

M61518FP

Audio Signal Processor with Rec/Play Back Amplifier

REJ03F0205-0201 Rev.2.01 Mar 31, 2008

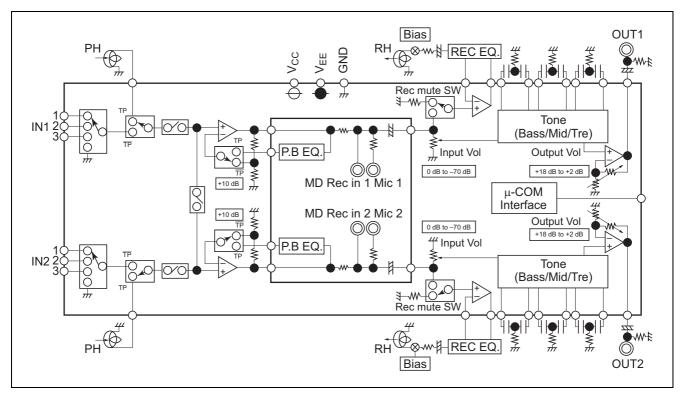
Description

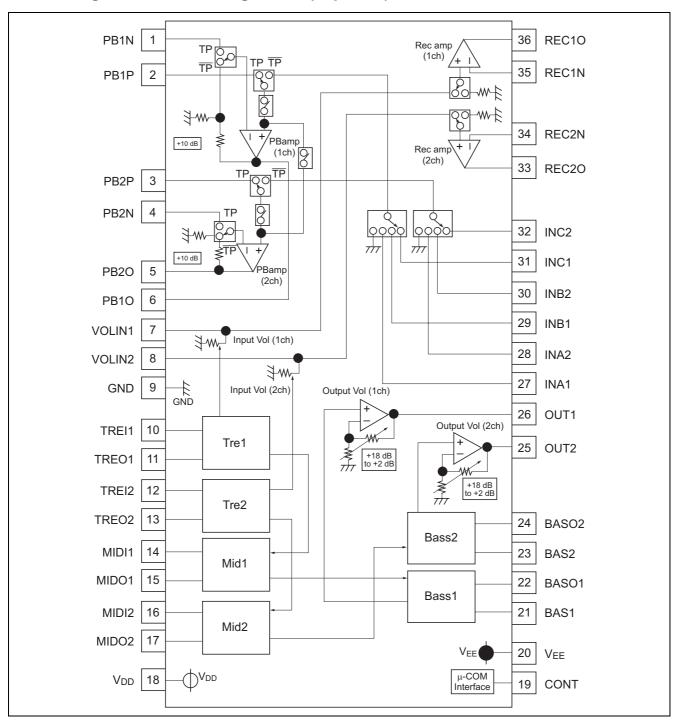
The M61518FP is an audio signal processor suitable for the mini component system with the cassette tape.

The circuit includes Selector for selecting input source, REC/Play back amp., Tone control and 2ch Electronic Volume.

Features

- Input selector Built-in 3 Input selector + Tape Input
- Play Back Amp. Built-in Low noise P. B Amp
- REC Amp. Built-in Low noise REC Amp (Mute function built-in)
- Tone Control Bass/Mid/Treble –10 to +10 dB/2 dB step
- Electronic Volume with high voltage transistor 0 to -86 dB, -∞ dB (Input Vol: 0 to -70 dB, -∞ dB) (Output Vol: +18 to +2 dB)


Application


Mini Stereo, Receiver, etc.

Recommended Operating Conditions

Recommended supply voltage: $V_{CC} = 4.5 \text{ V} (Typ), V_{EE} = -4.5 \text{ V} (Typ)$

System Block Diagram

Block Diagram And Pin Configuration (Top View)

Pin Description

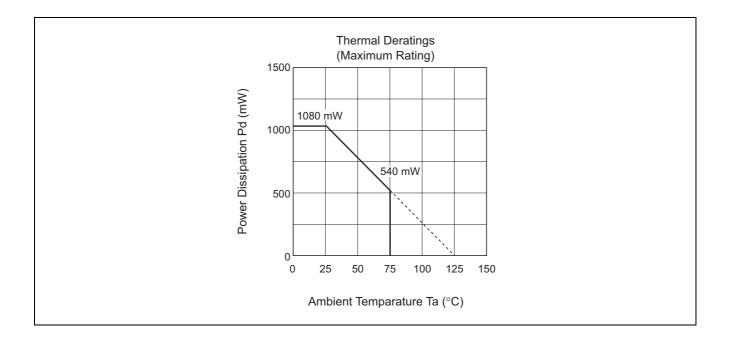
Pin No.	Name	Function
1, 4	PB1N, PB2N	Input pin of PB amp (Negative)
2, 3	PB1P, PB2P	Input pin of PB amp (Positive)
5, 6	PB1O, PB2O	Output pin of PB amp
7, 8	VOLIN1, VOLIN2	Input pin of volume
9	GND	GND pin
10, 11, 12, 13	TREI, TREO	Frequency setting pin in the tone control (Tre)
14, 15, 16, 17	MIDI, MIDO	Frequency setting pin in the tone control (Mid)
18	VDD	Positive power supply
19	CONT	Microcomputer data Input pin
20	VEE	Negative supply pin
21, 22, 23, 24	BASI, BASO	Frequency setting pin in the tone control (Bass)
25, 26	OUT1, OUT2	Output pin
27, 28	INA1, INA2	Selector A Input pin
29, 30	INB1, INB2	Selector B Input pin
31, 32	INC1, INC2	Selector C Input pin
33, 34	REC10, REC20	Output pin of REC amp
35, 36	REC1N, REC2N	Input pin of REC amp

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Condition
Plus and minus power supply difference	VDD-VEE	+10.5	V	
Power dissipation	Pd	1080	mW	Ta ≤ 25°C
Thermal derating	Κθ	10.8	mW/°C	Ta > 25°C* Circuit board
Operating temperature	Topr	-20 to +75	°C	
Storage temperature	Tstg	-40 to +125	°C	

Note: Circuit board

Print circuit board size: 70 mm \times 70 mm


Print circuit board thickness: 1.6 mm

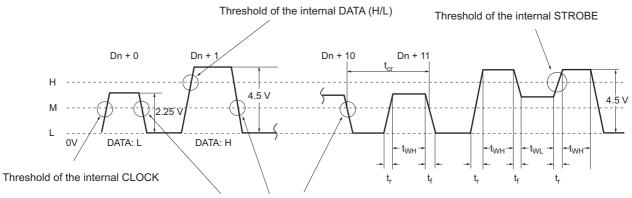
Print circuit board quality of the material: Glass epoxy

Single Cu pattern

Thickness of Cu: 18 μm

Pattern size of Cu: 0.25 mm (Width) \times 25 mm (Length) / Lead

Recommended Operating Conditions


 $(Ta = 25^{\circ}C \text{ unless otherwise noted})$

Item	Symbol	Min	Тур	Max	Unit
Positive supply voltage	VDD	4.25	4.5	4.75	V
Negative supply voltage	VEE	-4.75	-4.5	-4.25	V

Serial Data Control Format

(1) Signal wave shape

(CLOCK, DATA, STROBE)

The internal DATA latch at the falling edges of this clock signal.

(2) Control signal voltage regulation

			Limits			
Digital signal		Condition	Min	Тур	Max	Unit
L signal	L	VDD = 4.5 V, VEE = -4.5 V	GND	—	$0.2 \times VDD$	V
M signal	М	VDD = 4.5 V, VEE = -4.5 V	$0.3 \times VDD$	0.5 imes VDD	$0.7 \times VDD$	
H signal	Н	VDD = 4.5 V, VEE = -4.5 V	0.8 imes VDD		VDD	

(3) Control signal timing regulation

		Limits			
Item	Symbol	Min	Тур	Max	Unit
Cycle time of the digital signal	t _{cr}	4	—	—	μS
Pulse width of the digital signal ("H" level)	t _{WH}	1.6	—	—	
Pulse width of the digital signal ("L" level)	t _{WL}	1.6	—	—	
Rising time of digital signal	tr	—	—	0.4	
Falling time of digital signal	t _f	_	—	0.4	

Data Control Specification

(1) Data input address

Notes: 1. The interval of data transmission from the micro controller is over 0.1 s.

- This is waiting time for soft-switching to reduce the shock noise.
 - 2. Input only the control data at slot0 (slot1).

$(MSB) \leftarrow Input direction$

0	D00	D10	D20	D30	D40	D50	D60	D70	D80	D90	D100	D110	D120	D130	D140
slot	0	!	volume	Output			me	out volu	Inp		aoke	Kara		Selector	
1	D01	D11	D21	D31	D41	D51	D61	D71	D81	D91	D101	D111	D121	D131	D141
slot	1	0	REC Mute		control ble				control lid			1	control		

Initial setting

Output Volume Control

	D40	D30	D20	D10
+18 dB	0	0	0	0
+16 dB	0	0	0	1
+14 dB	0	0	1	0
+12 dB	0	0	1	1
+10 dB	0	1	0	0
+8 dB	0	1	0	1
+6 dB	0	1	1	0
+4 dB	0	1	1	1
+2 dB	1	0	0	0

Note: Do not input other date than the above.

Input Volume Control

	D90	D80	D70	D60	D50
0 dB	0	0	0	0	0
–2 dB	0	0	0	0	1
-4 dB	0	0	0	1	0
6 dB	0	0	0	1	1
–8 dB	0	0	1	0	0
–10 dB	0	0	1	0	1
–12 dB	0	0	1	1	0
–14 dB	0	0	1	1	1
–16 dB	0	1	0	0	0
–18 dB	0	1	0	0	1
–20 dB	0	1	0	1	0
–22 dB	0	1	0	1	1
–26 dB	0	1	1	0	0
–30 dB	0	1	1	0	1
–34 dB	0	1	1	1	0
–38 dB	0	1	1	1	1
-42 dB	1	0	0	0	0
-46 dB	1	0	0	0	1
–50 dB	1	0	0	1	0
–54 dB	1	0	0	1	1
–58 dB	1	0	1	0	0
-62 dB	1	0	1	0	1
–66 dB	1	0	1	1	0
–70 dB	1	0	1	1	1
_∞ dB	1	1	1	1	1

Stereo

Stereo	0	0	
Mono 1	0	1	
Mono 2	1	0	
Mono 1 + 2	1	1	

D110

D100

Selector Control

Karaoke Control

Selector	D140	D130	D120
TP	0	0	0
IN A	0	0	1
IN C	0	1	0
IN B	0	1	1
IN mute	1	1	1
Supply OFF	1	1	0

Note: Do not input other date than the above.

REC Mete Control

REC MUTE	D21
OFF	0
ON	1

Tone Control

Bass	D141	D131	D121	D111
Mid	D101	D91	D81	D71
Treble	D61	D51	D41	D31
+10 dB	0	1	0	1
+8 dB	0	1	0	0
+6 dB	0	0	1	1
+4 dB	0	0	1	0
+2 dB	0	0	0	1
0 dB	0	0	0	0
–2 dB	1	0	0	1
–4 dB	1	0	1	0
–6 dB	1	0	1	1
–8 dB	1	1	0	0
–10 dB	1	1	0	1

Note: Do not input other date than the above.

Note: Do not input other date than the above.

Power Off Setting Data

It's necessary to set up the Power off setting data when power off before 0.1 s.

Power off setting data reduce the power off shock noise.

Power off setting data

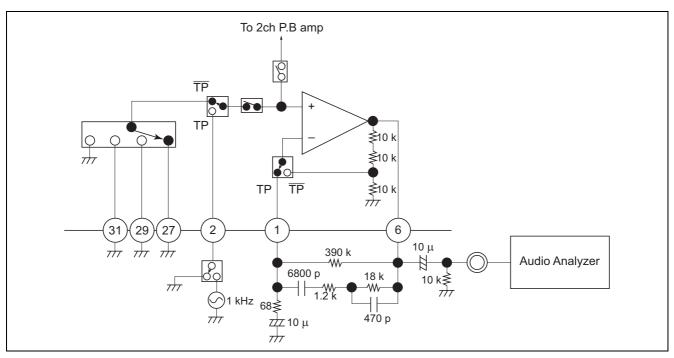
 $(\mathsf{MSB}) \gets \mathsf{Input}\ \mathsf{direction}$

Selector Karaoke			Input volume (–∞ dB)				1	Outpu	t volum	e	1	1			
1	1	0	:	*	1	1	1	1	1			*		0	slot0
D140	D130	D120	D110	D100	D90	D80	D70	D60	D50	D40	D30	D20	D10	D00]

Note: Karaoke is same data before the Power off setting. Output volume is same data before the Power off setting.

Selector Control

Selector	D140	D130	D120
TP	0	0	0
IN A	0	0	1
IN C	0	1	0
IN B	0	1	1
IN mute	1	1	1
Supply off	1	1	0

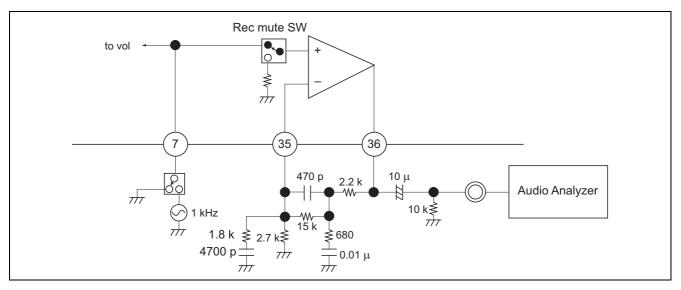

Note: Do not input other date than the above.

Electrical Characteristics

Ta = 25°C, VDD = 4.5 V, VEE = -4.5 V, f = 1 kHz, Vi = 100 mVrms, Input Vol = 0 dB, Output Vol = 18 dB, Bass = 0 dB, Mid = 0 dB, Treble = 0 dB, RL = 10 k\Omega unless otherwise noted.

		Limits				
ltem	Symbol	Min	Тур	Max	Unit	Condition
Positive power current	IDD	_	10	20	mA	No Input signal
Negative power current	IEE	-20	-10		mA	No Input signal
Pass gain	Gv1	8	10	12	dB	INA/B/C (Pin 27 to 32) \rightarrow PBP (Pin 5, 6)
	Gv2	16	18	20	dB	VOLIN (Pin 7, 8) \rightarrow OUT (Pin 25, 26)
Maximum output voltage	VOM1	2.2	2.4	_	Vrms	OUT (Pin 25, 26), THD = 1%
	VOM2	2.2	2.4	—	Vrms	RECO (Pin 33, 36), THD = 1 %
	VOM3	1.4	1.6	—	Vrms	PBO (Pin 5, 6), THD = 1%
Distortion	THD		0.02	0.08	%	INA/B/C (Pin 27 to 32) \rightarrow OUT (Pin 25, 26), Vo = 0.5 Vrms, BW = 400 to 30 kHz
Output noise voltage	VON1		6	15	μVrms	VOLIN (Pin 7, 8) \rightarrow OUT (Pin 25, 26) Input VOL = $-\infty$ dB, Output VOL = 2 dB, JIS-A, Rg = 0 Ω
	VON2		35	70	μVrms	VOLIN (Pin 7, 8) \rightarrow RECO (Pin 33, 36) JIS-A, Rg = 0 Ω
Input conversion noise voltage	VIN	_	1.0	1.9	μVrms	PB1P/2P (Pin 2, 3) \rightarrow PBO (Pin 5, 6) JIS-A, Rg = 0 Ω
Channel cross talk	СТ	-	-70	-60	dB	INA/B/C (Pin 27 to 32) \rightarrow OUT (Pin 25, 26), Vo = 2 Vrms, JIS-A, Rg = 0 Ω
Input impedance	Rvin	14	20	26	kΩ	VOLIN (Pin 7, 8)
Maximum attenuation	Volmin		-95	-90	dB	VOLIN (Pin 7, 8) \rightarrow OUT (Pin 25, 26), JIS-A, Input VOL = $-\infty$ dB, Output VOL = 2 dB, Vo = 2 Vrms
Boost amount (Bass)	GBB	7	10	13	dB	OUT (Pin 25, 26), Vo = 0.5 Vrms (Bass: 0 dB), Bass: 10 dB, f = 100 Hz
Cut amount (Bass)	GBC	-13	-10	-7	dB	OUT (Pin 25, 26), Vo = 0.5 Vrms (Bass: 0 dB), Bass: –10 dB, f = 100 Hz
Boost amount (Mid)	GMB	7	10	13	dB	OUT (Pin 25, 26), Vo = 0.5 Vrms (Mid: 0 dB), Mid: 10 dB, f = 1 kHz
Cut amount (Mid)	GMC	-13	-10	-7	dB	OUT (Pin 25, 26), Vo = 0.5 Vrms (Mid: 0 dB), Mid: –10 dB, f = 1 kHz
Boost amount (Treble)	GTB	7	10	13	dB	OUT (Pin 25, 26), Vo = 0.5 Vrms (Tre: 0 dB), Tre: 10 dB, f = 10 kHz
Cut amount (Treble)	GTC	-13	-10	-7	dB	OUT (Pin 25, 26), Vo = 0.5 Vrms (Tre: 0 dB), Tre: -10 dB, f = 10 kHz

P. B. Amp Measurement Circuit Figure


Input Conversion Noise Voltage

- Limits Typ: 1.0 μVrms (JIS-A) Max:1.9 μVrms (JIS-A)
- Measurement method
 - (1) Input signal (1 kHz) to PB1P (pin2) and measure output gain of PB1O (pin6).
 - (2) Measure output noise voltage of PB1O (pin6) and convert Input conversion noise voltage from output noise voltage.

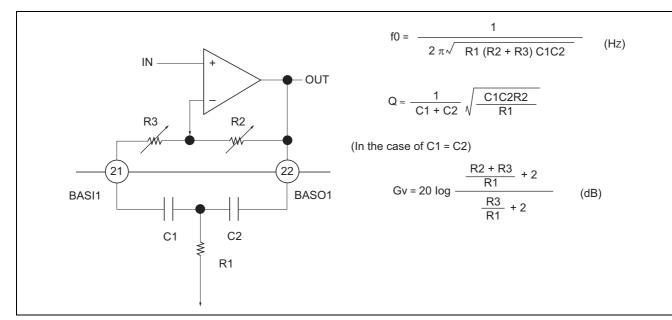
Maximum Output Voltage

- Limits
 Min: 1.4 Vrms (THD = 1%)
 Typ: 1.6 Vrms (THD = 1%)
- Measurement method Input signal (1 kHz) to PB1P (pin2) and measure output gain of PB1O (pin6) when output THD is 1%.

Rec Amp Measurement Circuit Figure

Output noise voltage

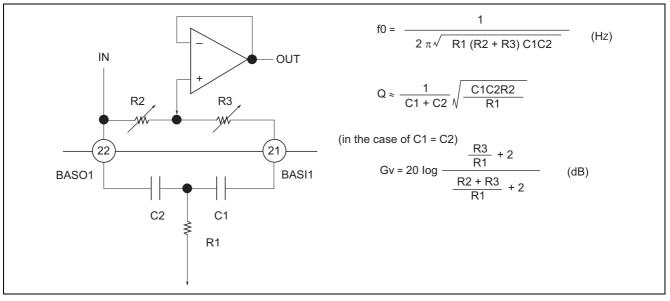
- Limits Typ: 35 µVrms (JIS-A) Max:70 µVrms (JIS-A)
- Measurement method Measure output noise voltage of REC10 (pin36) when VOLIN1 (pin7) is GND.


Maximum output voltage

- Limits Min: 2.2 Vrms (THD = 1%) Typ: 2.4 Vrms (THD = 1%)
- Measurement method Input signal (1 kHz) to VOLIN1 (pin7) and measure output gain of REC1O (pin36) when output THD is 1%.

Tone Control Equivalent Circuit

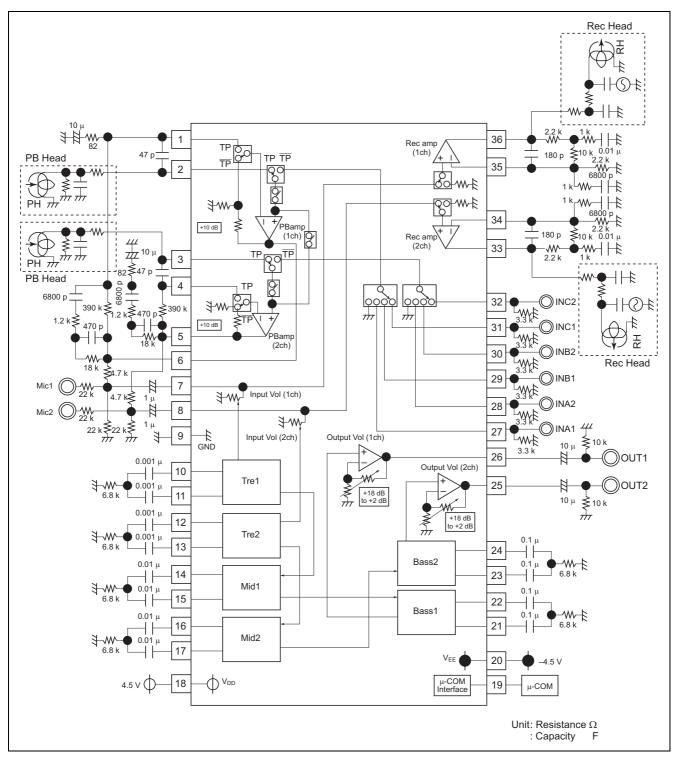
Bass, Mid, Treble Circuit composition is common


(1) Boost equivalent circuit

R2, R3 Standard value (Reference)

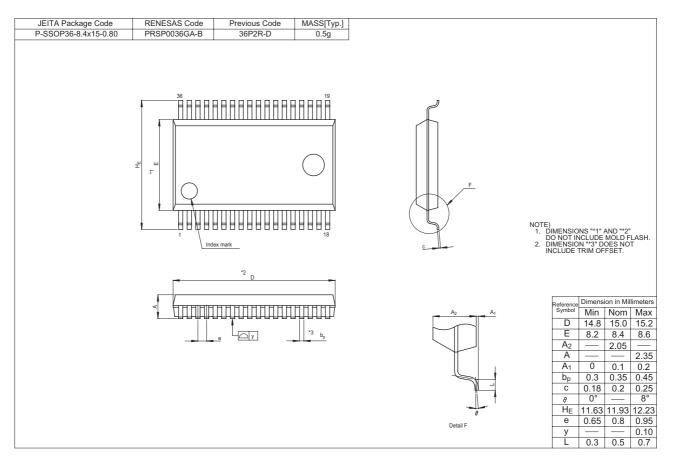
Gain		2 dB	4 dB	6 dB	8 dB	10 dB
Resistance	R2	10.46	18.77	25.36	30.61	34.77
(kΩ)	R3	26.79	18.48	11.89	6.64	2.48

(2) Cut equivalent circuit



R2, R3 Standard value (Reference)

Gain		–2 dB	–4 dB	-6 dB	–8 dB	–10 dB
Resistance	R2	10.46	18.77	25.36	30.61	34.77
(kΩ)	R3	26.79	18.48	11.89	6.64	2.48


RENESAS

Application Example

RENESAS

Package Dimensions

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the date this document, when exporting the products or the technology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whattowere for any damages incurred as a fast used in this document, but Renesas assumes no liability whattowere of neitary application states are the explorability of the total system before deciding about the applicability or otherwise in systems the failue on malfunction of which may cause a direct threads for the purpose, leave and mediation in the date this document. Jou should evaluate the information in this document, and the purpose of any damages incurred as a state of the total system before deciding about the applicability or therwise in systems the failue or malfunction of which may cause a direct threads to human life or create a tak of human nijury or whic

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com