

SANYO Semiconductors DATA SHEET

BI-CMOS LSI For Digital Still Camera Main/Back-up Power Supply Switching IC

Overview

The LV5622LP is a main/back-up power supply switching IC for digital still cameras (DSC) that provices three power supply switching modes (main battery, button battery, and external power supply). The IC incorporates an internal voltage detector circuit and features low power consumption.

Functions

- LDO × 3 (2.4V, 3.0V, 3.2V)
- Input voltage detection circuit (2.45V)
- Output switching voltage-detection-circuit (2.42V)
- Reset voltage detection circuit (2.2V)

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	V _{CC} max1	VIN (main power supply input voltage)	10	V
Supply voltage 2	V _{CC} max2	VBATT (back-up power supply input voltage)	5	V
Supply voltage 3	V _{CC} max3	VBOOST (external power supply input voltage)	10	V
Allowable power dissipation	Pd max	Mounted on a specified board. *	550	mW
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-40 to +125	°C

* Specified board : 40mm \times 50mm \times 0.8mm, glass epoxy four-layer board (2S2P)

Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	V _{CC} 1	VIN (main power supply input voltage)	2.7 to 4.8	V
Supply voltage 2	V _{CC} 2	VBATT (back-up power supply input voltage)	3	V
Supply voltage 3	V _{CC} ³	VBOOST (external power supply input voltage)	3.5 to 6.0	V

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

SANYO Semiconductor Co., Ltd. TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

LV5622LP

Electrical Characteristics at $Ta = 25^{\circ}C$, VIN = 3.7V, unless otherwise specified.

Durante	0	Conditions			Ratings		11.2
Parameter	Symbol			min	typ	max	Unit
Current consumption 1	I _{IN}	No load, VIN = 3.7V, VBATT = 3.0V			14	25	μΑ
Current consumption 2	IBATT ¹	No load, VIN = 3.7V, VBATT = 3.0V			0	0.5	μΑ
Current consumption 3	I _{BATT} 2	No load, VIN = OPEN, VBATT	= 3.0V		1.0	2.5	μΑ
Voltage regulator							
Output voltage 1	VOUT1	I _{OUT} = 10mA		2.35	2.40	2.45	V
Dropout voltage 1	Vdrop1	I _{OUT} = 10mA			150	250	mV
Load stability 1	LDVOUT1	l _{OUT} = 100μΑ-30mA			10	100	mV
Input stability 1	LNVOUT1	VIN = 2.7V-4.8V, I _{OUT} = 1mA			5	20	mV
Output voltage temperature	_ΔVOUT1	Ta = -30°C to +85°C			±100		ppm/°C
coefficient 1	∆Ta · VOUT1						
Output voltage 2	VCHG	I _{OUT} = 3mA		2.94	3.00	3.06	V
Dropout voltage 2	Vdrop2	I _{OUT} = 3mA			150	250	mV
Load stability 2	LDVCHG	l _{OUT} = 100μA-15mA			10	100	mV
Input stability 2	LNVCHG	VIN = 3.4V-4.8V, I _{OUT} = 3mA			5	20	mV
Output voltage temperature		Ta = -30°C to +85°C			±100		ppm/°C
coefficient 2	∆Ta · VCHG						
Output voltage 3	VOUT3	I _{OUT} = 20mA		3.13	3.20	3.27	V
Dropout voltage 3	Vdrop3	I _{OUT} = 20mA			300	350	mV
Load stability 3	LDVOUT3	I _{OUT} = 100μA-60mA			10	100	mV
Input stability 3	LNVOUT3	VBOOST = 3.5V-5.2V, I _{OUT} =	20mA		5	20	mV
Output voltage temperature coefficient 3	$\frac{\Delta \text{VOUT3}}{\Delta \text{Ta} \cdot \text{VOUT3}}$	Ta = -30°C to +85°C			±100		ppm/°C
Voltage detection block							
BAT_OFF detection voltage	-VDET1	VIN voltage detection 1		2.40	2.45	2.50	V
BAT_OFF reset hysteresis width	+VDET1				100		mV
RESET detection voltage	-VDET2	VOUT voltage detection		2.15	2.20	2.25	V
RESET reset hysteresis width	+VDET2				100		mV
RESET reset delay time	tDELAY			0.3	1.00		ms
VIN detection voltage	-VDET3	VIN voltage detection 2		2.37	2.42	2.47	V
VIN reset hysteresis width	+VDET3				40		mV
Detection voltage temperature	$\frac{\Delta \text{-VDET1}}{\Delta \text{Ta} \cdot \text{-VDET1}}$	Ta = -30°C to +85°C			±100		ppm/°C
Detection voltage temperature	$\frac{\Delta \text{-VDET2}}{\Delta \text{Ta} \cdot \text{-VDET2}}$	Ta = -30°C to +85°C			±100		ppm/°C
Detection voltage temperature	$\frac{\Delta \text{-VDET3}}{\Delta \text{Ta} \cdot \text{-VDET3}}$	Ta = -30°C to +85°C			±100		ppm/°C
Sink current	ISINIK	VDS = 0.5V	BAT OFF	1.0			mA
	ONNE	VIN = VBATT = 2.0V	RESET	1.0			mA
Leakage current		VOUT = 7V, VIN = 7V BAT OFF				0.5	μA
	LLAN	RESET				0.5	цА
VBATT side on resistance	RONBATT	VIN = OPEN VBATT = 3.0V Jour = 50004			15	50	0
SW_VOUT side on resistance	RONSW	VIN = OPEN, VBATT = 3.0V, IOUT = 3.0V			50	80	0
		ISWVOUT = 1mA					
PULL_UPV side on resistance	R _{ON} PULL	VIN = 3, PULL_UPV = 3.0V, IPULLUPV = 1mA			15	50	Ω

Continued on next page.

Continued from preceding page.								
Peremeter	Cumbol	Conditions	Ratings			Linit		
Falameter	Symbol	Conditions	min	typ	max	Unit		
Control block								
SEL ON retention voltage	V _{SEL} ON	H Active	1.5			V		
SEL OFF retention voltage	V _{SEL} OFF				0.3	V		
BACK_CNT ON retention voltage	VBACKON	H Active	0.8VOUT			V		
BACK_CNT OFF retention voltage	VBACKOFF				0.2VOUT	V		
SW_VOUT ON retention voltage	V _{SW} ON	L Active			VOUT-2.0	V		
SW_VOUT OFF retention voltage	V _{SW} OFF		VOUT-0.5			V		
PULL_UPON ON retention voltage	V _{UP} ON	H Active	VOUT-0.5			V		
PULL_UPON OFF retention voltage	V _{UP} OFF				VOUT-2.0	V		
DC_IN ON retention voltage	V _{DCIN} ON				0.3	V		
DC_IN OFF retention voltage	V _{DCIN} OFF		2.0			V		

Package Dimensions

unit : mm (typ)

3318

Pin Assignment

100

Block Diagram

Output voltage switching

SEL pin	Supply voltage VIN	LDO1	VBATT M1	LDO3	VOUT
SEL = L	VIN > 2.42V	ON	OFF	OFF	2.4V (LDO1 output)
	VIN < 2.42V	OFF	ON	OFF	VBATT
SEL = H	VIN > 2.42V	OFF	OFF	ON	3.2V (LDO3 output)
	VIN < 2.42V	OFF	ON	OFF	VBATT

Pin Fun	ictions	-		
Pin No.	Pin Name	Pin Description	Pin voltage	Equivalent Circuit
1	SW_ON	SW_ON input pin.		
14	SW_VOUT	SW_VOUT pin.	0/VOUT	
2	PULL_UPON	PULL_UPON input pin.		VOUT
15	PULL_UPV	PULL_UPV output pin.	0/VOUT	
7	BAT_OFF	BAT_OFF voltage detector output pin.	0/VOUT	
3	GND	Ground.		
4		DC_IN output pin.		S (5) (2) (4)
5	DC_IN	DC_IN input pin.		
6	RESET	RESET voltage detector output pin.	0/VOUT	
8	BACK_CNT	BACK_CNT input pin.		
9	VCHG	LDO2 output pin.	3.0V	VOUT

Continued on next page.

Continued	Continued from preceding page.							
Pin No.	Pin Name	Pin Description	Pin voltage	Equivalent Circuit				
10	VIN	Main battery power supply input pin.						
11	VOUT	VOUT output pin.	2.6V/3.2V					
13	VBATT	Back-up power supply input pin.						
12	VBOOST	External power supply voltage input pin.						
16	SEL	SEL input pin.		VOUT 16 52kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ				

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of July, 2008. Specifications and information herein are subject to change without notice.