FEATURES

- Accuracy up to 2.3 Arc Minutes
- Internal Synthesized Reference
- +5 Volt Only Option
- Programmable Resolution, Dual Bandwidth and Tracking Rate
- Internal Encoder Emulation with Independent Resolution Control
- Differential Resolver Input Mode
- Velocity Output Eliminates Tachometer
- Built-In-Test (BIT) Output, No 180° Hangup
- -40° to $+85^{\circ} \mathrm{C}$ Operating Temperature

DESCRIPTION

The RD-19230 is a small and versatile, low cost, state-of-the-art 16bit monolithic Resolver-to-Digital Converter. This single chip converter offers programmable features such as resolution, bandwidth, velocity output scaling and encoder emulation.

Resolution programming allows selection of $10,12,14$, or 16 bit, with accuracies to 2.3 min . The parallel digital data and the internal encoder emulation signals ($\overline{\mathrm{A} Q U A D} \bar{B}$) have independent resolution control. Internal encoder emulation will permit inhibiting (freezing) the parallel digital data without interrupting the A and B outputs.

The internal Synthesized Reference section eliminates errors due to quadrature voltage and ensures operation with a rotor-to-stator phase shift of up to 45 degrees. The velocity output (VEL) can be used in place of a tachometer. It has a range of $\pm 4 \mathrm{~V}$ relative to analog ground. The velocity scale factor/tracking rate is programmed with a single resistor. This converter provides the option of using a second set of filter components which can be used in dual bandwidth or switch on the fly applications.

APPLICATIONS

With its low cost, small size, high accuracy, and versatile performance, the RD-19230 converter is ideal for use in modern high performance industrial control systems. It is ideal for users who wish to use a resolver input in their encoder based system. Typical applications include motor control, machine tool control, robotics, and process control.

Data Device Corporation
105 Wilbur Place
Bohemia, New York 11716
631-567-5600 Fax: 631-567-7358
www.ddc-web.com

FOR MORE INFORMATION CONTACT:
Technical Support:
1-800-DDC-5757 ext. 7382

FIGURE 1. RD-19230 SERIES BLOCK DIAGRAM

TABLE 1. RD-19230 SPECIFICATIONS
These specs apply over the rated power supply, temperature, and reference frequency ranges; 10% signal amplitude variation, and 10% harmonic distortion.

ZIP_EN	
CMOS Compatible Inputs	
SHIFT	
$\overline{\text { UP/DN }}$	Logic 0 enables ZIP Logic 1 enables CB Logic $0=1.5 \mathrm{~V}$ max. Logic $1=3.5 \mathrm{~V}$ min. negative voltage $=-3.5 \mathrm{~V}$ min. Logic 1 select VEL1 components Logic 0 select VEL2 components Logic 1 will increase gain by 4 Logic 0 will decrease gain by 4 -5 V gain remains constant
$\overline{\text { A QUAD B }}$Logic 0 enables encoder emulation Falling edge latches encoder resolution	

TABLE 1. RD-19230 SPECIFICATIONS (CONTINUED)
These specs apply over the rated power supply, temperature, and reference frequency ranges; 10\% signal amplitude variation, and 10\% harmonic distortion.

PARAMETER	UNIT	VALUE	
DIGITAL OUTPUTS Drive Capability		$50 \mathrm{pF}+$ Logic 0: 1 TTL load, 1.6 mA at 0.4 V max. Logic 1; 10 TTL loads, -0.4 mA at 2.8 V min. Logic 0; 100 mV max. driving CMOS Logic $1 ;+5 \mathrm{~V}$ supply minus 100 mV min. driving CMOS High Z; $10 \mu \mathrm{~A}$ \|	5 pF max. (Note 8)

Parallel Data (1-16)

Converter Busy (CB)

Zero Index Pulse (ZIP)

Built-In-Test ($\overline{\mathrm{BIT}}$)

A, B

A,					
DYNAMIC CHARACTERISTICS Resolution	bits	(at maximum bandwidth)			
		10	12	14	16
Tracking Rate (min)	rps	1152	288	72	18
Bandwidth (Closed Loop)	Hz	1200	1200	600	300
Ka	1/sec ${ }^{2}$	5.7M	5.7M	1.4 M	360k
A1	1/sec	19.5	19.5	4.9	1.2
A2	1/sec	295k	295k	295k	295k
A	1/sec	2400	2400	1200	600
B	1/sec	1200	1200	600	300
Acceleration (1 LSB lag)	$\mathrm{deg} / \mathrm{s}^{2}$	2M	500k	30k	2k
Settling Time (179 ${ }^{\circ}$ step)	msec	2	8	20	50

CHARACTERISTICS
Polarity
Voltage Range (Full Scale)
Scale Factor Error
Scale Factor TC
Reversal Error
Linearity
Zero Offset
Zero Offset TC
Load

TABLE 1. RD-19230 SPECIFICATIONS (CONTINUED)
These specs apply over the rated power supply, temperature, and reference frequency ranges; 10\% signal amplitude variation, and 10\% harmonic distortion.

TABLE 1 notes:

1. As parallel resolution is reduced, pairs of bits are disabled.
(Unused bits are set to a logic "0.")

- 14 bit resolution: 15/16 disabled
- 12 bit resolution: 13/14, 15/16 disabled
- 10 bit resolution: 11/12, 13/14, 15/16 disabled

2. In LVDT mode, Bit 3 is the MSB and resolution is programmable to $8,10,12$, and 14 bits.
3. Accuracy in LVDT mode is $0.15 \%+1$ LSB of full scale.
4. In the frequency range of 47 Hz to 1 kHz , there will be 1 LSB of $j i t t e r$ at quadrant boundaries.
5. The maximum phase shift tolerance will degrade linearly from 45 degrees at 400 Hz to 30 degrees at 60 Hz .
6 . When using the -5 V inverter, the V_{DD} supply current will double and $\mathrm{V}_{\text {SSP }}$ can be up to 20% low, or -4 V .
6. $\|=$ in parallel with.
7. High Z refers to parallel data only.
8. Normal ESD (Electro Static Device) handling precautions should be observed.

TRANSFER FUNCTION AND BODE PLOT

The dynamic performance of the converter can be determined from its Transfer Function Block Diagrams and Bode Plots (open and closed loop). These are shown in FIGURES 2, 3, and 4.

The open loop transfer function is as follows:

Open Loop Transfer Function $=\frac{A^{2}\left(\frac{S}{B}+1\right)}{S^{2}\left(\frac{S}{10 B}+1\right)}$
where A is the gain coefficient and $A^{2}=A_{1} A_{2}$ and B is the frequency of lead compensation.

The components of gain coefficient are error gradient, integrator gain, and VCO gain. These can be broken down as follows:

- Error Gradient $=0.011$ volts per LSB (CT + Error Amp + Demod with 2 Vrms input)
- Integrator Gain $=\frac{\text { Cs Fs }}{1.1 \text { CBW }}$ volts per second per volt

$$
\begin{aligned}
\text { - VCO Gain } & =\frac{1}{1.25 \mathrm{Rv} \text { Cvco }} \text { LSBs per second per volt } \\
\text { where: } \mathrm{Cs} & =10 \mathrm{pF} \\
\mathrm{Fs} & =67 \mathrm{kHz} \text { when } \mathrm{R} \text { CLK }=30 \mathrm{k} \Omega \\
\text { Cvco } & =50 \mathrm{pF}
\end{aligned}
$$

R_{V}, R_{B}, and $C_{B W}$ are selected by the user to set velocity scaling and bandwidth.

FIGURE 2. TRANSFER FUNCTION BLOCK DIAGRAM \#1

FIGURE 3.TRANSFER FUNCTION BLOCK DIAGRAM \#2

FIGURE 4. BODE PLOTS

GENERAL SETUP CONDITIONS

DDC has external component selection software which considers all the criteria below. In a simple fashion, it asks the key system parameters (carrier frequency, resolution, bandwidth, and tracking rate) needed to derive the external component values.

The following recommendations should be considered when installing the RD-19230 R/D converter:

1) In setting the bandwidth (BW) and Tracking Rate (TR) (selecting five external components), the system requirements need to be considered. For the greatest noise immunity, select the minimum BW and TR the system will allow. Selecting a $f_{B W}$ that is too low relative to the maximum application tracking rate can create a spin-around condition in which the converter never settles. The relationship to insure against this condition is detailed in TABLE 2.

TABLE 2. TRACKING / BW RELATIONSHIP	
RPS (MAX)/BW	RESOLUTION
1	10
0.50	12
0.25	14
0.125	16

2) Power supplies are ± 5 VDC. For lowest noise performance it is recommended that a $0.1 \mu \mathrm{~F}$ or larger cap be connected from each supply to ground near the converter package.
3) Resolver inputs and velocity output are referenced to AGND. This pin should be connected to GND near the converter package. Digital currents flowing through ground will not disturb the analog signals.
4) This device has several high impedance amplifier inputs ($+\mathrm{C},-\mathrm{C},+\mathrm{S},-\mathrm{S},-\mathrm{VCO}, \mathrm{VEL} \mathrm{SJ1}$, and VEL SJ2) that are sensitive to noise coupling. External components should be connected as close to the converter as possible.

FIGURE 5. -5V INVERTER CONNECTIONS

[^0]5) Setup of bandwidth and velocity scaling for the optimized critically damped case should proceed as follows:

Select the desired f BW (closed loop) based on overall system dynamics.

- Select f carrier $\geq 3.5 f$ bW

Select the applications tracking rate (in accordance with TABLE 3), and use appropriate values for R SET and R CLK
Compute $\mathrm{Rv}=\frac{\text { Full Scale Velocity Voltage }}{\text { Tracking Rate }(\mathrm{rps}) \times 2 \text { resolution } \times 50 \mathrm{pF} \times 1.25 \mathrm{~V}}$
Compute Cbw $(\mathrm{pF})=\frac{3.2 \times \mathrm{Fs}(\mathrm{Hz}) \times 10^{8}}{\operatorname{Rv} \times(\mathrm{fBW})^{2}}$
Where Fs $=67 \mathrm{kHz}$ for R CLK $=30 \mathrm{~K} \Omega$
100 kHz for R CLK $=20 \mathrm{~K} \Omega$
125 kHz for R CLK $=15 \mathrm{~K} \Omega$
Compute RB $=\frac{0.9}{\mathrm{CBW} \times \mathrm{fBW}}$
Compute $\frac{\text { CBW }}{10}$

As an example:
Calculate component values for a 16-bit converter with 100 Hz bandwidth, a tracking rate of 10 RPS and a full scale velocity of 4 Volts.
$-\operatorname{Rv}=\frac{4 \mathrm{~V}}{10 \mathrm{rps} \times 2^{16} \times 50 \mathrm{pF} \times 1.25 \mathrm{~V}}=97655 \Omega$

- Compute Cbw $(\mathrm{pF})=\frac{3.2 \times 67 \mathrm{kHz} \mathrm{x} \mathrm{10}}{97655 \times 100 \mathrm{~Hz}^{2}}=21955 \mathrm{pF}$
- Compute $\mathrm{RB}=\frac{0.9}{21955 \times 10^{-12} \times 100 \mathrm{~Hz}}=410 \mathrm{k} \Omega$

6) Using the -5 V Inverter will eliminate the need for a -5 V supply. Refer to FIGURE 5 for the necessary connections.

When using the built-in -5 V inverter, the maximum tracking rate should be scaled for a full-scale velocity output of 3.5 V max.

Notes:

1) Use of the -5 V inverter is not recommended for applications that require the highest BW and Tracking Rates.
2) When using the RD-19230FX with the -5 V inverter, the negative velocity output voltage should be limited to -3.5 Volts. When performing tracking rate calculations this must be taken into consideration.

HIGHER TRACKING RATES AND CARRIER FREQUENCIES

Maximum tracking rate is limited by the velocity voltage saturation (nominally 4 V) and the maximum internal clock rate (nominally $1,333,333 \mathrm{~Hz}$ for $\mathrm{R} \mathrm{CLK}=30 \mathrm{k}$). To achieve higher tracking rates, a higher internal counting rate must be programmed by setting RCLK to a value less than 30k. See TABLE 4 for the appropriate values.

The Rv resistor and an internal 50 pF capacitor are configured as an integrating circuit that resets to zero after a count occurs in either direction. This circuit acts as a VCO with velocity as its input and CB as its output. The Rv resistor and an internal 50pF capacitor determine the maximum rate of the VCO. Rv must be chosen such that the maximum rate of the VCO is less than the maximum internal clock rate. Choose the tracking rate in accordance with TABLE 3 to insure this relationship. The rates shown in TABLE 3 are based on $\sim 90 \%$ of the nominal internal clock rate.

TABLE 3. MAX TRACKING RATE (MIN) IN RPS

R SET $(\boldsymbol{\Omega})$	\mathbf{R} R CLK	RESOLUTION			
	$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 4}$	$\mathbf{1 6}$	
$30 \mathrm{k}^{* *}$ or open	30 k	1152	288	72	18
23 k	20 k	1728	432	108	27
23 k	15 k	2304	576	${ }^{*}$	${ }^{*}$

* Not recommended.
** The use of a high quality thin-film resistor will provide better temperature stability than leaving open.

TABLE 4. CARRIER FREQUENCY (MAX) IN KHZ

R SET $(\boldsymbol{\Omega})$	R CLK	RESOLUTION			
	$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 4}$	$\mathbf{1 6}$	
$30 \mathrm{k}^{* *}$ or open	30 k	10	10	7	5
23 k	30 k	10	10	10	7
23 k	20 k	10	10	10	10
23 k	15 k	10	10	${ }^{*}$	${ }^{*}$

* Not recommended.
** The use of a high quality thin-film resistor will provide better temperature stability than leaving open.

The relationship between the velocity voltage and the VCO rate is given by:

$$
\frac{\text { Velocity Voltage }}{\text { VCO Frequency }}=\frac{1}{(\operatorname{Rv} \times 50 \mathrm{pF} \times 1.25)}
$$

INPUT TRANSFORMERS

Refer to TABLE 5 to select the proper transformer for Reference, Synchro and Resolver inputs.

TABLE 5. TRANSFORMERS									
P/N	TYPE	FREQUENCY (HZ)*	IN (VRMS)*	OUT (VRMS) ${ }^{* *}$	ANGLE ACCURACY***	LENGTH (IN)	WIDTH (IN)	HEIGHT (IN)	FIGURE NUMBER
52034	$\mathrm{~S}-\mathrm{R}$	400	11.8	2	1	0.81	0.61	0.3	6
52035	$\mathrm{~S}-\mathrm{R}$	400	90	2	1	0.81	0.61	0.3	6
52036	$\mathrm{R}-\mathrm{R}$	400	11.8	2	1	0.81	0.61	0.3	7
52037	$\mathrm{R}-\mathrm{R}$	400	26	2	1	0.81	0.61	0.3	7
52038	$\mathrm{R}-\mathrm{R}$	400	90	2	1	0.81	0.61	0.3	7
B-426	Reference	400	115	3.4	$\mathrm{~N} / \mathrm{A}$	0.81	0.61	0.32	8
52039	Synchro	60	90	2	1	1.1	1.14	.42	9
24133	Reference	60	115	$3 / 6 * * * *$	N/A	1.125	1.125	.42	9

[^1]

FIGURE 6. TRANSFORMER LAYOUT AND SCHEMATIC (SYNCHRO INPUT - 52034/52035)

FIGURE 7. TRANSFORMER LAYOUT AND SCHEMATIC (RESOLVER INPUT - 52036/52037/52038)

TYPICAL INPUTS

FIGURES 10 through 14 illustrate typical input configurations.

FIGURE 10. TYPICAL TRANSFORMER CONNECTIONS

Note: The external BW components as shown in Figures 1 and 2 are necessary for the R/D to function.

Notes:

1) Resistors selected to limit Vref peak to between 1.5 V and 4 V .
2) External reference LO is grounded, then R3 and R4 are not needed, and -R is connected to GND.
3) 10 k ohms, 1% series current limit resistors are recommended.

FIGURE 11.TYPICAL CONNECTIONS, 2 V RESOLVER, DIRECT INPUT

$$
\begin{aligned}
& \frac{R_{2}}{R_{1}+R_{2}}=\frac{2}{X \text { Volt }} \\
& R_{1}+R_{2} \text { should not load the Resolver; it is recommended to use a } R_{2}=10 \mathrm{k} \Omega \\
& R_{1}+R_{2} \text { Ratio erros will result in Angular errors, } \\
& 2 \text { cycle, } 0.1 \% \text { Ratio error }=0.029^{\circ} \text { Peak Error. }
\end{aligned}
$$

S1 and S3, S2 and S4, and RH and RL should be ideally twisted shielded, with the shield tied to GND at the converter. For DDC-49530: $\mathrm{R}_{\mathrm{i}}=70.8 \mathrm{~K} \Omega$, 11.8 V input, synchro or resolver.
For DDC-49590: $\mathrm{R}_{\mathrm{i}}=270 \mathrm{~K} \Omega, 90$ Volt input, synchro or resolver.
Maximum additional error is 1 minute.
When using discrete resistors: Resolver L-L voltage $=\frac{R_{i}}{R_{f}} \times 2 \mathrm{Vrms}$, where $R_{f} \geq 6 \mathrm{k} \Omega$
FIGURE 13. DIFFERENTIAL RESOLVER INPUT, USING DDC-49530 (11.8 V) OR DDC-49590 (90 V), OR (2 V) DIRECT USING DISCRETE RESISTORS

S1, S2, S3 should be triple twisted shielded; RH and RL should be twisted shielded; In both cases the shield should be tied to GND at the converter.
11.8 Volt input = DDC-49530: $\mathrm{Ri}=70.8 \mathrm{~K} \Omega, 11.8 \mathrm{~V}$ input, synchro or resolver.

90 Volt input = DDC-49590: $\mathrm{Ri}_{\mathrm{i}}=270 \mathrm{~K} \Omega, 90$ Volt input, synchro or resolver.
Maximum additional error is 1 minute.
When using discrete resistors: Resolver L-L voltage $=\frac{R_{i}}{R_{f}} \times 2$ Vrms, where $R_{f} \geq 6 \mathrm{k} \Omega$
FIGURE 14. SYNCHRO INPUT, USING DDC-49530 (11.8 V) OR DDC-49590 (90 V)

DC INPUTS

As noted in TABLE 1, the RD-19230 will accept DC inputs. It is necessary to set the REF input to DC by tying RH to +5 V and RL to GND or -5 V .

VELOCITY TRIMMING

RD-19230 specifications for velocity scaling, reversal error, and offset are listed in TABLE 1. Velocity scaling and offset are externally trimmable for applications requiring tighter specifications than those available from the standard unit. FIGURE 15 shows the setup for trimming these parameters with external pots. It should also be noted that when the resolution is changed, VEL Scaling is also changed.

OPTIONAL BANDWIDTH COMPONENTS

The RD-19230 provides the option of using a second set of bandwidth components. The second set of components can be used for switch-on-the-fly or dual-bandwidth applications. The SHIFT and $\overline{U P} / D N$ inputs are used when switching bandwidth components, and their operation is described below. Refer to the block diagram, FIGURE 1.

SHIFT

The SHIFT pin is an input that chooses between the VEL1 and VEL2 bandwidth components. This pin has an internal pull-up to +5 V . When the SHIFT pin is left open, or a logic 1 is applied, the VEL1 components are selected. When a Logic 0 is applied, the VEL2 components are selected. The deselected set of bandwidth components are driven by an amplifier, with programmable gain, that follows the velocity amplifier. This amplifier can be used to pre-charge the deselected set of components to the voltage level that is expected after a change in resolution. (See description on BENEFIT OF SWITCHING RESOLUTION ON THE FLY.)

FIGURE 15. VELOCITY TRIMMING

$\overline{U P} / D N$

The $\overline{U P} / D N$ input selects the gain of the amplifier driving the deselected set of bandwidth components. $\overline{U P} / D N$ has three input states. See TABLE 6 to relate input to gain.

TABLE 6. PRECHARGE AMPLIFIER
GAIN PROGRAMMING

UP/DN	GAIN	FUNCTION
Logic 1	4	Resolution Increase
Logic 0	$1 / 4$	Resolution Decrease
-5 V	1	Dual Bandwidth

BENEFIT OF SWITCHING RESOLUTION ON THE FLY

Switching resolution on the fly can be used in applications that require high resolution for accurate position control, and tracking rates or settling times that are faster than the high resolution mode will allow.

The RD-19230 can track four times faster for each step down in resolution (i.e., a step from 16 bits to 14 bits). The velocity output will be scaled down by a factor of four with each step down in resolution. For example, if the velocity output is scaled such that 4 Volts $=10$ RPS in 16 bit resolution, then the same converter will output 1 Volt for 10 RPS in 14 bit resolution. To avoid glitches in the velocity output, the second set of bandwidth components can be pre-charged to the expected voltage, and switched in using the SHIFT input at the same time the resolution is changed. This will allow for a smooth velocity transition, resulting in reduced errors and minimal settling time after the change.

FIGURE 17 shows the way the converter behaves during a change in resolution while tracking at a constant velocity. The first illustration shows the benefits of switching in pre-charged components while changing resolution. The second illustration shows the result without the benefits of switching on the fly.

The signals that have been recorded are:

1) VEL: velocity output pin on the RD-19230
2) ERROR: this is the analog representation of the error between the input and the output of the RD-19230
3) DO: an input resolution control line to the RD-19230
4) $\overline{\mathrm{BIT}}$: built-in-test output pin of the RD-19230

When this system uses the switch resolution on the fly implementation, the velocity signal immediately assumes the precharged level of the second set of components, resulting in small errors and reduced settling times. Notice that the BIT output, in FIGURE 17, does not indicate a fault condition.

When this system type does not use the switch resolution on the fly implementation, large errors and increased settling times result. The errors exceed 100 LSBs causing the $\overline{\mathrm{BIT}}$ to flag for a fault condition.

SWITCH ON THE FLY IMPLEMENTATION

The following steps detail switching resolution on the fly.

1) The SHIFT pin should be controlled synchronously with the change in resolution. When shift is logic high, the VEL1 components will be selected. When shift is logic 0 , the VEL2 components will be selected.
2) The second set of $B W$ components ($C_{B W 2}, R_{B 2}, C_{B W 2 / 10}$) should typically be of the same value as the first set ($C_{B W_{1}}$, $R_{B 1}, C_{B W 1 / 10,}$) and should be installed on $V_{E L}$ and $V E L S J_{2}$.

Note: Each set of bandwidth components must be chosen to insure that the tracking rate to BW ratio (listed in TABLE 2) is not exceeded for the resolution in which it will be used.
3) $\overline{\mathrm{UP}} / \mathrm{DN}$ will program the direction of the gain. If the resolution is increasing ($\overline{U P} / \mathrm{DN}$ logic 0), the gain of the pre-charge amplifier should be set to four. If the resolution is decreasing (UP/DN logic 1), the gain should be set to $1 / 4$. The gain of the pre-charge amplifier should be programmed prior to switching the resolution of the converter, allowing enough time for the components to settle to the pre-charged level. This time will depend on the time constant of the bandwidth components being charged. If switching is limited to two adjacent resolutions (i.e., 14 and 16) then the pre-charge amplifier can be set

FIGURE 16. INPUT WIRING - SWITCHING ON THE FLY BETWEEN 14 AND 16 BIT RESOLUTION
up to continuously maintain the appropriate velocity voltage on the deselected components, resulting in the fastest possible switching times. See FIGURE 16 for an example of the input wiring connections necessary for switching on the fly between 14 and 16 bit resolution.

DUAL BANDWIDTHS

With the second set of BW component pins, the user can set two bandwidths for the RD-19230 and choose between them. To use two bandwidths, proceed as follows:

1) Tie $\overline{U P} / D N$ to pin $-5 V$.
2) Choose the two bandwidths following the guidelines in the General Setup Considerations; the R_{V} resistor must be the same value for both bandwidths.
3) Use the SHIFT pin to choose between bandwidths. A logic 1 selects the VEL1 components and a logic 0 selects the VEL2 components.

With Switch Resolution on the Fly Implemented

Without Switch Resolution on the Fly Implemented

FIGURE 17. BENEFIT OF SWITCHING RESOLUTION ON THE FLY

INHIBIT, ENABLE, AND CB TIMING

The Inhibit ($\overline{\mathrm{INH}}$) signal is used to freeze the digital output angle in the transparent output data latch while data is being transferred. Application of an Inhibit signal does not interfere with the continuous tracking of the converter. As shown in FIGURE 18, angular output data is valid 150 ns maximum after the application of the negative inhibit pulse.

Output angle data is enabled onto the tri-state data bus in two bytes. Enable MSBs ($\overline{\mathrm{EM}}$) is used for the most significant 8 bits and Enable LSBs ($\overline{\mathrm{EL}}$) is used for the least significant 8 bits. As shown in FIGURE 19, output data is valid 150 ns maximum after the application of a negative enable pulse. The tri-state data bus returns to the high impedance state 100 ns maximum after the rising edge of the enable signal.

The Converter Busy (CB) signal indicates that the tracking converter output angle is changing 1 LSB. As shown in FIGURE 20, output data is valid 50 nS maximum after the middle of the CB pulse. CB pulse width is $1 / 40 \mathrm{~F}_{\mathrm{S}}$, which is nominally 375 ns .

FIGURE 18. INHIBIT TIMING

FIGURE 20. CONVERTER BUSY TIMING

INTERNAL ENCODER EMULATION

The RD-19230 can be programmed to encoder emulation mode by connecting the $\overline{A _Q U A D _B}$ input to GND. The U/B output pin becomes B (LSB XOR LSB + 1). The A (LSB +1) and B output signals can be used in control systems that are designed to interface with incremental optical encoders. To enable the Zero Index pulse, ZIP_EN should be tied to GND.

The resolution of the incremental outputs is latched from the D0 and D1 inputs on the low going edge of $\overline{A_{-} Q U A D _B}$. The resolu-
tion of the parallel data outputs may be changed any time after the encoder resolution is latched (see FIGURE 23).

Note: The encoder resolution must be less than or equal to the resolution of the parallel data outputs. Refer to FIGURE 21.

The timing of the A, B and ZIP (or North Reference Pole [NRP]) output is dependent on the rate of change of the synchro/resolver position (rps or degrees per second) and the encoder resolution latched into the RD-19230 (refer to FIGURE 22). The calculations for the timing are:
$\mathrm{n}=$ encoder resolution latched into RD-19230
$t=1 /\left(2^{n *}\right.$ Velocity(RPS) $)$
$\mathrm{T}=1 /($ Velocity (RPS) $)$

CLARIFICATION OF $\overline{\text { A_QUAD_B, U/B AND }}$ ZIP_EN FUNCTIONS

The RD-19230 is a tracking converter which is designed with a Type II closed servo loop. The Type II closed servo loop has an internal incremental integrator. This integrator acts as an updown position counter. An AC error (e) within the RD-19230 represents the difference between θ (current angle to be digitized) and ϕ (the angle stored in digital form in the up-down counter). Because the RD-19230 constitutes in itself a Type II closed loop servomechanism, it continuously attempts to null the error to zero. This is accomplished by counting up or down 1 LSB until ϕ is equal to θ thus having an error of zero.

When $\overline{A _Q U A D _B}$ is logic 0 , encoder emulation mode is selected (i.e. The U/B output [Pin 29] is programmed to B). The encoder emulator resolution is set on the falling edge of $\overline{A _Q U A D _B}$ (see TABLE 7).

When $\overline{A _Q U A D _B}$ is logic 1, encoder emulation mode is not selected (i.e. The U/B output is set to U, which indicates the direction of the internal position counter).

TABLE 7. A_QUAD_B (PIN 30) FUNCTION	
$\overline{\text { A_QUAD_B (PIN 30) }}$	U/B (PIN 29)
0	B
1	U

TABLE 8. ZIP_EN (PIN 55) FUNCTION	
ZIP_EN (PIN 55)	CB/ZI (PIN 31)
0	ZI
1	CB

Note: U indicates the direction of the counter. It stands for "UP". If the RD-19230 is at a static angle awaiting a new angle θ, U indicates the direction the counter was going to get to the current angle ϕ. As the error is approaching zero, the internal analog circuitry voltage may over shoot before settling - which would then indicate an incorrect direction. Because of this over shoot, the U output should not be relied on after settling to a static state. Only during active resolver movement will the U output state be reliable. U is a logic 1 when going in the positive direction (increasing angle). It is a logic 0 when going in the negative direction (decreasing angle). This is the same as it is in the RDC-19220.
$\overline{\text { ZIP_EN }}$ chooses between the CB and Zero Index pulse outputs and is independent of encoder emulation mode. A logic 1 enables the CB pulse, a logic 0 enables the Zero Index pulse (see TABLE 8).

Note: When the RD-19230FX is set for 16-bit mode, the LSB is bit 16. When the RD-19230FX is set for 14-bit mode, the LSB is bit 14 and bits 15 and 16 are set to logic " 0 ". (See TABLE 1, NOTE 1).

FIGURE 21. INCREMENTAL ENCODER EMULATION RESOLUTION CONTROL

FIGURE 22. INCREMENTAL ENCODER EMULATION

SYNTHESIZED REFERENCE

The synthesized reference section of the RD-19230 eliminates errors due to phase shift between the reference and signal inputs. Quadrature voltages in a resolver or synchro are by definition the resulting 90° fundamental signal in the nulled out error voltage (e) in the converter. Due to the inductive nature of synchros and resolvers, their output signals lead the reference input signal (RH and RL). When an uncompensated reference signal is used to demodulate the control transformer's output, quadrature voltages are not completely eliminated. As shown in the block diagram, FIGURE 1, the converter synthesizes its own internal reference signal based on the SIN and COS signal inputs. Therefore, the phase of the synthesized (internal) reference is determined by the signal input, resulting in reduced quadrature errors.

BUILT-IN-TEST ($\overline{\mathrm{BIT}}$)

The $\overline{\mathrm{BIT}}$ output is active low, and is triggered if any of the following conditions exist:

1) Loss of Signal (LOS) - Sin and Cos inputs both less than 500 mV .
2) Loss of Reference (LOR) - Reference Input less than 500 mV .
3) Excessive Error - This error is detected by monitoring the demodulator output, which is proportional to the difference between the analog input and digital output. When it exceeds approximately 100 LSBs (in the selected resolution), $\overline{\text { BIT }}$ will be asserted. This condition can occur any time the analog input changes at a rate in excess of the maximum tracking rate. During power up, the converter may see a large difference between the $\sin / c o s$ inputs and the digital output angle held in its counter. $\overline{\mathrm{BIT}}$ will be asserted until the converter settles within ~ 100 LSB's of the final result.
4) 180° phase error input signal to reference input (false null) causes a BIT plus kickstarts the converter counter to correct the error.

The LOS has a filter on it to filter out the reference. Since the lowest specified reference frequency is $47 \mathrm{~Hz}(\sim 27 \mathrm{mS})$, the

FIGURE 23. TIMING FOR INCREMENTAL ENCODER EMULATION RESOLUTION CONTROL
filter must have a time constant long enough to filter this out. Time constants of 50 mS or more are possible.

A $500 \mu \mathrm{~s}$ dynamic delay occurs before the error $\overline{\mathrm{BIT}}$ becomes active. This dynamic delay is responsive to the active filter loop.

LVDT MODE

As shown in TABLE 1, the RD-19230 unit can be made to operate as an LVDT-to-digital converter. In this mode the RD-19230 functions as a ratiometric tracking linear converter. When linear AC inputs are applied from a LVDT the converter operates over one quarter of its range. This results in two less bits of resolution for LVDT mode than are provided in resolver mode.

LDVT output signals need to be scaled to be compatible with the converter input. FIGURE 25 is a schematic of an input scaling circuit applicable to 3 -wire LVDTs. The value of the scaling constant "a" is selected to provide an input of 2 Vrms at full stroke of the LVDT. The value of scaling constant " b " is selected to provide an input of 1 Vrms at null of the LVDT. Suggested components for implementing the input scaling circuit are a quad op-amp,
such as a OP11 type, and precision thin-film resistors of 0.1% tolerance. FIGURE 24 illustrates a 2-wire LVDT configuration.

Data output of the RD-19230 is Binary Coded in LVDT mode. The most negative stroke of the LVDT is represented by ALL ZEROS and the most positive stroke of the LVDT is represented by ALL ONES. The most significant 2 bits (2 MSBs) may be used as overrange indicators. Positive overrange is indicated by code " 01 " and negative overrange is indicated by code "11" (see TABLE 9).

TABLE 9. 12-BIT LVDT OUTPUT CODE FOR FIGURE 25				
LVDT OUTPUT	MSB			
+ over full travel	01	xxxx	xxxx	LSB
+ full travel -1 LSB	00	1111	1111	1111
+0.5 travel	00	1100	0000	0000
+1 LSB	00	1000	0000	0001
null	00	1000	0000	0000
-1 LSB	00	0111	1111	1111
-0.5 travel	00	0100	0000	0000
- full travel	00	0000	0000	0000
- over full travel	11	$x x x x$	$x x x x$	xxxx

FIGURE 24. 2-WIRE LVDT DIRECT INPUT

Notes:

1. $\mathrm{R}^{\prime} \geq 10 \mathrm{k} \Omega$
2. Consideration for the value of R is LVDT loading.

FIGURE 25. 3-WIRE LVDT SCALING CIRCUIT

TABLE 10. RD-19230 PINOUTS							
\#	NAME	\#	NAME	\#	NAME	\#	NAME
1	VEL	17	VSS (-5V)	33	VDD (+5V)	49	Bit 8
2	-VCO	18	TP3 (test point)	34	N/C	50	Bit 16
3	SJ1	19	R CLK	35	Bit 9	51	A (LSB + 1)
4	SJ2	20	R SET	36	Bit 2	52	TP4 (test point)
5	SHIFT	21	ENM	37	Bit 10	53	N/C
6	VEL2	22	AGND	38	Bit 3	54	TP5 (test point)
7	TP1 (test point)	23	VSSP	39	Bit 11	55	ZIP_EN
8	VEL1	24	NCAP	40	Bit 4	56	TP6 (test point)
9	TP2 (test point)	25	GND	41	N/C	57	ENL
10	+C	26	PCAP	42	Bit 12	58	VDD (+5V)
11	COS	27	VDDP	43	Bit 5	59	UP/DN
12	-C	28	BIT	44	Bit 13	60	D0
13	+S	29	U/B	45	Bit 6	61	D1
14	SIN	30	$\overline{\text { A_QUAD_B }}$	46	Bit 14	62	INH
15	-S	31	CB (ZI)	47	Bit 7	63	RH
16	VSS (-5V)	32	Bit 1	48	Bit 15	64	RL

NOTES:

1. See FIGURE 5 for +5 V only operation.

FIGURE 26. RD-19230 MECHANICAL OUTLINE

| TABLE 11. FRONT-END THIN-FILM RESISTOR | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NETWORKS(SEE FIGURE 28) | | | | | |

FIGURE 27. (DDC-55688) LAYOUT AND RESISTOR VALUES
(R1 AND R2 = $10 \mathrm{~K} \Omega$ 1.0\% TOL, ABSOLUTE TC $= \pm 100$ PPM MAX)

FIGURE 28. (DDC-49530, DDC-49590, DDC-57470) LAYOUT AND RESISTOR VALUES (SEE TABLE 11)

DIMENSIONS SHOWN ARE IN INCHES (MM)

FIGURE 29. 16-PIN THIN-FILM RESISTOR NETWORK DIP MECHANICAL OUTLINE (DDC-49530, DDC-49590, DDC-55688)

DIMENSIONS SHOWN ARE IN INCHES (MM).

FIGURE 30. 16-PIN THIN-FILM RESISTOR NETWORK FLAT-PACK MECHANICAL OUTLINE
(DDC-57470)

ORDERING INFORMATION

RD-19230FX-X X X X

Supplemental Process Requirements:
T = Tape and Reel (50 pc. min. order)
Accuracy:
$2=4 \mathrm{~min}+1 \mathrm{LSB}$
$3=2 \min +1$ LSB
Reliability:
0 = Standard DDC Procedures
Operating Temperature Range:
$2=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$
$3=0^{\circ}$ to $+70^{\circ} \mathrm{C}$

THIN-FILM RESISTOR NETWORKS:

DDC-49530 $=11.8 \mathrm{~V}$ inputs, DIP package
DDC-57470 $=11.8 \mathrm{~V}$ inputs, Flat-pack package
DDC-49590 $=90 \mathrm{~V}$ inputs, DIP package
DDC-55688 = 2 V direct, DIP package

COMPONENT SELECTION SOFTWARE:

Component selection software can be downloaded from our website (www.ddc-web.com)

The information in this data sheet is believed to be accurate; however, no responsibility is assumed by Data Device Corporation for its use, and no license or rights are granted by implication or otherwise in connection therewith.

Specifications are subject to change without notice.

For Technical Support - 1-800-DDC-5757 ext. 7382
Headquarters, N.Y., U.S.A. - Tel: (631) 567-5600, Fax: (631) 567-7358
Southeast, U.S.A. - Tel: (703) 450-7900, Fax: (703) 450-6610
West Coast, U.S.A. - Tel: (714) 895-9777, Fax: (714) 895-4988
United Kingdom - Tel: +44-(0)1635-811140, Fax: +44-(0)1635-32264
Ireland - Tel: +353-21-341065, Fax: +353-21-341568
France - Tel: +33-(0)1-41-16-3424, Fax: +33-(0)1-41-16-3425
Germany - Tel: +49-(0)8141-349-087, Fax: +49-(0)8141-349-089
Japan - Tel: +81-(0)3-3814-7688, Fax: +81-(0)3-3814-7689
World Wide Web - http://www.ddc-web.com

[^0]: * Pin 16 has been renamed Vss since it will typically be connected to -5 VDC. Applications requiring a differential front-end configuration must connect this pin to Vss. Voltage follower mode can be implemented with pin 16 tied to Vss by making external connections between the output of the \sin / \cos amplifiers and their respective inputs. When left unconnected, the RD-19230 will internally configure the front-end amplifiers in voltage follower mode.

[^1]: * $\pm 10 \%$ Frequency (Hz) and Line-to-Line input voltage (Vrms) tolerances
 ** 2 Vrms Output Magnitudes are -2 Vrms $\pm 0.5 \%$ full scale
 *** Angle Accuracy (Max Minutes)
 **** 3 Vrms to ground or 6 Vrms differential ($\pm 3 \%$ full scale)
 Dimensions are for each individual main and teaser
 60 Hz Synchro transformers are active (requires $\pm 15 \mathrm{Vdc}$ power supplies)
 400 Hz transformer temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 60 Hz transformer temperature ranges: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, 0$ to $+70^{\circ} \mathrm{C}$

