

PN5116 P-CHANNEL JFET

Linear Systems replaces discontinued Siliconix PN5116

This analog switch is designed for inverting switching into inverting input of an Operational Amplifier.

The TO-92 provides a low cost option and ease of manufacturing.

(See Packaging Information).

PN5116 Benefits:

- Low On Resistance
- $I_{D(off)} \le 500 \text{ pA}$
- Switches directly from TTL logic

PN5116 Applications:

- **Analog Switches**
- Commutators
- Choppers

FEATURES					
DIRECT REPLACEMENT FOR SILICONIX PN5116					
LOW ON RESISTANCE	r _{DS(on)} ≤ 150Ω				
LOW CAPACITANCE	6pF				
ABSOLUTE MAXIMUM RATINGS @ 25°C (unless otherwise noted)					
Maximum Temperatures					
Storage Temperature	-55°C to +200°C				
Operating Junction Temperature	-55°C to +200°C				
Maximum Power Dissipation					
Continuous Power Dissipation	500mW				
MAXIMUM CURRENT					
Gate Current (Note 1)	I _G = -50mA				
MAXIMUM VOLTAGES					
Gate to Drain Voltage	V _{GDS} = 30V				
Gate to Source Voltage	V _{GSS} = 30V				

PN5116 ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

	<u> </u>	vise noteu,				
SYMBOL	CHARACTERISTIC	MIN	TYP.	MAX	UNITS	CONDITIONS
BV_{GSS}	Gate to Source Breakdown Voltage	30				$I_{G} = 1\mu A$, $V_{DS} = 0V$
$V_{GS(off)}$	Gate to Source Cutoff Voltage	1		4		$V_{DS} = -15V, I_{D} = -1nA$
V _{GS(F)}	Gate to Source Forward Voltage		-0.7	-1	V	$I_G = -1mA$, $V_{DS} = 0V$
V _{DS(on)}			-1.0			$V_{GS} = 0V, I_{D} = -15mA$
	Drain to Source On Voltage		-0.7			$V_{GS} = 0V, I_{D} = -7mA$
			-0.5	-0.6		$V_{GS} = 0V, I_{D} = -3mA$
I _{DSS}	Drain to Source Saturation Current (Note 2)	-5		-25	mA	$V_{DS} = -15V, V_{GS} = 0V$
I _{GSS}	Gate Reverse Current		5	500		$V_{GS} = 20V, \ V_{DS} = 0V$
I _G	Gate Operating Current		-5			$V_{DS} = -15V, I_{D} = -1mA$
I _{D(off)}	Drain Cutoff Current		-10		pA	$V_{DS} = -15V, V_{GS} = 12V$
			-10			$V_{DS} = -15V, V_{GS} = 7V$
			-10	-5 <mark>0</mark> 0		$V_{DS} = -15V, V_{GS} = 5V$
r _{DS(on)}	Drain to Source On Resistance			150	Ω	$I_{D} = -1 \text{mA}, V_{GS} = 0 \text{V}$

PN5116 DYNAMIC ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

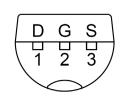
SYMBOL	CHARACTERISTIC	MIN	TYP.	MAX	UNITS	CONDITIONS
g fs	Forward Transconductance		4.5	-	mS	$V_{DS} = -15V, I_{D} = 1mA, f = 1kHz$
gos	Output Conductance		20	-	μS	
r _{DS(on)}	Drain to Source On Resistance			150	Ω	$I_D = 0A$, $V_{GS} = 0V$, $f = 1kHz$
C _{iss}	Input Capacitance		20	25		$V_{DS} = -15V$, $V_{GS} = 0V$, $f = 1MHz$
			5		pF	$V_{DS} = 0V, V_{GS} = 12V, f = 1MHz$
C_{rss}	Reverse Transfer Capacitance		6			$V_{DS} = 0V$, $V_{GS} = 7V$, $f = 1MHz$
			6	7		$V_{DS} = 0V$, $V_{GS} = 5V$, $f = 1MHz$
e _n	Equivalent Noise Voltage		20		nV/√Hz	$V_{DG} = 10V, I_D = 10mA, f = 1kHz$

PN5116 SWITCHING CHARACTERISTICS @ 25°C (unless otherwise noted)

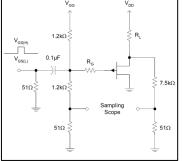
SYMBOL	CHARACTERISTIC		UNITS	CONDITIONS
t _{d(on)}	Turn On Time	12		V _{GS} (L) = -5V
t _r	Turn On Rise Time	30	ns	$V_{GS}(H) = 0V$
t _{d(off)}	Turn Off Time	10	113	See Switching Circuit
t _f	Turn Off Fall Time	50		Ç .

Note 1 - Absolute maximum ratings are limiting values above which PN5116 serviceability may be impaired. Note 2 - Pulse test: PW≤ 300 µs, Duty Cycle ≤ 3%

PN5116 SWITCHING CIRCUIT PARAMETERS


V _{DD}	-6V
V_{GG}	8V
R_L	2kΩ
R_G	390Ω
I _{D(on)}	-3mA

Available Packages:


PN5116 in TO-92 PN5116 in bare die.

Please contact Micross for full package and die dimensions

TO-92 (Bottom View)

