2 to the location
specified by the destination operand op1. The contents of the moved data
is examined, and the condition codes are updated accordingly.

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if the value of the source operand op2 equals zero. Cleared other-
wise.

V Not affected.

C Not affected.

N Set if the most significant bit of the source operand op2 is set. Cleared
otherwise.

Addressing Modes Mnemonic Format Bytes
MOVB Rbn, Rbm F1 nm 2
MOVB Rbn, #data4 E1 #n 2
MOVB reg, #data8 E7 RR ## xx 4
MOVB Rbn, [Rwm] A9 nm 2
MOVB Rbn, [Rwm+] 99 nm 2
MOVB [Rwm], Rbn B9 nm 2
MOVB [-Rwm], Rbn 89 nm 2
MOVB [Rwn], [Rwm] C9 nm 2
MOVB [Rwn+], [Rwm] D9 nm 2
MOVB [Rwn], [Rwm+] E9 nm 2
MOVB Rbn, [Rwm+#data16] F4 nm ## ## 4
MOVB [Rwm+#data16], Rbn E4 nm ## ## 4
MOVB [Rwn], mem A4 0n MM MM 4
MOVB mem, [Rwn] B4 0n MM MM 4
MOVB reg, mem F3 RR MM MM 4
MOVB mem, reg F7 RR MM MM 4

Condition Flags E Z V C N

* * - - *
Semiconductor Group 83 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
MOVBS Move Byte Sign Extend MOVBS

Syntax MOVBS op1, op2

Operation (low byte op1) ← (op2)

IF (op27) = 1 THEN

 (high byte op1) ← FFH

ELSE

 (high byte op1) ← 00H

END IF

Data Types WORD, BYTE

Description Moves and sign extends the contents of the source byte specified by op2
to the word location specified by the destination operand op1. The con-
tents of the moved data is examined, and the condition codes are updated
accordingly.

E Always cleared.

Z Set if the value of the source operand op2 equals zero. Cleared other-
wise.

V Not affected.

C Not affected.

N Set if the most significant bit of the source operand op2 is set. Cleared
otherwise.

Addressing Modes Mnemonic Format Bytes

MOVBS Rwn, Rbm D0 mn 2

MOVBS reg, mem D2 RR MM MM 4

MOVBS mem, reg D5 RR MM MM 4

Condition Flags E Z V C N

0 * - - *
Semiconductor Group 84 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
MOVBZ Move Byte Zero Extend MOVBZ

Syntax MOVBZ op1, op2

Operation (low byte op1) ← (op2)

(high byte op1) ← 00H

Data Types WORD, BYTE

Description Moves and zero extends the contents of the source byte specified by op2
to the word location specified by the destination operand op1. The con-
tents of the moved data is examined, and the condition codes are updated
accordingly.

E Always cleared.

Z Set if the value of the source operand op2 equals zero. Cleared other-
wise.

V Not affected.

C Not affected.

N Always cleared.

Addressing Modes Mnemonic Format Bytes

MOVBZ Rwn, Rbm C0 mn 2

MOVBZ reg, mem C2 RR MM MM 4

MOVBZ mem, reg C5 RR MM MM 4

Condition Flags E Z V C N

0 * - - 0
Semiconductor Group 85 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
MUL Signed Multiplication MUL

Syntax MUL op1, op2

Operation (MD) ← (op1) * (op2)

Data Types WORD

Description Performs a 16-bit by 16-bit signed multiplication using the two words
specified by operands op1 and op2 respectively. The signed 32-bit result
is placed in the MD register.

E Always cleared.

Z Set if the result equals zero. Cleared otherwise.

V This bit is set if the result cannot be represented in a word data type.
Cleared otherwise.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

MUL Rwn, Rwm 0B nm 2

Condition Flags E Z V C N

0 * S 0 *
Semiconductor Group 86 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
MULU Unsigned Multiplication MULU

Syntax MULU op1, op2

Operation (MD) ← (op1) * (op2)

Data Types WORD

Description Performs a 16-bit by 16-bit unsigned multiplication using the two words
specified by operands op1 and op2 respectively. The unsigned 32-bit
result is placed in the MD register.

E Always cleared.

Z Set if the result equals zero. Cleared otherwise.

V This bit is set if the result cannot be represented in a word data type.
Cleared otherwise.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

MULU Rwn, Rwm 1B nm 2

Condition Flags E Z V C N

0 * S 0 *
Semiconductor Group 87 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
NEG Integer Two’s Complement NEG

Syntax NEG op1

Operation (op1) ← 0 - (op1)

Data Types WORD

Description Performs a binary 2’s complement of the source operand specified by
op1. The result is then stored in op1.

E Set if the value of op1 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be repre-
sented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

NEG Rwn 81 n0 2

Condition Flags E Z V C N

* * * S *
Semiconductor Group 88 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
NEGB Integer Two’s Complement NEGB

Syntax NEGB op1

Operation (op1) ← 0 - (op1)

Data Types BYTE

Description Performs a binary 2’s complement of the source operand specified by
op1. The result is then stored in op1.

E Set if the value of op1 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be repre-
sented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

NEGB Rbn A1 n0 2

Condition Flags E Z V C N

* * * S *
Semiconductor Group 89 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
NOP No Operation NOP

Syntax NOP

Operation No Operation

Description This instruction causes a null operation to be performed. A null operation
causes no change in the status of the flags.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

NOP CC 00 2

Condition Flags E Z V C N

- - - - -
Semiconductor Group 90 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
OR Logical OR OR

Syntax OR op1, op2

Operation (op1) ← (op1) ∨ (op2)

Data Types WORD

Description Performs a bitwise logical OR of the source operand specified by op2 and
the destination operand specified by op1. The result is then stored in op1.

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

OR Rwn, Rwm 70 nm 2

OR Rwn, [Rwi] 78 n:10ii 2

OR Rwn, [Rwi+] 78 n:11ii 2

OR Rwn, #data3 78 n:0### 2

OR reg, #data16 76 RR ## ## 4

OR reg, mem 72 RR MM MM 4

OR mem, reg 74 RR MM MM 4

Condition Flags E Z V C N

* * 0 0 *
Semiconductor Group 91 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
ORB Logical OR ORB

Syntax ORB op1, op2

Operation (op1) ← (op1) ∨ (op2)

Data Types BYTE

Description Performs a bitwise logical OR of the source operand specified by op2 and
the destination operand specified by op1. The result is then stored in op1.

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

ORB Rbn, Rbm 71 nm 2

ORB Rbn, [Rwi] 79 n:10ii 2

ORB Rbn, [Rwi+] 79 n:11ii 2

ORB Rbn, #data3 79 n:0### 2

ORB reg, #data16 77 RR ## xx 4

ORB reg, mem 73 RR MM MM 4

ORB mem, reg 75 RR MM MM 4

Condition Flags E Z V C N

* * 0 0 *
Semiconductor Group 92 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
PCALL Push Word and Call Subroutine Absolute PCALL

Syntax PCALL op1, op2

Operation (tmp) ← (op1)

(SP) ← (SP) - 2

((SP)) ← (tmp)

(SP) ← (SP) - 2

((SP)) ← (IP)

(IP) ← op2

Data Types WORD

Description Pushes the word specified by operand op1 and the value of the instruction
pointer, IP, onto the system stack, and branches to the absolute memory
location specified by the second operand op2. Because IP always points
to the instruction following the branch instruction, the value stored on the
system stack represents the return address of the calling routine.

E Set if the value of the pushed operand op1 represents the lowest pos-
sible negative number. Cleared otherwise. Used to signal the end of a
table.

Z Set if the value of the pushed operand op1 equals zero. Cleared other-
wise.

V Not affected.

C Not affected.

N Set if the most significant bit of the pushed operand op1 is set. Cleared
otherwise.

Addressing Modes Mnemonic Format Bytes

PCALL reg, caddr E2 RR MM MM 4

Condition Flags E Z V C N

* * - - *
Semiconductor Group 93 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
POP Pop Word from System Stack POP

Syntax POP op1

Operation (tmp) ← ((SP))

(SP) ← (SP) + 2

(op1) ← (tmp)

Data Types WORD

Description Pops one word from the system stack specified by the Stack Pointer into
the operand specified by op1. The Stack Pointer is then incremented by
two.

E Set if the value of the popped word represents the lowest possible neg-
ative number. Cleared otherwise. Used to signal the end of a table.

Z Set if the value of the popped word equals zero. Cleared otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the popped word is set. Cleared other-
wise.

Addressing Modes Mnemonic Format Bytes

POP reg FC RR 2

Condition Flags E Z V C N

* * - - *
Semiconductor Group 94 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
PRIOR Prioritize Register PRIOR

Syntax PRIOR op1, op2

Operation (tmp) ← (op2)

(count) ← 0

DO WHILE (tmp15) ≠ 1 AND (count) ≠ 15 AND (op2) ≠ 0

 (tmpn) ← (tmpn-1)

 (count) ← (count) + 1

END WHILE

(op1) ← (count)

Data Types WORD

Description This instruction stores a count value in the word operand specified by op1
indicating the number of single bit shifts required to normalize the operand
op2 so that its MSB is equal to one. If the source operand op2 equals
zero, a zero is written to operand op1 and the zero flag is set. Otherwise
the zero flag is cleared.

E Always cleared.

Z Set if the source operand op2 equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Always cleared.

Addressing Modes Mnemonic Format Bytes

PRIOR Rwn, Rwm 2B nm 2

Condition Flags E Z V C N

0 * 0 0 0
Semiconductor Group 95 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
PUSH Push Word on System Stack PUSH

Syntax PUSH op1

Operation (tmp) ← (op1)

(SP) ← (SP) - 2

((SP)) ← (tmp)

Data Types WORD

Description Moves the word specified by operand op1 to the location in the internal
system stack specified by the Stack Pointer, after the Stack Pointer has
been decremented by two.

E Set if the value of the pushed word represents the lowest possible neg-
ative number. Cleared otherwise. Used to signal the end of a table.

Z Set if the value of the pushed word equals zero. Cleared otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the pushed word is set. Cleared other-
wise.

Addressing Modes Mnemonic Format Bytes

PUSH reg EC RR 2

Condition Flags E Z V C N

* * - - *
Semiconductor Group 96 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
PWRDN Enter Power Down Mode PWRDN

Syntax PWRDN

Operation Enter Power Down Mode

Description This instruction causes the part to enter the power down mode. In this
mode, all peripherals and the CPU are powered down until the part is
externally reset. To insure that this instruction is not accidentally exe-
cuted, it is implemented as a protected instruction. To further control the
action of this instruction, the PWRDN instruction is only enabled when the
non-maskable interrupt pin (NMI) is in the low state. Otherwise, this
instruction has no effect.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

PWRDN 97 68 97 97 4

Condition Flags E Z V C N

- - - - -
Semiconductor Group 97 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
RET Return from Subroutine RET

Syntax RET

Operation (IP) ← ((SP))

(SP) ← (SP) + 2

Description Returns from a subroutine. The IP is popped from the system stack. Exe-
cution resumes at the instruction following the CALL instruction in the call-
ing routine.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

RET CB 00 2

Condition Flags E Z V C N

- - - - -
Semiconductor Group 98 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
RETI Return from Interrupt Routine RETI

Syntax RETI

Operation (IP) ← ((SP))

(SP) ← (SP) + 2

IF (SYSCON.SGTDIS=0) THEN

 (CSP) ← ((SP))

 (SP) ← (SP) + 2

END IF

(PSW) ← ((SP))

(SP) ← (SP) + 2

Description Returns from an interrupt routine. The PSW, IP, and CSP are popped off
the system stack. Execution resumes at the instruction which had been
interrupted. The previous system state is restored after the PSW has been
popped. The CSP is only popped if segmentation is enabled. This is indi-
cated by the SGTDIS bit in the SYSCON register.

E Restored from the PSW popped from stack.

Z Restored from the PSW popped from stack.

V Restored from the PSW popped from stack.

C Restored from the PSW popped from stack.

N Restored from the PSW popped from stack.

Addressing Modes Mnemonic Format Bytes

RETI FB 88 2

Condition Flags E Z V C N

S S S S S
Semiconductor Group 99 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
RETP Return from Subroutine and Pop Word RETP

Syntax RETP op1

Operation (IP) ← ((SP))

(SP) ← (SP) + 2

(tmp) ← ((SP))

(SP) ← (SP) + 2

(op1) ← (tmp)

Data Types WORD

Description Returns from a subroutine. The IP is first popped from the system stack
and then the next word is popped from the system stack into the operand
specified by op1. Execution resumes at the instruction following the CALL
instruction in the calling routine.

E Set if the value of the word popped into operand op1 represents the
lowest possible negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if the value of the word popped into operand op1 equals zero.
Cleared otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the word popped into operand op1 is
set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

RETP reg EB RR 2

Condition Flags E Z V C N

* * - - *
Semiconductor Group 100 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
RETS Return from Inter-Segment Subroutine RETS

Syntax RETS

Operation (IP) ← ((SP))

(SP) ← (SP) + 2

(CSP) ← ((SP))

(SP) ← (SP) + 2

Description Returns from an inter-segment subroutine. The IP and CSP are popped
from the system stack. Execution resumes at the instruction following the
CALLS instruction in the calling routine.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

RETS DB 00 2

Condition Flags E Z V C N

- - - - -
Semiconductor Group 101 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
ROL Rotate Left ROL

Syntax ROL op1, op2

Operation (count) ← (op2)
(C) ← 0
DO WHILE (count) ≠ 0
 (C) ← (op115)
 (op1n) ← (op1n-1) [n=1...15]
 (op10) ← (C)
 (count) ← (count) - 1
END WHILE

Data Types WORD

Description Rotates the destination word operand op1 left by as many times as speci-
fied by the source operand op2. Bit 15 is rotated into Bit 0 and into the
Carry. Only shift values between 0 and 15 are allowed. When using a
GPR as the count control, only the least significant 4 bits are used.

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C The carry flag is set according to the last MSB shifted out of op1.
Cleared for a rotate count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

ROL Rwn, Rwm 0C nm 2

ROL Rwn, #data4 1C #n 2

Condition Flags E Z V C N

0 * 0 S *
Semiconductor Group 102 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
ROR Rotate Right ROR

Syntax ROR op1, op2

Operation (count) ← (op2)
(C) ← 0
(V) ← 0
DO WHILE (count) ≠ 0
 (V) ← (V) ∨ (C)
 (C) ← (op10)
 (op1n) ← (op1n+1) [n=0...14]
 (op115) ← (C)
 (count) ← (count) - 1
END WHILE

Data Types WORD

Description Rotates the destination word operand op1 right by as many times as spec-
ified by the source operand op2. Bit 0 is rotated into Bit 15 and into the
Carry. Only shift values between 0 and 15 are allowed. When using a
GPR as the count control, only the least significant 4 bits are used.

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if in any cycle of the rotate operation a ‘1’ is shifted out of the carry
flag. Cleared for a rotate count of zero.

C The carry flag is set according to the last LSB shifted out of op1.
Cleared for a rotate count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

ROR Rwn, Rwm 2C nm 2

ROR Rwn, #data4 3C #n 2

Condition Flags E Z V C N

0 * S S *
Semiconductor Group 103 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
SCXT Switch Context SCXT

Syntax SCXT op1, op2

Operation (tmp1) ← (op1)

(tmp2) ← (op2)

(SP) ← (SP) - 2

((SP)) ← (tmp1)

(op1) ← (tmp2)

Data Types WORD

Description Used to switch contexts for any register. Switching context is a push and
load operation. The contents of the register specified by the first operand,
op1, are pushed onto the stack. That register is then loaded with the value
specified by the second operand, op2.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

SCXT reg, #data16 C6 RR ## ## 4

SCXT reg, mem D6 RR MM MM 4

Condition Flags E Z V C N

- - - - -
Semiconductor Group 104 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
SHL Shift Left SHL

Syntax SHL op1, op2

Operation (count) ← (op2)
(C) ← 0
DO WHILE (count) ≠ 0
 (C) ← (op115)
 (op1n) ← (op1n-1) [n=1...15]
 (op10) ← 0
 (count) ← (count) - 1
END WHILE

Data Types WORD

Description Shifts the destination word operand op1 left by as many times as specified
by the source operand op2. The least significant bits of the result are filled
with zeros accordingly. The MSB is shifted into the Carry. Only shift val-
ues between 0 and 15 are allowed. When using a GPR as the count con-
trol, only the least significant 4 bits are used.

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C The carry flag is set according to the last MSB shifted out of op1.
Cleared for a shift count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

SHL Rwn, Rwm 4C nm 2

SHL Rwn, #data4 5C #n 2

Condition Flags E Z V C N

0 * 0 S *
Semiconductor Group 105 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
SHR Shift Right SHR

Syntax SHR op1, op2

Operation (count) ← (op2)
(C) ← 0
(V) ← 0
DO WHILE (count) ≠ 0
 (V) ← (C) ∨ (V)
 (C) ← (op10)
 (op1n) ← (op1n+1) [n=0...14]
 (op115) ← 0
 (count) ← (count) - 1
END WHILE

Data Types WORD

Description Shifts the destination word operand op1 right by as many times as speci-
fied by the source operand op2. The most significant bits of the result are
filled with zeros accordingly. Since the bits shifted out effectively represent
the remainder, the Overflow flag is used instead as a Rounding flag. This
flag together with the Carry flag helps the user to determine whether the
remainder bits lost were greater than, less than or equal to one half an
LSB. Only shift values between 0 and 15 are allowed. When using a GPR
as the count control, only the least significant 4 bits are used.

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if in any cycle of the shift operation a ‘1’ is shifted out of the carry
flag. Cleared for a shift count of zero.

C The carry flag is set according to the last LSB shifted out of op1.
Cleared for a shift count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

SHR Rwn, Rwm 6C nm 2

SHR Rwn, #data4 7C #n 2

Condition Flags E Z V C N

0 * S S *
Semiconductor Group 106 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
SRST Software Reset SRST

Syntax SRST

Operation Software Reset

Description This instruction is used to perform a software reset. A software reset has
the same effect on the microcontroller as an externally applied hardware
reset. To insure that this instruction is not accidentally executed, it is
implemented as a protected instruction.

E Always cleared.

Z Always cleared.

V Always cleared.

C Always cleared.

N Always cleared.

Addressing Modes Mnemonic Format Bytes

SRST B7 48 B7 B7 4

Condition Flags E Z V C N

0 0 0 0 0
Semiconductor Group 107 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
SRVWDT Service Watchdog Timer SRVWDT

Syntax SRVWDT

Operation Service Watchdog Timer

Description This instruction services the Watchdog Timer. It reloads the high order
byte of the Watchdog Timer with a preset value and clears the low byte on
every occurrence. Once this instruction has been executed, the watchdog
timer cannot be disabled. To insure that this instruction is not accidentally
executed, it is implemented as a protected instruction.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

SRVWDT A7 58 A7 A7 4

Condition Flags E Z V C N

- - - - -
Semiconductor Group 108 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
SUB Integer Subtraction SUB

Syntax SUB op1, op2

Operation (op1) ← (op1) - (op2)

Data Types WORD

Description Performs a 2’s complement binary subtraction of the source operand
specified by op2 from the destination operand specified by op1. The result
is then stored in op1.

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be repre-
sented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

SUB Rwn, Rwm 20 nm 2

SUB Rwn, [Rwi] 28 n:10ii 2

SUB Rwn, [Rwi+] 28 n:11ii 2

SUB Rwn, #data3 28 n:0### 2

SUB reg, #data16 26 RR ## ## 4

SUB reg, mem 22 RR MM MM 4

SUB mem, reg 24 RR MM MM 4

Condition Flags E Z V C N

* * * S *
Semiconductor Group 109 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
SUBB Integer Subtraction SUBB

Syntax SUBB op1, op2

Operation (op1) ← (op1) - (op2)

Data Types BYTE

Description Performs a 2’s complement binary subtraction of the source operand
specified by op2 from the destination operand specified by op1. The result
is then stored in op1.

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be repre-
sented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

SUBB Rbn, Rbm 21 nm 2

SUBB Rbn, [Rwi] 29 n:10ii 2

SUBB Rbn, [Rwi+] 29 n:11ii 2

SUBB Rbn, #data3 29 n:0### 2

SUBB reg, #data16 27 RR ## xx 4

SUBB reg, mem 23 RR MM MM 4

SUBB mem, reg 25 RR MM MM 4

Condition Flags E Z V C N

* * * S *
Semiconductor Group 110 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
SUBC Integer Subtraction with Carry SUBC

Syntax SUBC op1, op2

Operation (op1) ← (op1) - (op2) - (C)

Data Types WORD

Description Performs a 2’s complement binary subtraction of the source operand
specified by op2 and the previously generated carry bit from the destina-
tion operand specified by op1. The result is then stored in op1. This
instruction can be used to perform multiple precision arithmetic.

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero and the previous Z flag was set. Cleared other-
wise.

V Set if an arithmetic underflow occurred, ie. the result cannot be repre-
sented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

SUBC Rwn, Rwm 30 nm 2

SUBC Rwn, [Rwi] 38 n:10ii 2

SUBC Rwn, [Rwi+] 38 n:11ii 2

SUBC Rwn, #data3 38 n:0### 2

SUBC reg, #data16 36 RR ## ## 4

SUBC reg, mem 32 RR MM MM 4

SUBC mem, reg 34 RR MM MM 4

Condition Flags E Z V C N

* S * S *
Semiconductor Group 111 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
SUBCB Integer Subtraction with Carry SUBCB

Syntax SUBCB op1, op2

Operation (op1) ← (op1) - (op2) - (C)

Data Types BYTE

Description Performs a 2’s complement binary subtraction of the source operand
specified by op2 and the previously generated carry bit from the destina-
tion operand specified by op1. The result is then stored in op1. This
instruction can be used to perform multiple precision arithmetic.

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result cannot be repre-
sented in the specified data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

SUBCB Rbn, Rbm 31 nm 2

SUBCB Rbn, [Rwi] 39 n:10ii 2

SUBCB Rbn, [Rwi+] 39 n:11ii 2

SUBCB Rbn, #data3 39 n:0### 2

SUBCB reg, #data16 37 RR ## xx 4

SUBCB reg, mem 33 RR MM MM 4

SUBCB mem, reg 35 RR MM MM 4

Condition Flags E Z V C N

* * * S *
Semiconductor Group 112 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
TRAP Software Trap TRAP

Syntax TRAP op1

Operation (SP) ← (SP) - 2

((SP)) ← (PSW)

IF (SYSCON.SGTDIS=0) THEN

 (SP) ← (SP) - 2

 ((SP)) ← (CSP)

 (CSP) ← 0

END IF

(SP) ← (SP) - 2

((SP)) ← (IP)

(IP) ← zero_extend (op1*4)

Description Invokes a trap or interrupt routine based on the specified operand, op1.
The invoked routine is determined by branching to the specified vector
table entry point. This routine has no indication of whether it was called by
software or hardware. System state is preserved identically to hardware
interrupt entry except that the CPU priority level is not affected. The RETI,
return from interrupt, instruction is used to resume execution after the trap
or interrupt routine has completed. The CSP is pushed if segmentation is
enabled. This is indicated by the SGTDIS bit in the SYSCON register.

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

TRAP #trap7 9B t:ttt0 2

Condition Flags E Z V C N

- - - - -
Semiconductor Group 113 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
XOR Logical Exclusive OR XOR

Syntax XOR op1, op2

Operation (op1) ← (op1) ⊕ (op2)

Data Types WORD

Description Performs a bitwise logical EXCLUSIVE OR of the source operand speci-
fied by op2 and the destination operand specified by op1. The result is
then stored in op1.

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

XOR Rwn, Rwm 50 nm 2

XOR Rwn, [Rwi] 58 n:10ii 2

XOR Rwn, [Rwi+] 58 n:11ii 2

XOR Rwn, #data3 58 n:0### 2

XOR reg, #data16 56 RR ## ## 4

XOR reg, mem 52 RR MM MM 4

XOR mem, reg 54 RR MM MM 4

Condition Flags E Z V C N

* * 0 0 *
Semiconductor Group 114 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction Description
XORB Logical Exclusive OR XORB

Syntax XORB op1, op2

Operation (op1) ← (op1) ⊕ (op2)

Data Types BYTE

Description Performs a bitwise logical EXCLUSIVE OR of the source operand speci-
fied by op2 and the destination operand specified by op1. The result is
then stored in op1.

E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

XORB Rbn, Rbm 51 nm 2

XORB Rbn, [Rwi] 59 n:10ii 2

XORB Rbn, [Rwi+] 59 n:11ii 2

XORB Rbn, #data3 59 n:0### 2

XORB reg, #data16 57 RR ## xx 4

XORB reg, mem 53 RR MM MM 4

XORB mem, reg 55 RR MM MM 4

Condition Flags E Z V C N

* * 0 0 *
Semiconductor Group 115 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Addressing Modes
6 Addressing Modes

The Siemens 16-bit microcontrollers provide a lot of powerful addressing modes for access to word,
byte and bit data (short, long, indirect), or to specify the target address of a branch instruction
(absolute, relative, indirect). The different addressing modes use different formats and cover
different scopes.

Short Addressing Modes

All of these addressing modes use an implicit base offset address to specify an 18-bit or 24-bit
physical address (SAB 80C166 group or C167/5 group, respectively).
Short addressing modes allow to access the GPR, SFR or bit-addressable memory space:

Physical Address = Base Address + ∆ * Short Address

Note: ∆ is 1 for byte GPRs, ∆ is 2 for word GPRs.

*) The Extended Special Function Register (ESFR) area is not available in the SAB 8XC166(W)
devices.

Mnemonic Physical Address Short Address Range Scope of Access

Rw (CP) + 2*Rw Rw = 0...15 GPRs (Word)

Rb (CP) + 1*Rb Rb = 0...15 GPRs (Byte)

reg 00’FE00H + 2*reg
00’F000H + 2*reg *)

(CP) + 2*(reg∧0FH)
(CP) + 1*(reg∧0FH)

reg = 00H...EFH
reg = 00H...EFH
reg = F0H...FFH
reg = F0H...FFH

SFRs (Word, Low byte)
ESFRs (Word, Low byte)*)

GPRs (Word)
GPRs (Bytes)

bitoff 00’FD00H + 2*bitoff
00’FF00H + 2*(bitoff∧FFH)
(CP) + 2*(bitoff∧0FH)

bitoff = 00H...7FH
bitoff = 80H...EFH
bitoff = F0H...FFH

RAM Bit word offset
SFR Bit word offset
GPR Bit word offset

bitaddr Word offset as with bitoff.
Immediate bit position.

bitoff = 00H...FFH
bitpos = 0...15

Any single bit
Semiconductor Group 116 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Addressing Modes
Rw, Rb: Specifies direct access to any GPR in the currently active context (register bank). Both
’Rw’ and ’Rb’ require four bits in the instruction format. The base address of the current
register bank is determined by the content of register CP. ’Rw’ specifies a 4-bit word
GPR address relative to the base address (CP), while ’Rb’ specifies a 4 bit byte GPR
address relative to the base address (CP).

reg: Specifies direct access to any (E)SFR or GPR in the currently active context (register
bank). ’reg’ requires eight bits in the instruction format. Short ’reg’ addresses from 00H to
EFH always specify (E)SFRs. In that case, the factor ’∆’ equates 2 and the base address
is 00’FE00H for the standard SFR area or 00’F000H for the extended ESFR area. ‘reg’
accesses to the ESFR area require a preceding EXT*R instruction to switch the base
address (not available in the SAB 8XC166(W) devices). Depending on the opcode of an
instruction, either the total word (for word operations) or the low byte (for byte opera-
tions) of an SFR can be addressed via 'reg'. Note that the high byte of an SFR cannot
be accessed via the 'reg' addressing mode. Short 'reg' addresses from F0H to FFH
always specify GPRs. In that case, only the lower four bits of 'reg' are significant for
physical address generation, and thus it can be regarded as being identical to the
address generation described for the 'Rb' and 'Rw' addressing modes.

bitoff: Specifies direct access to any word in the bit-addressable memory space. 'bitoff'
requires eight bits in the instruction format. Depending on the specified 'bitoff' range, dif-
ferent base addresses are used to generate physical addresses: Short 'bitoff' addresses
from 00H to 7FH use 00’FD00H as a base address, and thus they specify the 128 high-
est internal RAM word locations (00’FD00Hh to 00’FDFEH). Short 'bitoff' addresses from
80H to EFH use 00’FF00H as a base address to specify the highest internal SFR word
locations (00’FF00H to 00’FFDEH) or use 00’F100H as a base address to specify the
highest internal ESFR word locations (00’F100H to 00’F1DEH). ‘bitoff’ accesses to the
ESFR area require a preceding EXT*R instruction to switch the base address (not avail-
able in the SAB 8XC166(W) devices). For short 'bitoff' addresses from F0H to FFH, only
the lowest four bits and the contents of the CP register are used to generate the physi-
cal address of the selected word GPR.

bitaddr: Any bit address is specified by a word address within the bit-addressable memory
space (see 'bitoff'), and by a bit position ('bitpos') within that word. Thus, 'bitaddr'
requires twelve bits in the instruction format.
Semiconductor Group 117 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Addressing Modes
Long Addressing Mode

This addressing mode uses one of the four DPP registers to specify a physical 18-bit or 24-bit
address. Any word or byte data within the entire address space can be accessed with this mode.
The C167/5 devices also support an override mechanism for the DPP adressing scheme.

Note: Word accesses on odd byte addresses are not executed, but rather trigger a hardware trap.
After reset, the DPP registers are initialized in a way that all long addresses are directly
mapped onto the identical physical addresses.

Any long 16-bit address consists of two portions, which are interpreted in different ways. Bits 13...0
specify a 14-bit data page offset, while bits 15...14 specify the Data Page Pointer (1 of 4), which is
to be used to generate the physical 18-bit or 24-bit address (see figure below).

Figure 6-1: Interpretation of a 16-bit Long Address

The SAB 8XC166(W) devices support an address space of up to 256 KByte, while the C167/5
devices support an address space of up to 16 MByte, so only the lower two or ten bits (respectively)
of the selected DPP register content are concatenated with the 14-bit data page offset to build the
physical address.

The long addressing mode is referred to by the mnemonic ‘mem’.

Mnemonic Physical Address Long Address Range Scope of Access

mem (DPP0) || mem∧3FFFH
(DPP1) || mem∧3FFFH
(DPP2) || mem∧3FFFH
(DPP3) || mem∧3FFFH

0000H...3FFFH
4000H...7FFFH
8000H...BFFFH
C000H...FFFFH

Any Word or Byte

mem pag || mem∧3FFFH 0000H...FFFFH (14-bit) Any Word or Byte

mem seg || mem 0000H...FFFFH (16-bit) Any Word or Byte

015 14 13
16-bit Long Address

DPP0
DPP1
DPP2
DPP3

14-bit page offset

18/24-bit Physical Address
Semiconductor Group 118 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Addressing Modes
DPP Override Mechansim in the C167/5

Other than the older devices from the SAB 80C166 group the C167 and C165 devices provide an
override mechanism that allows to bypass the DPP addressing scheme temporarily.

The EXTP(R) and EXTS(R) instructions override this addressing mechanism. Instruction EXTP(R)
replaces the content of the respective DPP register, while instruction EXTS(R) concatenates th
complete 16-bit long address with the specified segment base address. The overriding page or
segment may be specified directly as a constant (#pag, #seg) or via a word GPR (Rw).

Figure 6-2: Overriding the DPP Mechanism

Indirect Addressing Modes

These addressing modes can be regarded as a combination of short and long addressing modes.
This means that long 16-bit addresses are specified indirectly by the contents of a word GPR, which
is specified directly by a short 4-bit address (’Rw’=0 to 15). There are indirect addressing modes,
which add a constant value to the GPR contents before the long 16-bit address is calculated. Other
indirect addressing modes allow decrementing or incrementing the indirect address pointers (GPR
content) by 2 or 1 (referring to words or bytes).

In each case, one of the four DPP registers is used to specify physical 18-bit or 24-bit addresses.
Any word or byte data within the entire memory space can be addressed indirectly.

Note: The exceptions for instructions EXTP(R) and EXTS(R), ie. overriding the DPP mechanism,
apply in the same way as described for the long addressing modes.

Some instructions only use the lowest four word GPRs (R3...R0) as indirect address pointers, which
are specified via short 2-bit addresses in that case.

015 14 13
16-bit Long Address

#pag 14-bit page offset

24-bit Physical Address

015
16-bit Long Address

#seg 16-bit segment offset

24-bit Physical Address

EXTP(R):

EXTS(R):
Semiconductor Group 119 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Addressing Modes
Note: Word accesses on odd byte addresses are not executed, but rather trigger a hardware trap.
After reset, the DPP registers are initialized in a way that all indirect long addresses are
directly mapped onto the identical physical addresses.

Physical addresses are generated from indirect address pointers via the following algorithm:

1) Calculate the physical address of the word GPR, which is used as indirect address pointer,
using the specified short address (’Rw’) and the current register bank base address (CP).

GPR Address = (CP) + 2 * Short Address

2) Pre-decremented indirect address pointers (‘-Rw’) are decremented by a data-type-
dependent value (∆=1 for byte operations, ∆=2 for word operations), before the long 16-bit
address is generated:

(GPR Address) = (GPR Address) - ∆ ; [optional step!]

3) Calculate the long 16-bit address by adding a constant value (if selected) to the content of
the indirect address pointer:

Long Address = (GPR Pointer) + Constant

4) Calculate the physical 18-bit or 24-bit address using the resulting long address and the cor-
responding DPP register content (see long 'mem' addressing modes).

Physical Address = (DPPi) + Page offset

5) Post-Incremented indirect address pointers (‘Rw+’) are incremented by a data-type-
dependent value (∆=1 for byte operations, ∆=2 for word operations):

(GPR Pointer) = (GPR Pointer) + ∆ ; [optional step!]

The following indirect addressing modes are provided:

Mnemonic Particularities

[Rw] Most instructions accept any GPR (R15...R0) as indirect address pointer.
Some instructions, however, only accept the lower four GPRs (R3...R0).

[Rw+] The specified indirect address pointer is automatically post-incremented by 2 or 1
(for word or byte data operations) after the access.

[-Rw] The specified indirect address pointer is automatically pre-decremented by 2 or 1
(for word or byte data operations) before the access.

[Rw+#data16] The specified 16-bit constant is added to the indirect address pointer, before the
long address is calculated.
Semiconductor Group 120 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Addressing Modes
Constants

The C166 Family instruction set also supports the use of wordwide or bytewide immediate
constants. For an optimum utilization of the available code storage, these constants are
represented in the instruction formats by either 3, 4, 8 or 16 bits. Thus, short constants are always
zero-extended while long constants are truncated if necessary to match the data format required for
the particular operation (see table below):

Note: Immediate constants are always signified by a leading number sign ’#’.

Instruction Range (#irang2)

The effect of the ATOMIC and EXTended instructions can be defined for the following 1...4
instructions. This instruction range (1...4) is coded in the 2-bit constant #irang2 and is represented
by the values 0...3.

Branch Target Addressing Modes

Different addressing modes are provided to specify the target address and segment of jump or call
instructions. Relative, absolute and indirect modes can be used to update the Instruction Pointer
register (IP), while the Code Segment Pointer register (CSP) can only be updated with an absolute
value. A special mode is provided to address the interrupt and trap jump vector table, which resides
in the lowest portion of code segment 0.

Mnemonic Word Operation Byte Operation

#data3 0000H + data3 00H + data3

#data4 0000H + data4 00H + data4

#data8 0000H + data8 data8

#data16 data16 data16 ∧ FFH

#mask 0000H + mask mask

Mnemonic Target Address Target Segment Valid Address Range

caddr (IP) = caddr - caddr = 0000H...FFFEH

rel (IP) = (IP) + 2*rel
(IP) = (IP) + 2*(rel+1)

-
-

rel = 00H...7FH
rel = 80H...FFH

[Rw] (IP) = ((CP) + 2*Rw) - Rw = 0...15

seg - (CSP) = seg seg = 0...255(3)

#trap7 (IP) = 0000H + 4*trap7 (CSP) = 0000H trap7 = 00H...7FH
Semiconductor Group 121 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Addressing Modes
caddr: Specifies an absolute 16-bit code address within the current segment. Branches MAY
NOT be taken to odd code addresses. Therefore, the least significant bit of ’caddr’ must
always contain a ’0’, otherwise a hardware trap would occur.

rel: This mnemonic represents an 8-bit signed word offset address relative to the current
Instruction Pointer contents, which points to the instruction after the branch instruction.
Depending on the offset address range, either forward (’rel’= 00H to 7FH) or backward
(’rel’= 80H to FFH) branches are possible. The branch instruction itself is repeatedly exe-
cuted, when ’rel’ = ’-1’ (FFH) for a word-sized branch instruction, or ’rel’ = ’-2’ (FEH) for a
double-word-sized branch instruction.

[Rw]: In this case, the 16-bit branch target instruction address is determined indirectly by the
content of a word GPR. In contrast to indirect data addresses, indirectly specified code
addresses are NOT calculated via additional pointer registers (eg. DPP registers).
Branches MAY NOT be taken to odd code addresses. Therefore, the least significant bit
of the address pointer GPR must always contain a ’0’, otherwise a hardware trap would
occur.

seg: Specifies an absolute code segment number. The devices of the SAB 80C166 group
support 4 different code segments, while the devices of the C167/5 group support 256
different code segments, so only the two or eight lower bits (respectively) of the ’seg’
operand value are used for updating the CSP register.

#trap7: Specifies a particular interrupt or trap number for branching to the corresponding inter-
rupt or trap service routine via a jump vector table. Trap numbers from 00H to 7FH can
be specified, which allow to access any double word code location within the address
range 00’0000H...00’01FCH in code segment 0 (ie. the interrupt jump vector table).
For the association of trap numbers with the corresponding interrupt or trap sources
please refer to chapter “Interrupt and Trap Functions”.
Semiconductor Group 122 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction State Times
7 Instruction State Times

Basically, the time to execute an instruction depends on where the instruction is fetched from, and
where possible operands are read from or written to. The fastest processing mode is to execute a
program fetched from the internal ROM. In that case most of the instructions can be processed
within just one machine cycle, which is also the general minimum execution time.

All external memory accesses are performed by the on-chip External Bus Controller (EBC), which
works in parallel with the CPU. Mostly, instructions from external memory cannot be processed as
fast as instructions from the internal ROM, because some data transfers, which internally can be
performed in parallel, have to be performed sequentially via the external interface. In contrast to
internal ROM program execution, the time required to process an external program additionally
depends on the length of the instructions and operands, on the selected bus mode, and on the
duration of an external memory cycle, which is partly selectable by the user.

Processing a program from the internal RAM space is not as fast as execution from the internal
ROM area, but it offers a lot of flexibility (ie. for loading temporary programs into the internal RAM
via the chip’s serial interface, or end-of-line programming via the bootstrap loader).

The following description allows evaluating the minimum and maximum program execution times.
This will be sufficient for most requirements. For an exact determination of the instructions’ state
times it is recommended to use the facilities provided by simulators or emulators.

This section defines the subsequently used time units, summarizes the minimum (standard) state
times of the 16-bit microcontroller instructions, and describes the exceptions from that standard
timing.

Time Unit Definitions

The following time units are used to describe the instructions’ processing times:

[fCPU]: CPU operating frequency (may vary from 1 MHz to 20 MHz).

[State]: One state time is specified by one CPU clock period. Henceforth, one State is used as
the basic time unit, because it represents the shortest period of time which has to be considered
for instruction timing evaluations.

1 [State] = 1/fCPU [s] ; for fCPU = variable
= 50 [ns] ; for fCPU = 20 MHz

[ACT]: This ALE (Address Latch Enable) Cycle Time specifies the time required to perform
one external memory access. One ALE Cycle Time consists of either two (for demultiplexed exter-
nal bus modes) or three (for multiplexed external bus modes) state times plus a number of state
times, which is determined by the number of waitstates programmed in the MCTC (Memory Cycle
Time Control) and MTTC (Memory Tristate Time Control) bit fields of the SYSCON/BUSCONx reg-
isters.

In case of demultiplexed external bus modes:
1*ACT = (2 + (15 – MCTC) + (1 – MTTC)) * States

= 100 ns ... 900 ns ; for fCPU = 20 MHz

In case of multiplexed external bus modes:
1*ACT = 3 + (15 – MCTC) + (1 – MTTC) * States

= 150 ns ... 950 ns ; for fCPU = 20 MHz
Semiconductor Group 123 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction State Times
The total time (Ttot), which a particular part of a program takes to be processed, can be calculated
by the sum of the single instruction processing times (TIn) of the considered instructions plus an
offset value of 6 state times which considers the solitary filling of the pipeline, as follows:

Ttot = TI1 + TI2 + ... + TIn + 6 * States

The time TIn, which a single instruction takes to be processed, consists of a minimum number
(TImin) plus an additional number (TIadd) of instruction state times and/or ALE Cycle Times, as
follows:

TIn = TImin + TIadd

Minimum State Times

The table below shows the minimum number of state times required to process an instruction
fetched from the internal ROM (TImin (ROM)). The minimum number of state times for instructions
fetched from the internal RAM (TImin (RAM)), or of ALE Cycle Times for instructions fetched from
the external memory (TImin (ext)), can also be easily calculated by means of this table.

Most of the 16-bit microcontroller instructions - except some of the branches, the multiplication, the
division and a special move instruction - require a minimum of two state times. In case of internal
ROM program execution there is no execution time dependency on the instruction length except for
some special branch situations. The injected target instruction of a cache jump instruction can be
considered for timing evaluations as if being executed from the internal ROM, regardless of which
memory area the rest of the current program is really fetched from.

For some of the branch instructions the table below represents both the standard number of state
times (ie. the corresponding branch is taken) and an additional TImin value in parentheses, which
refers to the case that either the branch condition is not met or a cache jump is taken.

Minimum Instruction State Times [Unit = ns]

Instruction TImin (ROM)
[States]

TImin (ROM)
(@ 20 MHz CPU clock)

CALLI, CALLA

CALLS, CALLR, PCALL

JB, JBC, JNB, JNBS

JMPS

JMPA, JMPI, JMPR

MUL, MULU

DIV, DIVL, DIVU, DIVLU

MOV[B] Rn, [Rm+#data16]

RET, RETI, RETP, RETS

TRAP

All other instructions

4 (+2)

4

4 (+2)

4

4 (+2)

10

20

4

4

4

2

200 (+100)

200

200 (+100)

200

200 (+100)

500

1000

200

200

200

100
Semiconductor Group 124 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction State Times
Instructions executed from the internal RAM require the same minimum time as if being fetched
from the internal ROM plus an instruction-length dependent number of state times, as follows:

For 2-byte instructions: TImin(RAM) = TImin(ROM) + 4 * States

For 4-byte instructions: TImin(RAM) = TImin(ROM) + 6 * States

In contrast to the internal ROM program execution, the minimum time TImin(ext) to process an
external instruction additionally depends on the instruction length. TImin(ext) is either 1 ALE Cycle
Time for most of the 2-byte instructions, or 2 ALE Cycle Times for most of the 4-byte instructions.
The following formula represents the minimum execution time of instructions fetched from an
external memory via a 16-bit wide data bus:

For 2-byte instructions: TImin(ext) = 1*ACT + (TImin(ROM) - 2) * States
For 4-byte instructions: TImin(ext) = 2*ACTs + (TImin(ROM) - 2) * States

Note: For instructions fetched from an external memory via an 8-bit wide data bus, the minimum
number of required ALE Cycle Times is twice the number for a 16-bit wide bus.

Additional State Times

Some operand accesses can extend the execution time of an instruction TIn. Since the additional
time TIadd is mostly caused by internal instruction pipelining, it often will be possible to evade these
timing effects in time-critical program modules by means of a suitable rearrangement of the
corresponding instruction sequences. Simulators and emulators offer a lot of facilities, which
support the user in optimizing his program whenever required.

• Internal ROM operand reads: TIadd = 2 * States

Both byte and word operand reads always require 2 additional state times.

• Internal RAM operand reads via indirect addressing modes: TIadd = 0 or 1 * State

Reading a GPR or any other directly addressed operand within the internal RAM space does NOT
cause additional state times. However, reading an indirectly addressed internal RAM operand will
extend the processing time by 1 state time, if the preceding instruction auto-increments or auto-
decrements a GPR as shown in the following example:

In : MOV R1 , [R0+] ; auto-increment R0
In+1 : MOV [R3], [R2] ; if R2 points into the internal RAM space:

; TIadd = 1 * State
In this case, the additional time can simply be avoided by putting another suitable instruction before
the instruction In+1 indirectly reading the internal RAM.
Semiconductor Group 125 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction State Times
• Internal SFR operand reads: TIadd = 0, 1 * State or 2 * States

Mostly, SFR read accesses do NOT require additional processing time. In some rare cases,
however, either one or two additional state times will be caused by particular SFR operations, as
follows:

– Reading an SFR immediately after an instruction, which writes to the internal SFR space, as
shown in the following example:

In : MOV T0, #1000h ; write to Timer 0
In+1 : ADD R3, T1 ; read from Timer 1: TIadd = 1 * State

– Reading the PSW register immediately after an instruction, which implicitly updates the condition
flags, as shown in the following example:

In : ADD R0, #1000h ; implicit modification of PSW flags
In+1 : BAND C, Z ; read from PSW: TIadd = 2 * States

– Implicitly incrementing or decrementing the SP register immediately after an instruction, which
explicitly writes to the SP register, as shown in the following example:

In : MOV SP, #0FB00h ; explicit update of the stack pointer
In+1 : SCXT R1, #1000h ; implicit decrement of the stack pointer:

: TIadd = 2 * States
In these cases, the extra state times can be avoided by putting other suitable instructions before the
instruction In+1 reading the SFR.

• External operand reads: TIadd = 1 * ACT

Any external operand reading via a 16-bit wide data bus requires one additional ALE Cycle Time.
Reading word operands via an 8-bit wide data bus takes twice as much time (2 ALE Cycle Times)
as the reading of byte operands.

• External operand writes: TIadd = 0 * State ... 1 * ACT

Writing an external operand via a 16-bit wide data bus takes one additional ALE Cycle Time. For
timing calculations of external program parts, this extra time must always be considered. The value
of TIadd which must be considered for timing evaluations of internal program parts, may fluctuate
between 0 state times and 1 ALE Cycle Time. This is because external writes are normally
performed in parallel to other CPU operations. Thus, TIadd could already have been considered in
the standard processing time of another instruction. Writing a word operand via an 8-bit wide data
bus requires twice as much time (2 ALE Cycle Times) as the writing of a byte operand.
Semiconductor Group 126 Version 1.2, 12.97

30Mar98@15:00h C166 Family Instruction Set
Instruction State Times
• Jumps into the internal ROM space: TIadd = 0 or 2 * States

The minimum time of 4 state times for standard jumps into the internal ROM space will be extended
by 2 additional state times, if the branch target instruction is a double word instruction at a non-
aligned double word location (xxx2H, xxx6H, xxxAH, xxxEH), as shown in the following example:

label : ; any non-aligned double word instruction
: (eg. at location 0FFEH)

.... :
In+1 : JMPA cc_UC, label ; if a standard branch is taken:

: TIadd = 2 * States (TIn = 6 * States)

A cache jump, which normally requires just 2 state times, will be extended by 2 additional state
times, if both the cached jump target instruction and its successor instruction are non-aligned
double word instructions, as shown in the following example:

label : ; any non-aligned double word instruction
: (eg. at location 12FAH)

It+1 : ; any non-aligned double word instruction
: (eg. at location 12FEH)

In+1 :JMPR cc_UC, label ; provided that a cache jump is taken:
: TIadd = 2 * States (TIn = 4 * States)

If required, these extra state times can be avoided by allocating double word jump target
instructions to aligned double word addresses (xxx0H, xxx4H, xxx8H, xxxCH).

• Testing Branch Conditions: TIadd = 0 or 1 * States

Mostly, NO extra time is required for conditional branch instructions to decide whether a branch
condition is met or not. However, an additional state time is required, if the preceding instruction
writes to the PSW register, as shown in the following example:

In : BSET USR0 ; write to PSW
In+1 :JMPR cc_Z, label ; test condition flag in PSW: TIadd = 1 * State

In this case, the extra state time can simply be intercepted by putting another suitable instruction
before the conditional branch instruction.
Semiconductor Group 127 Version 1.2, 12.97

