32-CHANNEL DISCRETE TO DIGITAL INTERFACE This Preliminary data sheet provides details of functional capabilities for product currently in prototype production. These specifications are being provided to aid electrical design, layout, and operation. ## DESCRIPTION The DD-03232 devices are 32-channel discrete interfaces with universal HIRF-isolated inputs to handle 28V/open, open/GND and 28V/Gnd signals. Using comparators in a triple-redundant configuration, the devices will take consensus on input states; raising a flag when consensus fails. Its output will be a selectable 8-bit or 16 bit tristate port, selectable for channel data, status, bounce, built-in self-test (BIST) and major fault with a TTL format. #### **APPLICATIONS** The design specifically addresses chip-level redundancy, built-in selftest autonomy, fault isolation and tolerance. With high reliability and low cost, these features enable the devices to serve a variety of interface requirements in avionic applications, including flight-critical, essential, and non-essential functions. The optional ARINC429 output port is particularly well-suited to data-concentrator requirements. # **FEATURES** - Triple Redundancy - HIRF Layer - Universal Inputs 28V/Gnd Open/Gnd 28V/Open - Built-in Self-Test - Soft Failure Reporting Deferred Maintenance Higher MTBUR - Optional ARINC429 Output Port FIGURE 1. DD-03232 BLOCK DIAGRAM © 1993 ILC Data Device Corporation | TABLE 1. DD-03232 SPECIFICATION | | | | | | | | | | | | | | |----------------------------------|-----------------------|---------------|-----------------|-------|--|--|--|--|--|--|--|--|--| | PARAMETER UNITS MIN TYP MA | | | | | | | | | | | | | | | ABSOLUTE MAXIMUM RATINGS | | | | | | | | | | | | | | | | v | 4.5 | 5.0 | 5.5 | | | | | | | | | | | Supply Voltage | - <u> </u> | 4.5 | 5,0 | 5.5 | | | | | | | | | | | INPUTS/OUTPUTS | , | | | | | | | | | | | | | | Logic Compatibility | TTL/
CMOS | | | | | | | | | | | | | | Digital Inputs | | | | | | | | | | | | | | | ■ Logic "1" Level | V | +2 | | +5 | | | | | | | | | | | ■ Logic "0" Level | V | 0 | | +0.8 | | | | | | | | | | | ■ Loading | 1 5 | standard L | S TTL load | l | | | | | | | | | | | Clock Input (See NOTE) | MHz | 0.99 | 1.00 | 1.01 | | | | | | | | | | | Digital Outputs | ma | | 4.0 | | | | | | | | | | | | Analog Inputs | See Figure 3 | | | | | | | | | | | | | | POWER SUPPLY | | | | | | | | | | | | | | | REQUIREMENTS | | | | | | | | | | | | | | | V _{dd} | ma | | 15.0 | 25.0 | | | | | | | | | | | POWER DISSIPATION | mw | | 75.0 | 125.0 | | | | | | | | | | | (exclusive of digital loads) | | | | | | | | | | | | | | | THERMAL | | | | | | | | | | | | | | | Operating Temperature | | | | | | | | | | | | | | | ■ Type 1 | °c | -40 | | 85 | | | | | | | | | | | ■ Type 2 | °c | - 1 1 | | | | | | | | | | | | | ш Туре 3 | °c | - 1 1 | | | | | | | | | | | | | Storage Temp | l ºc i | -65 | | 150 | | | | | | | | | | | Lead Temperature | | | | | | | | | | | | | | | (localized, 1 sec. duration) | l ºc ∣ | | | 280 | | | | | | | | | | | (body, 2 sec. duration) | oc | | | 210 | | | | | | | | | | | Junction Temperature | | |] | | | | | | | | | | | | θ _{jc} | OC/watt | | 5.0 | | | | | | | | | | | | θca | OC/watt | | 20.0 | | | | | | | | | | | | MTBF per Mil-Hbk-217 for | | - |)
Hrs plasti | C | | | | | | | | | | | Airborne Inhabited Cargo at 64°C | 1,540,000 Hrs ceramic | | | | | | | | | | | | | | | | | | | | | | | | | | | | | PHYSICAL CHARACTERISTICS | | | | | | | | | | | | | | | Size | in. | | 22422 | | | | | | | | | | | | 3128 | "" | 2.3 x 2.3 | | | | | | | | | | | | | 147-1-64 | (cm) | (5.84 x 5.84) | | | | | | | | | | | | | Weight | OZ | 1,0 | | | | | | | | | | | | | | (g) | (g) (26.0) | | | | | | | | | | | | NOTE: For ARINC 429 option the bit rate is derived from the clock. Refer to ARINC 429 Bit Rate to avoid interference. # **WHAT IS A DISCRETE?** Advisory Circular (FAA), Airworthiness Approval of Traffic Alert and Collision Avoidance Systems (TCAS II) and Mode S Transponders, AC20-131, defines a discrete as "a separate, complete and distinct signal." In many instances these signals are binary, on or off, 28V-based signals; typically Open/Ground, 28V/Open, or 28V/Ground with very low bandwidth (DC to 200Hz). While on the surface the translation of these signals to TTL-levels compatible with digital avionics may seem simple, RTCA DO-160C power, lightning and high-intensity-radiated-fields (HIRF) are complicating factors. Add to that the desire to have a standardized, addressable, reliable interface and the challenge is apparent. Today's systems address the interface with tailored circuits for each interface comprised of R-C input filters, divider networks, diode isolation and comparator. Multi-channel interface to a processor requires additional logic and latches. The resulting circuit generally lacks any built-in test capability, consumes considerable pc-board real estate (up to 1 sq. in. per channel), and offers no chip-level redundancy. # **FUNCTIONAL INTEGRATION** Using the aggregated signal definition and functional requirements of industry, ILC Data Device Corporation has defined a 32-channel discrete interface with universal HIRF-isolated inputs to handle 28V/open, open/Gnd and 28V/Gnd signals. Using comparators in a triple-redundant configuration, the devices will take consensus on input states, raising a flag when consensus fails. Its output is a selectable 8-bit or 16-bit tri-state port, addressable for channel data, status, bounce, mismatch, built-in self-test and major fault information. Its design specifically addresses chip-level redundancy, built-in self-test autonomy, fault isolation and tolerance. Moreover, its functional integration results in significant added reliability. A comparative look at MTBF calculated in accordance with MIL-HBK-217 for airborne inhabited cargo environments at 64°C indicates an order of magnitude improvement (1,540,000 hours vs. 173,000 hours) for a ceramic packaged integrated approach vs. a similarly packaged discrete-component implementation. Moreover, the real estate is reduced from 32 square inches to 5.3 square inches. #### Additional benefits include: **FAULT ISOLATION:** triple-redundant comparators are located on three different edges of the custom chip such that an edge-failure is not catastrophic. **FAULT TOLERANCE:** a single comparator failure is reported as a mismatch or BIT fault, but does not result in a hard-failure. **BOUNCE:** the sampling rate of the device can be varied to allow for de-bounce of relay/switch inputs. The triple sampling of a given comparator enables a consistent reading of otherwise asynchronous signals. Bounce is an addressable status. **REGISTERS:** 8-bit or 16-bit selectable, data or status is tristate latched for interface to any system processor. 65E D OPTIONAL ARINC429 PORT: a serial ARINC429 output of data and status is possible for data-concentrator applications. This enables the transfer of data to other systems with a minimum of wiring and processor loading. HIRF: the device incorporates passive circuitry to isolate the intelligence from both lightning effects and radiated fields as defined in DO-160. **TEST PATTERNS:** the outputs can be selected to produce alternating "1"s and "0"s to verify all bits operational. DISSIMILAR PATHS: errors are reported through the registers and through the optional ARINC429 port as cross checks. **DEFERRED MAINTENANCE:** the error reporting scheme differentiates soft and hard failures to allow continued operation despite failures. **INTELLIGENCE:** the device built-in-test, status reporting scheme and fault-tolerance/isolation significantly reduce application software requirements. Figure 1 illustrates the model DD-03232 functional block diagram. # MICROPROCESSOR INTERFACE #### **READ CYCLE TIMING** The read cycle(s) should be proceeded by polling the device's READY bit located within the Status Register. The Status Register can be read at any time regardless of the state of the READY signal (pin) from the device. If the READY bit is at logic 1 (this can be easily tested by a branch if negative statement) the address of the desired register. along with the negative true ENABLE signal, should be presented to the device. The addressed data will be available within 100 ns. After the data is read the ENABLE line should be returned to the logic 1 level. All of the data within the device is guaranteed to remain stable for at least 20 µs after the high to low transition of the READY signal (see FIGURE 2). TRA - TIME READY ADDRESS TAE = TIME ADDRESS ENABLE TED = TIME ENABLE DATA TEDOFF = TIME ENABLE OFF - DATA OFF TAVAIL = TIME READY - DATA AVAILABLE FIGURE 2. READ CYCLE TIMING FIGURE 3. DD-03232 INPUT STRUCTURE # **INPUT & OUTPUT PIN DESCRIPTION** ## **INPUTS** **ANALOG INPUT CHANNELS.** (Pins 25, 26, 29-56, 59 and 61) 200K Ω input resistance, 500 μ s time constant, responsive to open/Gnd (when configured with appropriate, external pull-up), 28V/open and 28V/Gnd input with HIRF/lightning immunity. Refer to Figure 3 for a detail of the input structure. REFERENCE. Triple redundant, configured for 28V tracking discretes. User adjustable for other reference levels by connecting external resistors between corresponding TRIM and REF inputs. Figure 1 also shows the reference structure. Each set of Ref/Trim inputs must be configured identically. For 28V supply tracking, Ref A, Ref B and Ref C are all connected to the 28V supply while Trim A, Trim B and Trim C are left open. **REF A, B, C.** (Pins 17, 19 and 21) Input to the divider supplying the reference voltage to the "A", "B" & "C" group of 32 input channels. TRIM A, B, C. (Pins 16, 18 and 20) Junction of the first resistor and the rest of the reference "A", "B", and "C" divider. **DEBOUNCE (SEL2..SEL0).** (Pins 4-6) The input Discrete Sampling Rate (Debounce Time) is user programmable via the three Select lines (SEL2..SEL0) in accordance with the TABLE **ENABLE.** (Pin 97) The **ENABLE** line controls the tri-state drivers of the 8 or 16 bit Data Bus outputs. The tri-state Data Bus drivers are enabled when this signal is at logic 0 and are tri-stated when this signal is at logic 1. ENABLE is a read pulse and should only be low during reads. 8/16 BITS. (Pin 73) "0" Selects 16-Bit databus output, "1" selects 8-Bit databus output. ADDRESS LINES (A5..A0). (Pins 91-96) The six address lines (A5..A0 where A0 is the LSB) provide for the selection of the desired 8 or 16 bit Data Bus information in accordance with TABLES 3 and 4 (Word/Byte): | TABLE 3. WORD MODE (16 BIT BUS) | | | | | | | | | | | |---------------------------------|--------------------------|--|--|--|--|--|--|--|--|--| | ADDRESS (A5A0) | DATA (D7D0) | | | | | | | | | | | 00 000X | BOUNCE CH_16CH_01 | | | | | | | | | | | 00 001X | BOUNCECH_32CH_17 | | | | | | | | | | | 00 010X | MISMATCH CH_16CH_01 | | | | | | | | | | | 00 011X | MISMATCH CH_32CH_17 | | | | | | | | | | | 00 100X | BIT CH_16CH_01 | | | | | | | | | | | 00 101X | BIT CH_32CH_17 | | | | | | | | | | | 00 110X | FAULT CH_16CH_01 | | | | | | | | | | | 00 111X | FAULT CH_32CH_17 | | | | | | | | | | | 01 000X | DATA CH_08CH_01 | | | | | | | | | | | 01 001X | DATA CH_32CH_17 | | | | | | | | | | | 01 010X | TEST PATTERN 0's and 1's | | | | | | | | | | | 01 011X | STATUS REGISTER | | | | | | | | | | | 01 100X | FACTORY TEST WORD 1 | | | | | | | | | | | 01 101X | FACTORY TEST WORD 2 | | | | | | | | | | | 01 110X | FACTORY TEST WORD 3 | | | | | | | | | | | 01 111X | FACTORY TEST WORD 4 | | | | | | | | | | | 10 000X · | NOT USED . | | | | | | | | | | | 10 001X | NOT USED | | | | | | | | | | | 10 010X | NOT USED | | | | | | | | | | | 10 011X | NOT USED | | | | | | | | | | | 10 100X | NOT USED | | | | | | | | | | | 10 101X | TEST PATTERN 1's and 0's | | | | | | | | | | | 10 110X | NOT USED | | | | | | | | | | | 10 111X | : | | | | | | | | | | | 11 111X | NOT USED | | | | | | | | | | | TABLE 4. BYTE MODE (8 BIT BUS) | | | | | | | | | | | | |--------------------------------|---------------------|--|--|--|--|--|--|--|--|--|--| | ADDRESS (A5A0) | DATA (D7D0) | | | | | | | | | | | | 00 0000 | BOUNCE CH_08CH_01 | | | | | | | | | | | | 00 0001 | BOUNCE CH_16CH_09 | | | | | | | | | | | | 00 0010 | BOUNCE CH_24CH_17 | | | | | | | | | | | | 00 0011 | BOUNCE CH_32CH_25 | | | | | | | | | | | | 00 0100 | MISMATCH CH_08CH_01 | | | | | | | | | | | | 00 0101 | MISMATCH CH_16CH_09 | | | | | | | | | | | | 00 0110 | MISMATCH CH_24CH_17 | | | | | | | | | | | | 00 0111 | MISMATCH CH_32CH_25 | | | | | | | | | | | | 00 1000 | BIT CH_08CH_01 | | | | | | | | | | | | 00 1001 | BIT CH_16CH_09 | | | | | | | | | | | | 00 1010 | BIT CH_24CH_17 | | | | | | | | | | | | 00 1011 | BIT CH_32CH_25 | | | | | | | | | | | | 00 1100 | FAULT CH_08CH_01 | | | | | | | | | | | | 00 1101 | FAULT CH_16CH_09 | | | | | | | | | | | | 00 1110 | FAULT CH_24CH_17 | | | | | | | | | | | | 00 1111 | FAULT CH_32CH_25 | | | | | | | | | | | | ADDRESS (A5A0) DATA (D7D9) | TABLE 4. BYTE MODE (8 BIT BUS) continued | | | | | | | | | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------|--|--|--|--|--|--|--|--| | 01 0001 DATA CH_16CH_09 01 0010 DATA CH_24CH_17 01 0011 DATA CH_32CH_25 01 0100 TEST PATTERN 0's and 1's 01 0101 TEST PATTERN 0's and 1's 01 0110 STATUS REGISTER LO 01 0111 STATUS REGISTER HI 01 1000 FACTORY TEST WORD 1 LO 01 1001 FACTORY TEST WORD 2 LO 01 1010 FACTORY TEST WORD 2 LO 01 1011 FACTORY TEST WORD 2 HI 01 1100 FACTORY TEST WORD 3 LO 01 1101 FACTORY TEST WORD 3 HI 01 1101 FACTORY TEST WORD 4 LO 01 1111 FACTORY TEST WORD 4 HI 10 0000 NOT USED 10 0011 NOT USED 10 0011 NOT USED 10 0101 NOT USED 10 0110 NOT USED 10 0111 NOT USED 10 0110 NOT USED 10 0111 NOT USED 10 0110 NOT USED 10 0111 NOT USED | ADDRESS (A5A0) | DATA (D7D9) | | | | | | | | | | 01 0010 DATA CH_24CH_17 01 0011 DATA CH_32CH_25 01 0100 TEST PATTERN 0's and 1's 01 0101 TEST PATTERN 0's and 1's 01 0101 STATUS REGISTER LO 01 0111 STATUS REGISTER HI 01 1000 FACTORY TEST WORD 1 LO 01 1011 FACTORY TEST WORD 2 LO 01 1011 FACTORY TEST WORD 2 HI 01 1010 FACTORY TEST WORD 2 HI 01 1100 FACTORY TEST WORD 3 LO 01 1011 FACTORY TEST WORD 3 HI 01 1100 FACTORY TEST WORD 3 HI 01 1110 FACTORY TEST WORD 4 LO 01 1111 FACTORY TEST WORD 4 HI 10 0000 NOT USED 10 0001 NOT USED 10 0011 NOT USED 10 0101 NOT USED 10 0101 NOT USED 10 0101 NOT USED 10 0110 NOT USED 10 0111 NOT USED 10 0111 NOT USED 10 0111 NOT USED | 01 0000 | DATA CH_08CH_01 | | | | | | | | | | 01 0011 DATA CH_ 32CH_ 25 01 0100 TEST PATTERN 0's and 1's 01 0101 TEST PATTERN 0's and 1's 01 0110 STATUS REGISTER LO 01 0111 STATUS REGISTER HI 01 1000 FACTORY TEST WORD 1 LO 01 1010 FACTORY TEST WORD 1 HI 01 1010 FACTORY TEST WORD 2 LO 01 1011 FACTORY TEST WORD 2 HI 01 1100 FACTORY TEST WORD 3 LO 01 1011 FACTORY TEST WORD 3 HI 01 1100 FACTORY TEST WORD 3 HI 01 1110 FACTORY TEST WORD 4 HI 10 1110 FACTORY TEST WORD 4 HI 10 0000 NOT USED 10 0001 NOT USED 10 0011 NOT USED 10 0101 NOT USED 10 0101 NOT USED 10 0101 NOT USED 10 0110 NOT USED 10 0111 NOT USED 10 0111 NOT USED 10 0111 NOT USED | 01 0001 | DATA CH_16CH_09 | | | | | | | | | | 01 0100 TEST PATTERN 0's and 1's 01 0101 TEST PATTERN 0's and 1's 01 0110 STATUS REGISTER LO 01 0111 STATUS REGISTER HI 01 1000 FACTORY TEST WORD 1 LO 01 1001 FACTORY TEST WORD 1 HI 01 1010 FACTORY TEST WORD 2 LO 01 1011 FACTORY TEST WORD 2 HI 01 1100 FACTORY TEST WORD 3 LO 01 1101 FACTORY TEST WORD 3 HI 01 1110 FACTORY TEST WORD 3 HI 01 1110 FACTORY TEST WORD 4 HI 10 0000 NOT USED 10 0001 NOT USED 10 0011 NOT USED 10 0101 NOT USED 10 0101 NOT USED 10 0101 NOT USED 10 0110 NOT USED 10 0111 NOT USED 10 0110 NOT USED 10 0111 NOT USED 10 0111 NOT USED | 01 0010 | DATA CH_24CH_17 | | | | | | | | | | 01 0101 TEST PATTERN 0's and 1's 01 0110 STATUS REGISTER LO 01 0111 STATUS REGISTER HI 01 1000 FACTORY TEST WORD 1 LO 01 1001 FACTORY TEST WORD 2 LO 01 1010 FACTORY TEST WORD 2 LO 01 1011 FACTORY TEST WORD 2 HI 01 1100 FACTORY TEST WORD 3 LO 01 1101 FACTORY TEST WORD 3 HI 01 1110 FACTORY TEST WORD 4 LO 01 1111 FACTORY TEST WORD 4 HI 10 0000 NOT USED 10 0001 NOT USED 10 0010 NOT USED 10 0101 NOT USED 10 0101 NOT USED 10 0110 NOT USED 10 0111 NOT USED 10 0111 NOT USED 10 0111 NOT USED 10 0111 NOT USED 10 0110 NOT USED | 01 0011 | DATA CH_32CH_25 | | | | | | | | | | 01 0110 STATUS REGISTER LO 01 0111 STATUS REGISTER HI 01 1000 FACTORY TEST WORD 1 LO 01 1001 FACTORY TEST WORD 2 HI 01 1010 FACTORY TEST WORD 2 HI 01 1011 FACTORY TEST WORD 3 LO 01 1100 FACTORY TEST WORD 3 HI 01 1101 FACTORY TEST WORD 3 HI 01 1110 FACTORY TEST WORD 4 LO 01 1111 FACTORY TEST WORD 4 HI 10 0000 NOT USED 10 0010 NOT USED 10 0011 NOT USED 10 0101 NOT USED 10 0101 NOT USED 10 0110 NOT USED 10 0111 NOT USED | 01 0100 | TEST PATTERN 0's and 1's | | | | | | | | | | 01 0111 STATUS REGISTER HI 01 1000 FACTORY TEST WORD 1 LO 01 1001 FACTORY TEST WORD 1 HI 01 1010 FACTORY TEST WORD 2 LO 01 1011 FACTORY TEST WORD 2 HI 01 1100 FACTORY TEST WORD 3 LO 01 1101 FACTORY TEST WORD 3 HI 01 1110 FACTORY TEST WORD 3 HI 01 1110 FACTORY TEST WORD 4 LO 01 1111 FACTORY TEST WORD 4 HI 10 0000 NOT USED 10 0001 NOT USED 10 0010 NOT USED 10 0101 NOT USED 10 0101 NOT USED 10 0101 NOT USED 10 0110 NOT USED 10 0111 NOT USED 10 0111 NOT USED 10 0111 NOT USED | 01 0101 | TEST PATTERN 0's and 1's | | | | | | | | | | 01 1000 FACTORY TEST WORD 1 LO 01 1001 FACTORY TEST WORD 1 HI 01 1010 FACTORY TEST WORD 2 LO 01 1011 FACTORY TEST WORD 2 HI 01 1100 FACTORY TEST WORD 3 LO 01 1101 FACTORY TEST WORD 3 HI 01 1110 FACTORY TEST WORD 3 HI 01 1110 FACTORY TEST WORD 4 LO 01 1111 FACTORY TEST WORD 4 HI 10 0000 NOT USED 10 0001 NOT USED 10 0010 NOT USED 10 0101 NOT USED 10 0100 NOT USED 10 0110 NOT USED 10 0111 NOT USED 10 0111 NOT USED 10 0111 NOT USED 10 0110 NOT USED | 01 01 10 | STATUS REGISTER LO | | | | | | | | | | 01 1001 FACTORY TEST WORD 1 HI 01 1010 FACTORY TEST WORD 2 LO 01 1011 FACTORY TEST WORD 2 HI 01 1100 FACTORY TEST WORD 3 LO 01 1101 FACTORY TEST WORD 3 HI 01 1110 FACTORY TEST WORD 4 LO 01 1111 FACTORY TEST WORD 4 HI 10 0000 NOT USED 10 0001 NOT USED 10 0010 NOT USED 10 0101 NOT USED 10 0100 NOT USED 10 0110 NOT USED 10 0111 NOT USED 10 0110 NOT USED 10 0111 NOT USED 10 0110 NOT USED | 01 0111 | STATUS REGISTER HI | | | | | | | | | | 01 1010 FACTORY TEST WORD 2 LO 01 1011 FACTORY TEST WORD 2 HI 01 1100 FACTORY TEST WORD 3 LO 01 1101 FACTORY TEST WORD 3 HI 01 1110 FACTORY TEST WORD 4 LO 01 1111 FACTORY TEST WORD 4 HI 10 0000 NOT USED 10 0001 NOT USED 10 0011 NOT USED 10 0101 NOT USED 10 0100 NOT USED 10 0101 NOT USED 10 0101 NOT USED 10 0101 NOT USED 10 0101 NOT USED 10 0110 NOT USED 10 0110 NOT USED | 01 1000 | FACTORY TEST WORD 1 LO | | | | | | | | | | 01 1011 FACTORY TEST WORD 2 HI 01 1100 FACTORY TEST WORD 3 LO 01 1101 FACTORY TEST WORD 3 HI 01 1110 FACTORY TEST WORD 4 LO 01 1111 FACTORY TEST WORD 4 HI 10 0000 NOT USED 10 0001 NOT USED 10 0010 NOT USED 10 0110 NOT USED 10 0100 NOT USED 10 0111 NOT USED 10 0110 NOT USED 10 0111 NOT USED 10 0110 NOT USED 10 0111 NOT USED | 01 1001 | FACTORY TEST WORD 1 HI | | | | | | | | | | 01 1100 FACTORY TEST WORD 3 LO 01 1101 FACTORY TEST WORD 3 HI 01 1110 FACTORY TEST WORD 4 LO 01 1111 FACTORY TEST WORD 4 HI 10 0000 NOT USED 10 0001 NOT USED 10 0010 NOT USED 10 0011 NOT USED 10 0100 NOT USED 10 0101 NOT USED 10 0101 NOT USED 10 0101 NOT USED 10 0110 NOT USED 10 0110 NOT USED 10 0111 NOT USED | 01 1010 | FACTORY TEST WORD 2 LO | | | | | | | | | | 01 1101 FACTORY TEST WORD 3 HI 01 1110 FACTORY TEST WORD 4 LO 01 1111 FACTORY TEST WORD 4 HI 10 0000 NOT USED 10 0001 NOT USED 10 0010 NOT USED 10 0011 NOT USED 10 0100 NOT USED 10 0101 NOT USED 10 0101 NOT USED 10 0101 NOT USED 10 0110 NOT USED 10 0111 NOT USED 10 0111 NOT USED | 01 1011 | FACTORY TEST WORD 2 HI | | | | | | | | | | 01 1110 FACTORY TEST WORD 4 LO 01 1111 FACTORY TEST WORD 4 HI 10 0000 NOT USED 10 0001 NOT USED 10 0010 NOT USED 10 0011 NOT USED 10 0100 NOT USED 10 0101 NOT USED 10 0101 NOT USED 10 0111 NOT USED 10 0110 NOT USED 10 0111 NOT USED 10 0111 NOT USED | 01 1100 | FACTORY TEST WORD 3 LO | | | | | | | | | | 01 1111 FACTORY TEST WORD 4 HI 10 0000 NOT USED 10 0001 NOT USED 10 0010 NOT USED 10 0011 NOT USED 10 0100 NOT USED 10 0101 NOT USED 10 0101 NOT USED 10 0110 NOT USED 10 0111 NOT USED 10 0111 NOT USED 10 0111 NOT USED | 01 1101 | FACTORY TEST WORD 3 HI | | | | | | | | | | 10 0000 NOT USED 10 0001 NOT USED 10 0010 NOT USED 10 0011 NOT USED 10 0100 NOT USED 10 0101 NOT USED 10 0101 NOT USED 10 0110 NOT USED 10 0111 NOT USED 10 1010 NOT USED | 01 1110 | FACTORY TEST WORD 4 LO | | | | | | | | | | 10 0001 NOT USED 10 0010 NOT USED 10 0011 NOT USED 10 0100 NOT USED 10 0101 NOT USED 10 0110 NOT USED 10 0111 NOT USED 10 1010 NOT USED 10 1010 NOT USED | 01 1111 | FACTORY TEST WORD 4 HI | | | | | | | | | | 10 0010 NOT USED 10 0011 NOT USED 10 0100 NOT USED 10 0101 NOT USED 10 0110 NOT USED 10 0111 NOT USED 10 10100 NOT USED | 10 0000 | NOT USED | | | | | | | | | | 10 0011 NOT USED 10 0100 NOT USED 10 0101 NOT USED 10 0110 NOT USED 10 0111 NOT USED 10 1000 NOT USED | 10 0001 | NOT USED | | | | | | | | | | 10 0100 NOT USED 10 0101 NOT USED 10 0110 NOT USED 10 0111 NOT USED 10 1000 NOT USED | 10 0010 | NOT USED | | | | | | | | | | 10 0101 NOT USED 10 0110 NOT USED 10 0111 NOT USED 10 1000 NOT USED | 10 0011 | NOT USED | | | | | | | | | | 10 0110 NOT USED 10 0111 NOT USED 10 1000 NOT USED | 10 0100 | NOT USED | | | | | | | | | | 10 0111 NOT USED 10 1000 NOT USED | 10 0101 | NOT USED | | | | | | | | | | 10 1000 NOT USED | 10 0110 | NOT USED | | | | | | | | | | | 10 0111 | NOT USED | | | | | | | | | | 10 1001 NOT USED | 10 1000 | NOT USED | | | | | | | | | | | 10 1001 | NOT USED | | | | | | | | | | 10 1010 TEST PATTERN 1's and 0's | 10 1010 | TEST PATTERN 1's and 0's | | | | | | | | | | 10 1011 TEST PATTERN 1's and 0's | 10 1011 | TEST PATTERN 1's and 0's | | | | | | | | | | 10 1100 NOT USED | 10 1100 | NOTUSED | | | | | | | | | | 10 1101 : | 10 1101 | : | | | | | | | | | | 11 1111 NOT USED | 11 1111 | NOT USED | | | | | | | | | Note 1: A true BOUNCE bit indicates that the input signal of the associated channel changed in an alternating fashion i.e. OFF-ON-OFF or ON-OFF-ON in three successive samples at the selected sample rate. Note 2: A MISMATCH bit that is true indicates that one of the triple redundant inputs of the associated channel did not agree with the other two for three consecutive samples of the input i.e. there was a lack of consensus for the three inputs. Note 3: A BIT indication for any channel signifies that the associated channel has failed the Built-In-Test sequence which is performed prior to every input sample taken. These signals are reset at the start of each Built-In-Test sequence, and will be set if any of the tests in the sequence fail. A BIT indication is a SOFT FAULT condition indicating that there is a problem with the channel but the associated output data can be believed because of the internal voting taking place. Note 4: A FAULT bit that is true indicates that the associated channel has a major problem and the associated data should not be believed. A FAULT indication is a HARD FAULT condition indicating that the Built-In-Test has failed one or more of the voting tests. Note 5: A DATA bit indicates the triple redundant vote or unanimous consensus of the input discrete state for the associated channel over the last two data samples taken. Note 6: The two available TEST PATTERNS contain an alternating string of 1's and 0's, and 0's and 1's, which can be used to verify that all of the data bits are operational (i.e. there are no stuck bits). The two test patterns have been located at addresses of alternating address bits so that the address decoder bits are tested at the same time. CLOCK (1 MHz CLK). (Pin 106) The user must supply a 1 MHz clock whose stability is of no import except to the serial bit rate of the optional ARINC 429 port. The clock is brought into the internal ASIC at 2 widely separated points designated as CLOCK_A (primary) and CLOCK_B (secondary). The primary clock will be selected and drive the device unless a clock fault is detected, in which case the operation of the device will be switched over to the secondary clock. Both clocks are continually monitored for status and this information is available as separate bits in the Status Register. ARINC 429 DATA RATE (429DRATE). (Pin 1) A logic 1 (or a no-connect) for this input selects the ARINC 429 Low Speed data rate of 12.5 kHz. A logic 0 selects the High Speed data rate of 100 kHz. (NOTE 1) ARINC 429 MESSAGE RATE (429MRATE). (Pin 3) The message rate of the ARINC 429 output is selectable at either a fixed 100ms rate or at the selected sampling rate of the input discretes. A logic 1 selects the input sampling rate as the message rate, and a logic 0 selects the fixed 100ms message rate. (NOTE 1) NOTE: If the Low Speed ARINC 429 bit rate is selected (12.5 kHz) an entire ARINC message will take about 35ms to complete, therefore, input discrete sampling rates of 5ms, 10ms, and 20ms cannot be utilized or the ARINC message will be truncated unless the fixed 100ms message rate is selected. FACTORY TEST INPUTS. (Pins 23, 22 and 100) The TMUX, TMODEFMUX, and FMODE input signals are used for factory testing and should be tied to logic 1 (or a no-connect) for the device to operate normally. **RESET.** (Pin 24) The RESET signal is used to reset the device during factory testing. It also connected to in internal RC network to provide a Power-on-Reset for the device. Under normal operation conditions this pin should be a no-connect. If there is some reason to reset the device from external circuity this pin can be momentarily pulled to logic 0 through an open collector device. Do not hard wire this pin to +5V or ground. 429 STROBE IN (429STRBI). (Pin 104) This pin is utilized in the special case when the device is being used as a remote ARINC 429 serial port and not connected to a local microprocessor. When the device is being used in this specific configuration the associated 429 Strobe Out should be connected to this pin. In other cases this pin must be grounded. Related Information: Because the BOUNCE data is momentary it latched within the device. This information is normally reset by a READ to the associated BOUNCE data words. In the instances when there is no microprocessor, and therefore no READS to the BOUNCE data, this connection provides a vehicle to reset the source of the BOUNCE information (just after it is transferred to the ARINC transmitter section) at the start of each ARINC message. (NOTE 1) ## **OUTPUTS** **DATA (D15..D0)**. (Pins 74, 76-90) 8 bit byte or 16 bit word information is available on the Data Bus depending on the logic state of the BUS Select line described above. In the Byte mode the upper and lower Bytes are enabled separately so that bit 0 can be hard wired to bit 8, bit 1 to bit 9 etc. thereby providing an 8 bit data bus. It is obviously important that the 8 bit mode be selected if these data bits are wired together or corrupted data will result. The available data can be found under the Address Lines section above. **FAULT**. (Pin 99) The FAULT flag was designed to serve as an interrupt to the microprocessor when a HARD or SOFT error has been detected within the device (see BIT and FAULT notes in TABLE 4). If this signal is asserted (logic 0) the Status Register should be read to determine the nature of the fault. Thereafter more detailed information can be found in the associated addressable registers. The Fault Flag will remain at a logic 0 for as long as the fault condition persists. NOTE: Depending on the exact nature of the fault the Fault Flag may return to logic 0 during the Built-In-Test interval (when the READY signal is at logic 0) even though there is a persistent fault condition. **FAULT** is 0 for any of the following fault conditions. The specific fault data is addressable through the output registers. BIT FAULT. A logic 1 for this bit indicates that one of the channels has failed the Built-In-Test sequence. The actual offending channel(s) can be determined by reading the associated BIT data words. DISCRETE FAULT. A logic 1 for this bit indicates that one of the channels detected a HARD failure during the Built-In-Test sequence or that the discrete input data word did not transfer to the data bus output properly when it was read. If a HARD fault was detected the offending channel can be determined by reading the associated FAULT data registers. If it was generated by a transfer error the DISCRETE TRANSFER FAULT bit in this status register will be set to logic 1. ARINC FAULT. A logic 1 for this bit indicates that one of the channels detected a HARD failure during the Built-In-Test sequence or that the discrete input data word did not transfer to the ARINC transmitter section properly. If a HARD fault was detected the offending channel can be determined by reading the associated FAULT data registers. If NOTE 1: This signal is only active for the ARINC 429 device option. it was generated by a transfer error then no FAULT bits will be set to logic 1. ARINC READY. A logic 0 for this bit indicates that an ARINC transmission is currently in process. A logic 1 indicates that no ARINC transmission is currently in process. CLOCK_A FAULT. A logic 1 for this bit indicates that the primary 1 MHz clock circuitry is defective and that the device is running off the secondary 1 MHz clock (providing that it is not also faulty). CLOCK_B FAULT. A logic 1 for this bit indicates that the secondary 1 MHz clock circuitry is defective and cannot be used as a backup. NO CLOCK. A logic 1 for this bit indicates that there is no 1MHz clock being supplied to the device (or that both have failed). DISCRETE TRANSFER FAULT. A logic 1 for this bit indicates that the discrete data word(s) did not transfer properly during the associated microprocessor read cycle (i.e. the word present on the data bus did not agree with the internal data). The most likely cause of this type of fault is a collision on the data bus during the read cycle. NOTE: This condition is only monitored for the discrete data words, not for all of the available data. **429 STROBE OUT (429 STRBO).** (Pin 2) This signal is used in conjunction with the 429 Strobe In described above. It is basically a 500 ns positive pulse which occurs at the start of each 429 message. See the section 429 Strobe In for further information concerning the use of this signal. (NOTE 1) **CLKTST.** (Pin 106) This signal is used for factory testing and should not be connected to any external circuitry or normal operation of the device could be affected. Specifically this signal is a low drive internal test point connected to the primary clock signal. Grounding this signal forces the device to switch to the secondary internal clock. # ARINC_LO AND ARINC_HI. (Pin 102 and 103) These two signals comprise the ARINC 429 serial output transmission. Both are TTL compatible signals where the ARINC_LO signal contains the logic 0 serial transmission and the ARINC_HI signal contains the logic 1 serial transmission. These two signals must be connected to a 429 interface driver in order to obtain a single ended ARINC 429 transmission signal. The content and word order of the ARINC 429 transmission is shown FIGURE 4, STATUS WORD BIT MAP. (NOTE 1) | BIT | SIGNAL | | | | | | | | |-------------------------------|-------------------------|--|--|--|--|--|--|--| | 00 | BIT FAULT | | | | | | | | | 01 | DISCRETE FAULT | | | | | | | | | 02 | ARINC FAULT | | | | | | | | | 03 | ARINC READY | | | | | | | | | 04 | CLOCK_A FAULT | | | | | | | | | 05 | CLOCK_B FAULT | | | | | | | | | 06 | NO CLOCK | | | | | | | | | 07 | DISCRETE TRANSFER FAULT | | | | | | | | | 08 | LOGIC LOW (HIGH BYTE) | | | | | | | | | 09 | LOGIC LOW | | | | | | | | | 10 | LOGIC LOW | | | | | | | | | 11 | LOGIC LOW | | | | | | | | | 12 | LOGIC LOW | | | | | | | | | 13 | LOGIC LOW | | | | | | | | | 14 | LOGIC LOW | | | | | | | | | 15 | READY | | | | | | | | | FIGURE 4. STATUS WORD BIT MAP | | | | | | | | | **READY.** (Pin 98) A logic 1 for this bit indicates that all of the available data is stable and can be read. A logic 0 indicates that the device is in the Built-In-Test mode, or taking a sample of the discrete input data lines. This signal should be polled prior to performing any read cycles. The internal data is guaranteed to be stable for 20 µs after the logic 1 to logic 0 transition (READY to NOT READY) of this signal. Therefore, it should not be necessary to re-poll this signal after the read. NOTE 1: This signal is only active for the ARINC 429 device option. | | P
A
R | S | BM. | MS | MSB 16 BIT LSB F C SI | | | | | | | | | DI | L
S
B | LA | ABE | L R | | | | | | | | | | | | | | | | |-------------------|-------------|----|-----|----|-----------------------|----|----|----|----|----|----|----|----|----|-------------|----|-----|-----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|-----| | ARINC 429 BITS: | 32 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | | | TRIPLE BOUNCE 15: | Р | Α | В | D | D | D | D | D | D | ם | D | D | D | D | D | D | D | П | D | 0 | F | С | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 001 | | TRIPLE BOUNCE 32: | Р | Α | В | ם | D | D | D | D | D | D | D | D | D | D | D | D | D | D | D | 0 | F | С | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 002 | | MISMATCH 15: | Р | Α | В | ם | D | D | D | D | D | D | ם | D | D | D | D | D | D | ם | D | 0 | F | С | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 003 | | MISMATCH 32: | Р | Α | В | ם | D | D | D | D | D | D | D | ۵ | ם | D | D | ٥ | D | ם | О | 0 | F | С | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 004 | | BIT 15: | Р | Α | В | О | D | D | D | D | D | D | D | ۵ | D | ם | D | ٥ | ۵ | ٥ | О | 0 | F | С | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 005 | | BIT 32: | Р | Α | В | ם | D | D | ם | D | D | D | D | D | D | D | D | D | D | ם | ם | 0 | F | С | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 006 | | TRIPLE FAULT 16: | Р | Α | В | D | D | D | D | D | D | ם | D | ۵ | D | D | D | D | D | D | D | 0 | F | С | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 007 | | TRIPLE FAULT 32: | Р | Α | В | D | D | D | D | D | D | D | D | ם | D | D | D | D | D | D | D | 0 | F | С | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 010 | | TRIPLE DATA 16: | Р | Α | В | ם | ם | ם | D | D | D | D | D | D | D | D | D | D | D | ם | D | 0 | F | С | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 011 | | TRIPLE DATA 32: | Р | Α | В | D | ם | ם | D | D | D | D | D | D | D | D | D | D | D | D | D | 0 | F | С | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 012 | | TEST 5's | Р | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | F | С | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 013 | | TEST A's | Р | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | F | С | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 014 | ## NOTES: A B = 0 0 IF NO MAJOR FAULTS. AB = 11 IF MAJOR FAULTS EXIST (DATA IS BAD). C = 0 WHEN 429 DATA RATE IS 100KPBS; C=1 WHEN DATA RATE IS 12.5 KBPS. D = DATA BIT. F = 1 IF THE DISCRETE INTERFACE OUTPUT HAS ANY MAJOR FAULT (429 DATA MAY STILL BE GOOD). P = ARINC 429 PARITY BIT. # FIGURE 5. ARINC BIT DESCRIPTION | | | TABLE 5. DD-03 | 232 PIN FUNCITON | | | | | | | | |------------|---------------|----------------|------------------|------------|---------------|--|--|--|--|--| | PIN NUMBER | FUNCTION | PIN NUMBER | FUNCTION | PIN NUMBER | FUNCTION | | | | | | | 1* | 429DRATE | 37 | CHAN 11 INPUT | 73 | 8/16 BITS | | | | | | | 2* | 429STRBO | 38 | CHAN 12 INPUT | 74 | D15 | | | | | | | 3* | 429MRATE | 39 | CHAN 13 INPUT | 75 | GND (DIGITAL) | | | | | | | 4 | SEL0 | 40 | CHAN 14 INPUT | 76 | D14 | | | | | | | 5 | SEL1 | 41 | CHAN 15 INPUT | 77 | D13 | | | | | | | 6 | SEL2 | 42 | CHAN 16 INPUT | 78 | D12 | | | | | | | 7 | VDD (DIGITAL) | 43 | CHAN 17 INPUT | 79 | D11 | | | | | | | 8 | N/C | 44 | CHAN 18 INPUT | 80 | D10 | | | | | | | 9 | N/C | 45 | CHAN 19 INPUT | 81 | D9 | | | | | | | 10 | N/C | 46 | CHAN 20 INPUT | 82 | D8 | | | | | | | 11 | N/C | 47 | CHAN 21 INPUT | 83 | D7 | | | | | | | 12 | N/C | 48 | CHAN 22 INPUT | 84 | D6 | | | | | | | 13 | N/C | 49 | CHAN 23 INPUT | 85 | D5 | | | | | | | 14 | N/C | 50 | CHAN 24 INPUT | 86 | D4 | | | | | | | 15 | VDD (ANALOG) | 51 | CHAN 25 INPUT | 87 | D3 | | | | | | | 16 | TRIMA | 52 | CHAN 26 INPUT | 88 | D2 | | | | | | | 17 | REF A | 53 | CHAN 27 INPUT | 89 | D1 | | | | | | | 18 | TRIM C | 54 | CHAN 28 INPUT | 90 | D0 | | | | | | | 19 | REF C | 55 | CHAN 29 INPUT | 91 | A5 | | | | | | | 20 | TRIM B | 56 | CHAN 30 INPUT | 92 | A4 | | | | | | | 21 | REF B | 57 | N/C | 93 | A3 | | | | | | | 22** | TMODE | 58 | N/C | 94 | A2 | | | | | | | 23** | TMUX | 59 | CHAN 31 INPUT | · 95 | A1 | | | | | | | 24** | RESET | 60 | N/C | 96 | AO | | | | | | | 25 | CHAN 1 INPUT | 61 | CHAN 32 INPUT | 97 | ENABLE | | | | | | | 26 | CHAN 2 INPUT | 62 | N/C | 98 | READY | | | | | | | 27 | N/C | 63 | N/C | 99 | FAULT | | | | | | | 28 | N/C | 64 | N/C | 100** | FMUX | | | | | | | 29 | CHAN 3 INPUT | 65 | N/C | 101 | FMODE | | | | | | | 30 | CHAN 4 INPUT | 66 | N/C | 102 * | ARINC_LO | | | | | | | 31 | CHAN 5 INPUT | 67 | N/C | 103 * | ARINC_HI | | | | | | | 32 | CHAN 6 INPUT | 68 | N/C | 104 *** | 429STRBI | | | | | | | 33 | CHAN 7 INPUT | 69 | N/C | 105 | 1 MHz CLK | | | | | | | 34 | CHAN 8 INPUT | 70 | GND (ANALOG) | 106 | CLKTEST | | | | | | | 35 | CHAN 9 INPUT | 71 | N/C | | | | | | | | | 36 | CHAN 10 INPUT | 72 | N/C | | | | | | | | ^{*} If ARINC429 Port option is NO, these pins are RESERVED (DO NOT CONNECT TO THESE PINS). ^{**} DO NOT CONNECT. ^{***} This pin must be grounded if 429 option is not implemented. 65E D FIGURE 6. DD-03232 MECHANICAL OUTLINE - FLATPACK Specifications are subject to change without notice. ### OTHER APPLICABLE DOCUMENTS RTCA/DO-160C: Environmental Conditions and Test Procedure for Airborne Equipment. MIL-STD-883: Test Methods & Procedures for Microelectronics. 105 Wilbur Place, Bohemia, New York 11716 For technical support: 1-800-DDC-1772, ext. 7384 (outside N.Y.) 1-800-245-3413, ext. 7384 (in Canada) Headquarters - Tel: (516) 567-5600, ext. 7384 Fax: (516) 567-7358, (516) 563-4331 West Coast - Tel: (714) 895-9777, Fax: (714) 895-4988 Europe - Tel: 44 (635) 40158, Fax: 44 (635) 32264 Asia/Pacific - Tel: 81 (33) 814-7688, Fax: 81 (33) 814-7689 PRE-02-10/93-1M 10 PRINTED IN U.S.A.