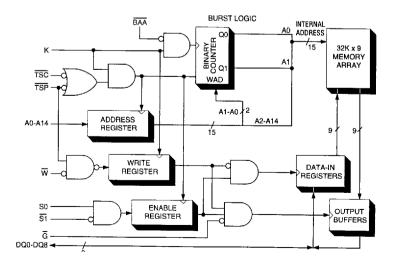


32K x 9 Fast CMOS Synchronous Static RAM with Linear Burst Counter

Features

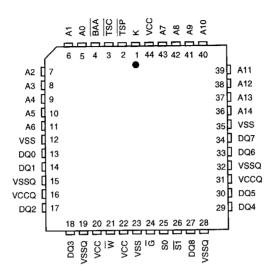
- ☐ Interfaces directly with the MC68040TM processor (66.6, 60 50, 40 and 33.3 MHz)
- ☐ High speed access times
 - Clock to data valid times: 9, 10, 12, 14 ns
 - Cycle times:
 15, 16.6, 20, 25 ns
- ☐ High density 32K x 9 architecture
- ☐ Choice of 5V or 3.3V ±10% output Vcc for output level compatibility
- ☐ Self-timed write cycle
- ☐ Internal linear burst read/write address counter
- ☐ Internal input registers
- (address, data, and control) Packages:
- Packages: 44-pin PLCC

Description


The PDM44659 is a high-performance synchronous CMOS static RAM organized as 32,768 x 9 bits. This product which is produced in Paradigm's proprietary CMOS technology integrates a high-speed SRAM array, input registers (address, data, and control), and a clock input to achieve synchronous read and write access. The PDM44659 was designed with specific control inputs and features to support high-performance secondary cache designs for the MC68040 architecture.

The PDM44659 internal self-timed write logic and input data and address registers eliminate the need for external write pulse generation and permit simplified self-timed write cycles triggered by the rising edge of the clock.

The internal linear burst address counter accepts the first cycle address from the processor, then cycles through the adjacent four locations using the MC68040 burst refill sequence on appropriate rising edges of the system clock.


The PDM44659 is available in a 44-pin plastic leaded chip carrier (PLCC). Multiple power and ground pins minimize effects induced by output noise. Separate power pins are provided for DQ0-DQ8 to allow user-controlled output levels of 5V or 3.3V.

Functional Block Diagram

*MC68040 is a trademark of Motorola, Inc.

Pin Assignment

Pin Names

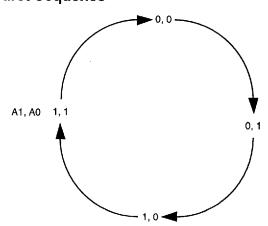
Pin	In/Out	Description	Pin	In/Out	Description
A0-A14	ı	Address Inputs	TSC	1	Transfer Start Cache Controller
K		Clock	DQ0-DQ8	1/0	Data Input/Output
W	1	Write Enable	VCC		+5V Power Supply
G	ı	Output Enable	VCCQ		Output Buffer Power Supply
S0, S1	1	Chip Selects	VSS		Ground
BAA	1	Burst Address Advance	VSSQ		Output Buffer Ground
TSP	1	Transfer Start Processor			

All registers are positive-edge triggered. The state of W determines whether the next cycle will be a read or write cycle. The state of W is sampled at each clock rising edge. If sampled active (low), a write cycle begins; if sampled inactive (high), a read cycle begins. Read and write cycles begin at the current address, which is the base address loaded by TSP or TSC and modified by BAA. TSP overrides W. If TSP is active, W is internally forced inactive. Therefore, the first cycle following TSP is always a read cycle. The TSC or TSP signals control the duration of the burst and the start of the next burst. When TSP is sampled low, any ongoing burst is interrupted and a read (independent of W and TSC) is performed using the new external address. When TSC is sampled low (and TSP is sampled high), any ongoing burst is interrupted and a read or write (dependent on W) is performed using the new external address. chip selects (S0, ST) are sampled only when a new base address is loaded. After the first cycle of the burst, W determines whether the next cycle is a read or write cycle, and BAA controls the advance of the address counter. When BAA is sampled low, the internal address is advanced prior to the operation. When BAA is sampled high, the internal address is not advanced, thus inserting a wait state into the burst sequence accesses. Upon completion of a burst, the address will wrap around to its initial state. See BURST SEQUENCE FIGURE.

Synchronous Truth Table (See Notes 1, 2, 3, and 4)

S	TSP	TSC	BAA	W	К	Address Used	Operation
F	L	Х	Х	х	L-H	N/A	Deselected
F	Х	L	Х	Х	L-H	N/A	Deselected
T	L	Х	Х	Х	L-H	External Address	Read Cycle, Begin Burst
T	Н	L	Х	L	L-H	External Address	Write Cycle, Begin Burst
Т	Н	L,	Х	Н	L-H	External Address	Read Cycle, Begin Burst
Х	Н	Н	L	L	L-H	Next Address	Write Cycle, Continue Burst
Х	Н	Н	L	Н	L-H	Next Address	Read Cycle, Continue Burst
Х	Н	Н	Н	L	L-H	Current Address	Write Cycle, Suspend Burst
Х	Н	Н	Н	Н	L-H	Current Address	Read Cycle, Suspend Burst

NOTE: 1. X means Don't Care.


- 2. All inputs except must meet setup and hold times for the low-to-high transition of clock (K).
- 3. S represents S0 and $\overline{S1}$. T implies $\overline{S1}$ = L and S0 = H; F implies $\overline{S1}$ = H or S0 = L.
- 4. Wait states are inserted by suspending burst.

Asynchronous Truth Table (See Notes 1 and 2)

Operation	G	VO Status
Read	L	Data Out (DQ0-DQ8)
Read	Н	High-Z
Write	х	High-Z Data In (DQ0-DQ8)
Deselected	Х	High-Z

- NOTE: 1. X means Don't Care.
 - 2. For a write operation following a read operation, G must be high before the input data required setup time and held high through the input data hold time.

Burst Sequence

Base address provided with TSP or TSC. The external two values for A1 and A0 provides the starting point for the burst sequence graph. The burst logic advances A1 and A0 as shown above.

Absolute Maximum Ratings (1)

Symbol	Rating	Value	Unit
V _{CC}	Power Supply Voltage	-0.5 to +7.0	V
V _{CCQ}	Output Power Supply Voltage	-0.5 to V _{CC}	٧
V _{IN} , V _{OUT}	Voltage Relative to V _{SS}	-0.5 to V _{CC} + 0.5	V
l _{OUT}	Output Current (per I/O)	±20	mA
P _D	Power Dissipation (T _A = 70°C, V _{CC} = 5V, t _{KHKH} = 20 ns	1.2	W
T _{BIAS}	Temperature Under Bias	-10 to +85	°C
T _A	Operating Temperature	0 to +70	°C
T _{STG}	Storage Temperature	-55 to +125	°C

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended DC Operating Conditions

Symbol	Parameter		Min.	Тур.	Max.	Unit
V _{CC}	Supply Voltage		4.75	5.0	5.25	V
V _{CCQ}	Output Supply Voltage	5V TTL	4.5	5.0	5.5	٧
		3.3V TTL	3.00	3.3	3.60	V
VSS	Reference Voltage		0	0	0	٧
Commercial	Ambient Temperature Range		0	25	70	°C

DC Electrical Characteristics ($V_{CC} = 5.0V \pm 5\%$)

Symbol	Parameter	Test Conditions	PDM4	14659S	PDM4	Unit	
			Min.	Max.	Min.	Max.	ĺ
ILI	Input Leakage Current	V _{CC} = MAX., V _{IN} = GND to V _{CC}	-5	5	-2	2	μА
I _{LO}	Output Leakage Current	V_{CC} = MAX., V_{OUT} = GND to V_{CC} $\overline{S1}$ = V_{IH} or $S0$ = V_{IL}	-5	5	-2	2	μА
V _{OL}	Output Low Voltage	I_{OL} = 8 mA, V_{CC} = Min. I_{OL} = 10 mA, V_{CC} = Min.		0.4 0.5	=	0.4 0.5	V
V _{OH}	Output High Voltage	I _{OH} = -4 mA, V _{CC} = Min.	2.4	V _{CCQ}	2.4	V _{CCQ}	٧

NOTE: 1. $V_{IL}(min) = -3.0V$ for pulse width less than 20 ns.

Power Supply Characteristics

Symbol	Parameter	Power	-9	-10	-12	-14	Unit
I _{CC}	Dynamic Operating Current $\overline{S1} = V_{1L}$, $S0 = V_{1H}$	S	240	220	200	180	mA
	V _{CC} = Max., Outputs Open f = f _{MAX} = 1/t _{RC}	L	230	210	190	170	mA
I _{SB}	Standby Current (TTL Level) S1 ≥ V _{IH} or S0 ≤ V _{IL}	S	90	80	70	60	mA
	$V_{CC} = Max.$, Outputs Open $f = f_{MAX} = 1/t_{RC}$	L	80	70	60	50	mA

NOTES: All Values are maximum guaranteed values.

Capacitance⁽¹⁾ $(T_A = +25$ °C, f = 1.0 MHz)

Symbol	Parameter	Conditions	Max.	Unit
C _{IN}	Input Capacitance	V _{IN} = 0V	6	pF
C _{OUT}	Output Leakage Current	V _{OUT} = 0V	8	pF

NOTE:1. This parameter is determined by device characterization but is not production tested.

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input rise and fall times	5 ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See figures 1 and 2

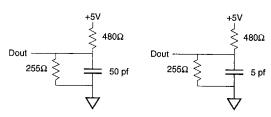
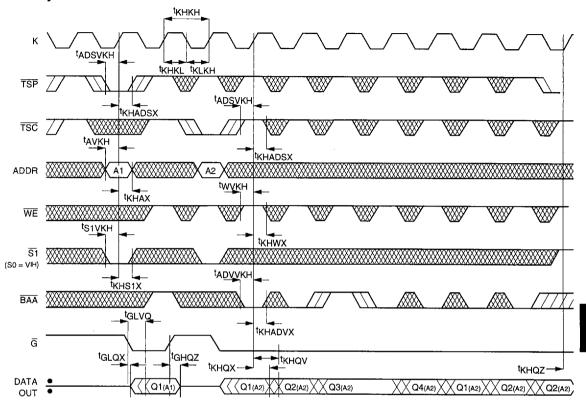


Figure 1. Output Load Equivalent

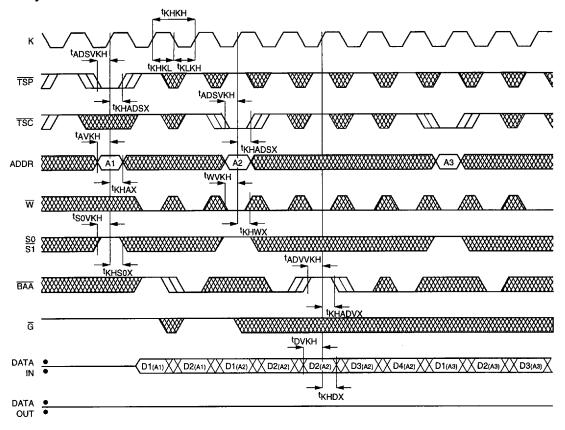

Figure 2. Output Load Equivalent (for t_LZ , t_{CZ} , t_{OHZ} , t_{OLZ})

Read/Write Cycle Timing (See Notes 1, 2, 3)

		Alternate	-()9	-1	0	-1	2	-1	4	
Parameter	Symbol	Symbol	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Cycle time	^t кнкн	tcyc	15		16.6		20		25		ns
Clock access time, 50 pF load	t _{KHQV}	t _{CD}		9		10		12		14	ns
Clock access time, 0 pF load	t _{KHQVO}	tcpo		7.5		8.5		10		12	ns
Output enable to output valid	t _{GLQV}	toE		5		5		6		7	ns
Clock High to output active	t _{KHQX}	t _{DC}	3		3		3		3		ns
Output enable to output active ⁽⁴⁾	t _{GLQX}	toLZ	0		0		0		0		ns
Output disable to Q High $Z^{(4)}$	t _{GHQZ}	t _{OHZ}	2	5	2	5	2	6	2	7	ns
Clock High to Q High Z ⁽⁴⁾	t _{KHQZ}	t _{CZ}		6		6		7		8_	ns
Clock High to Q Low Z ⁽⁴⁾	t _{KHLZ}	t _{LZ}	3		3		3		3		ns
Clock High pulse width	t _{KHKL}	t _{CH}	4		5		6		7		ns
Clock Low pulse width	t _{KLKH}	t _{CL}	4		5		6		7		ns
Setup times for:(5) Address	t _{AVKH}	t _{AS}	2.5		2.5		3		3		ns
Address Status	t _{ADSVKH}	t _{SS}							3		
Data in	t_{DVKH}	t _{DS}									
Write	twvkH	tws		ļ							
Address Advance	[†] ADVVKH										
Chip Select	t _{SOVKH}										
	t _{S1VKH}					_					
Hold times for: (5) Address	t _{KHAX}	t _{AH}	0.5		0.5		0.5		0.5		ns
Address Status	t _{KHADSX}	t _{SH}									
Data in	t _{KHDX}	t _{DH}						1			
Write	t _{KHWX}	t _{WH}									
Address Advance	t _{KHADVX}								1		
Chip Select	t _{KHS0X}										
	t _{KHS1X}						1				

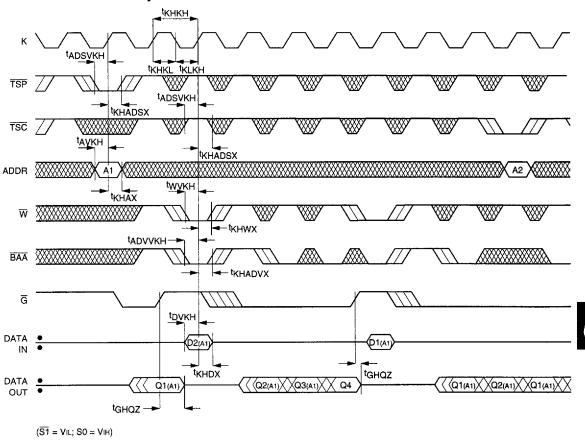
- Notes: 1. A read cycle is defined by W high or TSP low for the setup and hold times. A write cycle is defined by W low for the setup and hold times.
 - 2. All read and write cycle timings are referenced from (K).
 - G is a "don't care" when W is low.
 - 4. Transition is measured ±200 mV from steady-state voltage with load of Figure 2. This parameter is sampled and not 100% tested. At any given voltage and temperature, t_{GHQZ} max is less than t_{GLQX} min for a given device and from device to device.
 - 5. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K). Chip Select must be true (ST low and S0 high) at each rising edge of clock for the device (when TSP or TSC is low) to remain enabled.

Read Cycle

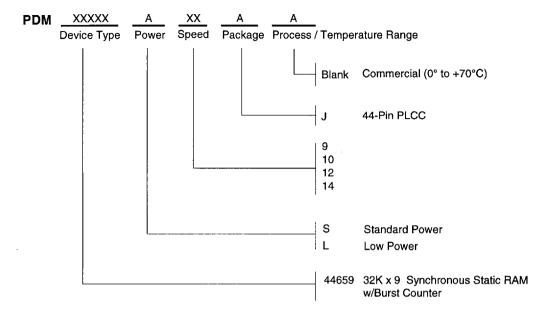


NOTE:

Q1(A2) represents the first output data from the base address A2;


Q2(A2) represents the next output data in the burst sequence with A2 as the base address.

Write Cycle


Note: W is ignored for the first cycle when TSP initiates the burst. TSP active loads a new base address and forces the first cycle to be a read cycle.

Combined Read/Write Cycle

Note: W is ignored for the first cycle when TSP initiates the burst. TSP active loads a new base address and forces the first cycle to be a read cycle.

Ordering Information

Chip PDM44659 Package Type 44-pin Plastic LCC