Features

- $128 \mathrm{~K} \times 36,256 \mathrm{~K} \times 18$ memory configurations
- Supports high performance system speed - 200 MHz (3.2 ns Clock-to-Data Access)
- ZBT ${ }^{\text {TM }}$ Feature - No dead cycles between write and read cycles
- Internally synchronized output buffer enable eliminates the need to control $\overline{\mathrm{OE}}$
- Single R/W (READ/WRITE) control pin
- Positive clock-edge triggered address, data, and control signal registers for fully pipelined applications
- 4-word burst capability (interleaved or linear)
- Individual byte write ($\overline{\mathrm{BW}}_{1}-\mathrm{BW}_{4}$) control (May tie active)
- Three chip enables for simple depth expansion
- 3.3 V power supply ($\pm 5 \%$), 3.3 V I/O Supply (VDDQ)
- Optional- Boundary Scan JTAG Interface (IEEE 1149.1 compliant)
- Packaged in a JEDEC standard 100 -pin plastic thin quad flatpack (TQFP), 119 ball grid array (BGA) and 165 fine pitch ball grid array (fBGA)

Description

The IDT71V3556/58 are 3.3V high-speed 4,718,592-bit (4.5 Megabit) synchronous SRAMS. They are designed to eliminate dead bus cycles when turning the bus around between reads and writes, or writes and reads. Thus, they have been given the name $\mathrm{ZBT}^{T M}$, or Zero Bus Turnaround.

Address and control signals are applied to the SRAM during one clock cycle, and two cycles later the associated data cycle occurs, be it read or write.
The IDT71V3556/58 contain data I/0, address and control signal registers. Outputenable is the only asynchronous signal and can be used to disable the outputs at any given time.

A Clock Enable ($\overline{\mathrm{CEN}}$) pin allows operation of the IDT71V3556/58 to be suspended as long as necessary. All synchronous inputs are ignored when ($\overline{\mathrm{CEN}}$) is high and the internal device registers will hold their previous values.

There are three chip enable pins ($\overline{\mathrm{CE}} 1, \mathrm{CE} 2, \overline{\mathrm{CE}} 2$) that allow the user to deselect the device when desired. If any one of these three are not asserted when ADV/LD is low, no new memory operation can be initiated. However, any pending data transfers (reads or writes) will be completed. The data bus will tri-state two cycles after chip is deselected or a write is initiated.

Pin Description Summary

A0-A17	Address Inputs	Input	Synchronous
$\overline{\mathrm{C}} \overline{\mathrm{E}}_{1}, \mathrm{CE} 2, \overline{\mathrm{C}}_{2}$	Chip Enables	Input	Synchronous
$\overline{\mathrm{OE}}$	Output Enable	Input	Asynchronous
R/W	Read/Write Signal	Input	Synchronous
$\overline{C E N}$	Clock Enable	Input	Synchronous
$\overline{\mathrm{BW}} 1, \overline{\mathrm{BW}}_{2}, \overline{\mathrm{BW}}_{3}, \overline{\mathrm{BW}}_{4}$	Individual Byte Write Selects	Input	Synchronous
CLK	Clock	Input	N/A
ADV/ $\overline{\mathrm{LD}}$	Advance burst address / Load new address	Input	Synchronous
$\overline{\text { LBO }}$	Linear / Interleaved Burst Order	Input	Static
TMS	Test Mode Select	Input	Synchronous
TDI	Test Data Input	Input	Synchronous
TCK	Test Clock	Input	N/A
TDO	Test Data Output	Output	Synchronous
TRST	JTAG Reset (Optional)	Input	Asynchronous
ZZ	Sleep Mode	Input	Synchronous
//O0-//O31, I/Op1-//OP4	Data Input / Output	I/O	Synchronous
VDd, VdDQ	Core Power, I/O Power	Supply	Static
Vss	Ground	Supply	Static

JANUARY 2002

Description continued

The IDT71V3556/58 has an on-chip burst counter. In the burst mode, the IDT71V3556/58 can provide four cycles of data for a single address presented to the SRAM. The order of the burst sequence is defined by the $\overline{\mathrm{LBO}}$ input pin. The $\overline{\mathrm{LBO}}$ pin selects between linear and interleaved burst sequence. The ADV/ $\overline{\mathrm{LD}}$ signal is used to load a new

Pin Definition ${ }^{(1)}$
external address (ADV/ $/ \overline{L D}=L O W$) or increment the internal burstcounter (ADV/ $\overline{\mathrm{D}}=\mathrm{HIGH}$).

The IDT71V3556/58 SRAMs utilize IDT's latest high-performance CMOS process and are packaged in a JEDEC standard $14 \mathrm{~mm} \times 20 \mathrm{~mm}$ 100-pinthin plastic quad flatpack (TQFP) as well as a 119 ball grid array (BGA) and a 165 fine pitch ball grid array (fBGA).

| Symbol | Pin Function | I/O | Active | Description |
| :---: | :---: | :---: | :---: | :--- | :--- |
| A0-A17 | Address Inputs | । | N/A | Synchronous Address inputs. The address register is triggered by a combination of the rising edge of CLK,
 ADV/LD low, $\overline{\text { CEN }}$ low, and true chip enables. |
| ADV/LD | Advance / Load | । | N/A | ADV/ $\overline{L D}$ is a synchronous input that is used to load the internal registers with new address and control when it
 is sampled low at the rising edge of clock with the chip selected. When ADV/ $\overline{\text { LD }}$ is low with the chip
 deselected, any burst in progress is terminated. When ADV/LD is sampled hight then the internal burst counter
 is advanced for any burst that was in progress. The extemal addresses are ignored when ADV/LD is sampled |
| high. | | | | |

NOTE:

Functional Block Diagram

Functional Block Diagram

Recommended DC Operating
Conditions

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{DD}	Core Supply Voltage	3.135	3.3	3.465	V
$\mathrm{~V}_{\mathrm{DDQ}}$	VO Supply Voltage	3.135	3.3	3.465	V
$\mathrm{~V}_{\text {SS }}$	Supply Voltage	0	0	0	V
$\mathrm{~V}_{\mathrm{H}}$	Input High Voltage - Inputs	2.0	-	VDD +0.3	V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage -//O	2.0	-	$\mathrm{V}_{\mathrm{DDQ}}+0.3^{(2)}$	V
V_{IL}	Input Low Voltage	$-0.3^{(1)}$	-	0.8	V

NOTES:

1. VIL (min.) $=-1.0 \mathrm{~V}$ for pulse width less than tcyc/2, once per cycle.
2. V_{I} (max.) $=+6.0 \mathrm{~V}$ for pulse width less than tcyc/2, once per cycle.

Recommended Operating Temperature and Supply Voltage

Grade	Temperature $^{(1)}$	VSs	VDD	VDDQ
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0 V	$3.3 \mathrm{~V} \pm 5 \%$	$3.3 \mathrm{~V} \pm 5 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0 V	$3.3 \mathrm{~V} \pm 5 \%$	$3.3 \mathrm{~V} \pm 5 \%$

NOTES:
5281 tol 05

1. TA is the "instant on" case temperature.

Pin Configuration-128K x 36

NOTES:

1. Pins 14,16 and 66 do not have to be connected directly to VDD as long as the input voltage is $\geq \mathrm{V} / \mathrm{H}$.
2. Pins 83 and 84 are reserved for future 8 M and 16 M respectively.
3. Pin 64 does not have to be connected directly to VSs as long as the input voltage is \leq VIL; on the latest die revision this pin supports ZZ (sleep mode).

Pin Configuration - 256K x 18

Top View 100 TQFP

NOTES:

1. Pins 14,16 and 66 do not have to be connected directly to VDD as long as the input voltage is $\geq \mathrm{VIH}$.
2. Pins 83 and 84 are reserved for future 8 M and 16 M respectively.
3. Pin 64 does not have to be connected directly to Vss as long as the input voltage is \leq VIL; on the latest die revision this pin supports ZZ (sleep mode).

Absolute Maximum Ratings ${ }^{(1)}$

Symbol	Rating	 Industrial Values	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM $^{(3,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD	V
VTERM $^{(4,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD +0.5	V
VTERM $^{(5,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDDQ +0.5	V
TA $^{(7)}$	Commercial Operating Temperature	-0 to +70	${ }^{\circ} \mathrm{C}$
	Industrial Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
	Temperature Under Bias	-55 to +125	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
PT	Power Dissipation	2.0	W
IOUT	DC Output Current	50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. VDD terminals only.
3. VDDQ terminals only.
4. Input terminals only.
5. I/O terminals only.
6. This is a steady-state DC parameter that applies after the power supply has reached its nominal operating value. Power sequencing is not necessary; however, the voltage on any input or I/O pin cannot exceed VDDQ during power supply ramp up.
7. TA is the "instant on" case temperature.

100 Pin TQFP Capacitance ${ }^{(1)}$ (TA = +25 ${ }^{\circ}$ C, f $=1.0 \mathrm{MHz}$)

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=3 \mathrm{dV}$	5	pF
CVo	I/O Capacitance	Vout $=3 \mathrm{dV}$	7	pF

5281 tol 07

119 BGA Capacitance ${ }^{(1)}$
($\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=3 \mathrm{dV}$	7	pF
C/o	V/O Capacitance	Vout $=3 \mathrm{dV}$	7	pF
5281 tbl 07a				

165 fBGA Capacitance ${ }^{(1)}$
$\left(T A=+25^{\circ} C, f=1.0 \mathrm{MHz}\right)$

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=3 \mathrm{dV}$	TBD	pF
CIVO	I/O Capacitance	Vout $=3 \mathrm{dV}$	TBD	pF

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

Pin Configuration - 128K x 36, 119 BGA

5281 dw 13A
Top View

Pin Configuration-256K x 18, 119 BGA

Top View

NOTES:

1. J 3 , J 5 , and R 5 do not have to be directly connected to VdD as long as the input voltage is $\geq \mathrm{V} \mathrm{H}$.
2. G4 and A 4 are reserved for future 8 M and 16 M respectively.
3. These pins are NC for the "S" version or the JTAG signal listed for the "SA" version.
4. TRST is offered as an optional JTAG reset if required in the application. If not needed, can be left floating and will internally be pulled to VDD.
5. Pin $\mathrm{T7}$ does not have to be connected directly to Vss as long as the input voltage is \leq VLL; on the latest die revision this pin supports ZZ (sleep mode).

Pin Configuration - 128K x 36, 165 fBGA

	1	2	3	4	5	6	7	8	9	10	11
A	$N C^{(2)}$	A7	$\overline{\mathrm{CE}} 1$	$\overline{\mathrm{BW}} 3$	$\overline{\mathrm{BW}} 2$	$\overline{\mathrm{C}} 2$	$\overline{C E N}$	ADV/ $\overline{\mathrm{LD}}$	$\mathrm{NC}^{(2)}$	A8	NC
B	NC	A6	CE2	$\overline{\mathrm{BW}} 4$	$\overline{\mathrm{BW}}_{1}$	CLK	R/W	$\overline{\mathrm{OE}}$	$\mathrm{NC}^{(2)}$	A9	NC ${ }^{(2)}$
C	VOp3	NC	VDDQ	VSS	VSS	VSS	VSS	VSS	VDDQ	NC	//Op2
D	//O17	//O16	VDDQ	VDD	VSS	Vss	VSS	VDD	VDDQ	V/O15	//O14
E	//O19	//O18	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	//O13	//O12
F	//O21	//O20	VDDQ	VDD	VSS	VSS	Vss	VDD	VDDQ	//O11	//O10
G	//O23	//O22	VDDQ	VDD	Vss	VSS	Vss	VDD	VDDQ	//O9	//O8
H	VDD ${ }^{(1)}$	VDD ${ }^{(1)}$	NC	VDD	VSS	VSS	Vss	VDD	NC	NC	$\mathrm{NC} /$ Z $^{(5)}$
J	//O25	//O24	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	//07	//O6
K	//O27	//O26	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	//O5	//O4
L	//O29	//O28	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	//O3	//O2
M	//O31	//O30	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	VO1	//O0
N	VOp4	NC	VDDQ	VSS	$\mathrm{NC} / \overline{\mathrm{TRST}}{ }^{(3,4)}$	NC	VDD ${ }^{(1)}$	VSS	VDDQ	NC	//OP1
P	NC	NC ${ }^{(2)}$	A5	A2	NC/TDI ${ }^{(3)}$	A1	NC/TDO ${ }^{(3)}$	A10	A13	A14	NC
R	$\overline{\mathrm{LBO}}$	$N C^{(2)}$	A4	A3	NC/TMS ${ }^{(3)}$	A0	NC/TCK ${ }^{(3)}$	A11	A12	A15	A16

5281 tbl 25

Pin Configuration-256K x 18, 165 fBGA

	1	2	3	4	5	6	7	8	9	10	11
A	NC ${ }^{(2)}$	A7	$\overline{\mathrm{C}} \mathrm{E}_{1}$	$\overline{B W}_{2}$	NC	$\overline{\mathrm{C}} \mathrm{E}_{2}$	$\overline{C E N}$	ADV/ $\overline{L D}$	NC ${ }^{(2)}$	A8	A10
B	NC	A6	CE2	NC	$\overline{\mathrm{BW}} 1$	CLK	R/W	$\overline{\mathrm{OE}}$	NC ${ }^{(2)}$	A9	NC ${ }^{(2)}$
C	NC	NC	VDDQ	Vss	Vss	Vss	Vss	Vss	VDDQ	NC	VOP1
D	NC	//08	VdDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	NC	V/07
E	NC	V/09	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	NC	V/06
F	NC	VO10	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	NC	V/05
G	NC	V/011	VdDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	NC	$1 / \mathrm{O}_{4}$
H	VDD ${ }^{(1)}$	VDD ${ }^{(1)}$	NC	VDD	Vss	Vss	Vss	VDD	NC	NC	$\mathrm{NC} / Z^{5}{ }^{\text {5 }}$
J	//012	NC	VDDQ	VDD	Vss	VSs	Vss	VDD	VDDQ	//O3	NC
K	//013	NC	VDDQ	VDD	Vss	Vss	Vss	VDD	VdDQ	/O2	NC
L	VO14	NC	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	VO1	NC
M	VO15	NC	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	/00	NC
N	/Op2	NC	VDDQ	Vss	$\mathrm{NC} / \overline{\text { RRS }}^{(18,4)}$	NC	VDD ${ }^{(1)}$	Vss	VDDQ	NC	NC
P	NC	NC ${ }^{(2)}$	A5	A2	$\mathrm{NC} / \mathrm{TDI}^{(3)}$	A1	$\mathrm{NC} / \mathrm{TDO}^{(3)}$	A11	A14	A15	NC
R	$\overline{\text { LBO }}$	NC ${ }^{(2)}$	A4	A3	NC/TMS ${ }^{(3)}$	A0	NC/TCK ${ }^{(3)}$	A12	A13	A16	A17

NOTES:
5281 bl 25a

1. $\mathrm{H} 1, \mathrm{H} 2$, and N 7 do not have to be directly connected to VDD as long as the input voltage is $\geq \mathrm{VIH}$.
2. A9, B9, B11, A1, R2 and P2 are reserved for future 9M, 18M, 36M, 72M, 144M and 288 M respectively.
3. These pins are NC for the "S" version or the JTAG signal listed for the "SA" version.
4. TRST is offered as an optional JTAG reset if required in the application. If not needed, can be left floating and will internally be pulled to VDD.
5. Pin H11 does not have to be connected directly to Vss as long as the input voltage is \leq VIL; on the latest die revision this pin supports ZZ (sleep mode).

IDT71V3556, IDT71V3558, 128K x 36, 256K x 18, 3.3V Synchronous SRAMS with

Synchronous Truth Table ${ }^{(1)}$

$\overline{C E N}$	R/W	Chip ${ }^{(5)}$ Enable	ADV/ $\overline{\mathrm{L}}$	$\overline{\mathrm{BW}} \mathrm{x}$	ADDRESS USED	PREVIOUS CYCLE	CURRENT CYCLE	$\begin{gathered} \mathrm{I} / 0 \\ \text { (2 cycles later) } \end{gathered}$
L	L	Select	L	Valid	External	X	LOAD WRITE	$D^{(7)}$
L	H	Select	L	X	External	X	LOAD READ	$Q^{(7)}$
L	X	X	H	Valid	Internal	LOAD WRITE / BURST WRITE	BURST WRITE (Advance burst counter) ${ }^{(2)}$	$D^{(7)}$
L	X	X	H	X	Internal	LOAD READ / BURST READ	BURST READ (Advance burst counter) ${ }^{(2)}$	$Q^{(7)}$
L	X	Deselect	L	X	X	X	DESELECT or STOP ${ }^{(3)}$	HiZ
L	X	X	H	X	X	DESELECT / NOOP	NOOP	Hiz
H	X	X	X	X	X	X	SUSPEND ${ }^{(4)}$	Previous Value

NOTES:

1. $L=V_{I L}, H=V_{I H}, X=$ Don't Care.
2. When $A D V / \overline{L D}$ signal is sampled high, the internal burst counter is incremented. The R / \bar{W} signal is ignored when the counter is advanced. Therefore the nature of the burst cycle (Read or Write) is determined by the status of the R/W signal when the first address is loaded at the beginning of the burst cycle.
3. Deselect cycle is initiated when either ($\overline{C E}_{1}$, or $\overline{C E}_{2}$ is sampled high or CE2 is sampled low) and ADV/ $\overline{\mathrm{LD}}$ is sampled low at rising edge of clock. The data bus will tri-state two cycles after deselect is initiated.
4. When $\overline{\mathrm{CEN}}$ is sampled high at the rising edge of clock, that clock edge is blocked from propogating through the part. The state of all the internal registers and the I/ Os remains unchanged.
5. To select the chip requires $\overline{C E}_{1}=L, \overline{C E}_{2}=L, C E 2=H$ on these chip enables. Chip is deselected if any one of the chip enables is false.
6. Device Outputs are ensured to be in High-Z after the first rising edge of clock upon power-up.
7. Q - Data read from the device, D - data written to the device.

Partial Truth Table for Writes ${ }^{(1)}$

OPERATION	$\mathrm{R} / \overline{\mathrm{W}}$	$\overline{\mathrm{BW}} 1$	$\overline{\mathrm{BW}}_{2}$	$\overline{\mathrm{BW}}_{3}{ }^{(3)}$	$\overline{\mathrm{BW}} 4^{(3)}$
READ	H	X	X	X	X
WRITE ALL BYTES	L	L	L	L	L
WRITE BYTE 1 (//O[0:7], /OPP1) ${ }^{(2)}$	L	L	H	H	H
WRITE BYTE 2 (//O[8:15], //Op2) ${ }^{2 / 2}$	L	H	L	H	H
WRITE BYTE 3 (//O[16:23], //OP3) ${ }^{(2,3)}$	L	H	H	L	H
WRITE BYTE 4 (//O[24:31], //Op4) ${ }^{(2,3)}$	L	H	H	H	L
NO WRITE	L	H	H	H	H

NOTES:

1. $\mathrm{L}=\mathrm{V} \mathrm{V}, \mathrm{H}=\mathrm{V}_{\mathrm{I}}, \mathrm{X}=$ Don't Care.
2. Multiple bytes may be selected during the same cycle.
3. N/A for X18 configuration.

IDT71V3556, IDT71V3558, 128K x 36, 256K x 18, 3.3V Synchronous SRAMS with
ZBT ${ }^{\mathrm{TM}}$ Feature, 3.3V I/O, Burst Counter, and Pipelined Outputs
Commercial and Industrial Temperature Ranges
Interleaved Burst Sequence Table ($\overline{\mathrm{LBO}}=\mathrm{VdD}$)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	0	0	1	1	1	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	1	0	0	1	0	0

NOTE:

1. Upon completion of the Burst sequence the counter wraps around to its initial state and continues counting.

Linear Burst Sequence Table ($\overline{\mathrm{LBO}}=\mathrm{Vss}$)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	1	0	1	1	0	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	0	0	0	1	1	0

NOTE:
5281 tbl 11

1. Upon completion of the Burst sequence the counter wraps around to its initial state and continues counting.

Functional Timing Diagram ${ }^{(1)}$

CYCLE	n+29	$\mathrm{n}+30$	n+31	n+32	n+33	n+34	n+35	n+36	n+37
CLOCK	\uparrow	4	\uparrow	\triangle	\uparrow	\uparrow	\triangle	\uparrow	\pm
$\begin{gathered} \text { ADDRESS }{ }^{(2)} \\ (\text { A0 - A16) } \end{gathered}$	A29	A30	A31	A32	A33	A34	A35	A36	A37
$\frac{\text { CONTROL }^{(2)}}{(\mathrm{R} / \overline{\mathrm{W}}, \mathrm{ADV} / \overline{\mathrm{LD}}, \overline{\mathrm{BW}} \mathrm{x})}$	C29	C30	C31	C32	C33	C34	C35	C36	C37
$\begin{gathered} \text { DATA }^{(2)} \\ \text { I/O }[0: 31], \mathrm{I} / \mathrm{P}[1: 4] \end{gathered}$	D/Q27	D/Q28	D/Q29	D/Q30	D/Q31	D/Q32	D/Q33	D/Q34	D/Q35

NOTES:
5281 drw 03

1. This assumes $\overline{\mathrm{CEN}}, \overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}, \overline{\mathrm{CE}}_{2}$ are all true.
2. All Address, Control and Data_In are only required to meet set-up and hold time with respect to the rising edge of clock. Data_Out is valid after a clock-to-data delay from the rising edge of clock.

Device Operation - Showing Mixed Load, Burst, Deselect and NOOP Cycles ${ }^{(2)}$

Cycle	Address	R/W	ADV/LD	$\overline{\mathrm{CE}}{ }^{(1)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	I/O	Comments
n	A0	H	L	L	L	X	X	X	Load read
n+1	X	X	H	X	L	X	X	X	Burst read
n+2	A1	H	L	L	L	X	L	Q0	Load read
n+3	X	X	L	H	L	X	L	Q0+1	Deselect or STOP
n+4	X	X	H	X	L	X	L	Q1	NOOP
n+5	A2	H	L	L	L	X	X	Z	Load read
n+6	X	X	H	X	L	X	X	Z	Burst read
n+7	X	X	L	H	L	X	L	Q2	Deselect or STOP
n+8	А3	L	L	L	L	L	L	Q2+1	Load write
n+9	X	X	H	X	L	L	X	Z	Burst write
n+10	A4	L	L	L	L	L	X	D3	Load write
n+11	X	X	L	H	L	X	X	D_{3+1}	Deselect or STOP
$\mathrm{n}+12$	X	X	H	X	L	X	X	D4	NOOP
n+13	A5	L	L	L	L	L	X	Z	Load write
n+14	A6	H	L	L	L	X	X	Z	Load read
n+15	A_{7}	L	L	L	L	L	X	D5	Load write
$\mathrm{n}+16$	X	X	H	X	L	L	L	Q6	Burst write
n+17	A8	H	L	L	L	X	X	D7	Load read
n+18	X	X	H	X	L	X	X	D7+1	Burst read
n+19	A9	L	L	L	L	L	L	Q8	Load write

NOTES:

1. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE}_{2}=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.
2. $H=$ High; $L=$ Low; $X=$ Don't Care; $Z=$ High Impedance.

Read Operation ${ }^{(1)}$

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	$\mathrm{ADV} / \overline{\mathrm{LD}}$	$\overline{\mathrm{CE}}^{2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathbf{x}$	$\overline{\mathrm{OE}}$	$\mathrm{I} / 0$	Comments
n	A 0	H	L	L	L	X	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	X	X	L	X	X	X	Clock Setup Valid
$\mathrm{n}+2$	X	X	X	X	X	X	L	Q	Contents of Address Ao Read Out

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

IDT71V3556, IDT71V3558, 128K x 36, 256K x 18, 3.3V Synchronous SRAMS with
ZBT™ Feature, 3.3V I/O, Burst Counter, and Pipelined Outputs
Commercial and Industrial Temperature Ranges

Burst Read Operation (1)

Cycle	Address	R/W	ADV/ $\overline{\mathrm{LD}}$	$\overline{\mathrm{CE}}{ }^{(2)}$	$\overline{C E N}$	$\overline{B W} x$	$\overline{\mathrm{OE}}$	I/O	Comments
n	A0	H	L	L	L	X	X	X	Address and Control meet setup
$n+1$	X	X	H	X	L	X	X	X	Clock Setup Valid, Advance Counter
$\mathrm{n}+2$	X	X	H	X	L	X	L	Q0	Address Ao Read Out, Inc. Count
n+3	X	X	H	X	L	X	L	Q0+1	Address A_{0+1} Read Out, Inc. Count
$\mathrm{n}+4$	X	X	H	X	L	X	L	Q0+2	Address $\mathrm{A}_{0}+2$ Read Out, Inc. Count
$n+5$	A1	H	L	L	L	X	L	Q0+3	Address A_{0+3} Read Out, Load A_{1}
n+6	X	X	H	X	L	X	L	Q0	Address A0 Read Out, Inc. Count
n+7	X	X	H	X	L	X	L	Q1	Address A1 Read Out, Inc. Count
n+8	A2	H	L	L	L	X	L	Q1+1	Address A1+1 Read Out, Load A2

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=L, \overline{\mathrm{CE}}_{2}=L$ and $C E_{2}=H . \overline{\mathrm{CE}}=H$ is defined as $\overline{\mathrm{CE}}_{1}=H, \overline{C E}_{2}=H$ or $C E_{2}=L$.

Write Operation ${ }^{(1)}$

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	$\mathrm{ADV} / \overline{\mathrm{LD}}$	$\overline{\mathrm{CE}}^{2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathbf{x}$	$\overline{\mathrm{OE}}$	$\mathrm{I} / 0$	Comments
n	A 0	L	L	L	L	L	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	X	X	L	X	X	X	Clock Setup Valid
$\mathrm{n}+2$	X	X	X	X	L	X	X	D_{0}	Write to Address A_{0}

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=L$ is defined as $\overline{\mathrm{CE}}_{1}=L, \overline{\mathrm{CE}}_{2}=L$ and $\mathrm{CE} 2=H . \overline{\mathrm{CE}}=H$ is defined as $\overline{\mathrm{CE}}_{1}=H, \overline{\mathrm{CE}}_{2}=H$ or $C E_{2}=L$

Burst Write Operation (1)

Cycle	Address	R/W	ADV/ $\overline{L D}$	$\overline{\mathrm{CE}}{ }^{2)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	I/0	Comments
n	A0	L	L	L	L	L	X	X	Address and Control meet setup
n+1	X	X	H	X	L	L	X	X	Clock Setup Valid, Inc. Count
n+2	X	X	H	X	L	L	X	Do	Address Ao Write, Inc. Count
n+3	X	X	H	X	L	L	X	Do+1	Address Ao+1 Write, Inc. Count
$\mathrm{n}+4$	X	X	H	X	L	L	X	D0+2	Address A0+2 Write, Inc. Count
n+5	A1	L	L	L	L	L	X	Do+3	Address $\mathrm{A}_{0}+3$ Write, Load A_{1}
n+6	X	X	H	X	L	L	X	D0	Address Ao Write, Inc. Count
n+7	X	X	H	X	L	L	X	D1	Address A_{1} Write, Inc. Count
n+8	A_{2}	L	L	L	L	L	X	D_{1+1}	Address A_{1+1} Write, Load A_{2}

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; ? = Don't Know; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE}_{2}=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{C E}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$

IDT71V3556, IDT71V3558, 128K x 36, 256K x 18, 3.3V Synchronous SRAMS with
ZBT™ Feature, 3.3V I/O, Burst Counter, and Pipelined Outputs

Read Operation with Clock Enable Used (1)

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	ADV/ $\overline{\mathrm{LD}}$	$\overline{\mathrm{CE}}^{2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	$\mathrm{I} / 0$	Comments
n	A_{0}	H	L	L	L	X	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	X	X	H	X	X	X	Clock $n+1$ lgnored
$\mathrm{n}+2$	$\mathrm{~A}_{1}$	H	L	L	L	X	X	X	Clock Valid
$\mathrm{n}+3$	X	X	X	X	H	X	L	Q_{0}	Clock Ignored. Data Q_{0} is on the bus.
$\mathrm{n}+4$	X	X	X	X	H	X	L	Q_{0}	Clock lgnored. Data Qo is on the bus.
$\mathrm{n}+5$	$\mathrm{~A}_{2}$	H	L	L	L	X	L	Q_{0}	Address A_{0} Read out (bus trans.)
$\mathrm{n}+6$	$\mathrm{~A}_{3}$	H	L	L	L	X	L	Q_{1}	Address A_{1} Read out (bus trans.)
$\mathrm{n}+7$	$\mathrm{~A}_{4}$	H	L	L	L	X	L	Q_{2}	Address A2 Read out (bus trans.)

NOTES:

1. $H=$ High; $L=$ Low; $X=$ Don't Care; $Z=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

Write Operation with Clock Enable Used (1)

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	$\mathrm{ADV} / \overline{\mathrm{LD}}$	$\overline{\mathrm{CE}}^{2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathbf{x}$	$\overline{\mathrm{OE}}$	$\mathrm{I} / \mathbf{0}$	Comments
n	A_{0}	L	L	L	L	L	X	X	Address and Control meet setup.
$\mathrm{n}+1$	X	X	X	X	H	X	X	X	Clock n+1 lgnored.
$\mathrm{n}+2$	$\mathrm{~A}_{1}$	L	L	L	L	L	X	X	Clock Valid.
$\mathrm{n}+3$	X	X	X	X	H	X	X	X	Clock lgnored.
$\mathrm{n}+4$	X	X	X	X	H	X	X	X	Clock Ignored.
$\mathrm{n}+5$	$\mathrm{~A}_{2}$	L	L	L	L	L	X	D 0	Write Data Do
$\mathrm{n}+6$	$\mathrm{~A}_{3}$	L	L	L	L	L	X	D 1	Write Data D1
$\mathrm{n}+7$	$\mathrm{~A}_{4}$	L	L	L	L	L	X	D 2	Write Data D2

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $X=$ Don't Care; $Z=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $C E_{2}=\mathrm{L}$.

IDT71V3556, IDT71V3558, 128K x 36, 256K x 18, 3.3V Synchronous SRAMS with
ZBT™ Feature, 3.3V I/O, Burst Counter, and Pipelined Outputs
Commercial and Industrial Temperature Ranges
Read Operation with CHIP Enable Used (1)

Cycle	Address	R/W	ADV/LD	$\overline{\mathrm{CE}}{ }^{2)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{O E}$	$1 / 0^{(3)}$	Comments
n	X	X	L	H	L	X	X	?	Deselected.
n+1	X	X	L	H	L	X	X	?	Deselected.
n+2	A0	H	L	L	L	X	X	Z	Address and Control meet setup
n+3	X	X	L	H	L	X	X	Z	Deselected or STOP.
n+4	A1	H	L	L	L	X	L	Q0	Address A0 Read out. Load A1.
n+5	X	X	L	H	L	X	X	Z	Deselected or STOP.
n+6	X	X	L	H	L	X	L	Q1	Address A1 Read out. Deselected.
n+7	A2	H	L	L	L	X	X	Z	Address and control meet setup.
n+8	X	X	L	H	L	X	X	Z	Deselected or STOP.
n+9	X	X	L	H	L	X	L	Q2	Address A2 Read out. Deselected.

NOTES:
5281 tbl 19

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; ? = Don't Know; $\mathrm{Z}=$ High Impedance.
2. $\overline{C E}=L$ is defined as $\overline{C E}_{1}=L, \overline{C E}_{2}=L$ and $C E 2=H . \overline{C E}=H$ is defined as $\overline{C E}_{1}=H, \overline{C E}_{2}=H$ or $C E 2=L$.
3. Device Outputs are ensured to be in High-Z after the first rising edge of clock upon power-up.

Write Operation with Chip Enable Used (1)

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	$\mathrm{ADV} / \overline{\mathrm{LD}}$	$\overline{\mathrm{CE}}{ }^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathbf{x}$	$\overline{\mathrm{OE}}$	$\mathrm{I} / \mathbf{O}^{(3)}$	Comments
n	X	X	L	H	L	X	X	$?$	Deselected.
$\mathrm{n}+1$	X	X	L	H	L	X	X	$?$	Deselected.
$\mathrm{n}+2$	A	L	L	L	L	L	X	Z	Address and Control meet setup
$\mathrm{n}+3$	X	X	L	H	L	X	X	Z	Deselected or STOP.
$\mathrm{n}+4$	A 1	L	L	L	L	L	X	D 0	Address Do Write in. Load A 1.
$\mathrm{n}+5$	X	X	L	H	L	X	X	Z	Deselected or STOP.
$\mathrm{n}+6$	X	X	L	H	L	X	X	D 1	Address D1 Write in. Deselected.
$\mathrm{n}+7$	A 2	L	L	L	L	L	X	Z	Address and control meet setup.
$\mathrm{n}+8$	X	X	L	H	L	X	X	Z	Deselected or STOP.
$\mathrm{n}+9$	X	X	L	H	L	X	X	D 2	Address D2 Write in. Deselected.

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; ? $=$ Don't Know; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

DC Electrical Characteristics Over the Operating

Temperature and Supply Voltage Range (Vdd = 3.3V +/-5\%)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit			
\|lıl		Input Leakage Current	$V_{D D}=$ Max., $\mathrm{V}^{\prime} \mathrm{N}=0 \mathrm{~V}$ to V_{DD}	-	5	$\mu \mathrm{A}$		
\|	L			LBO Input Leakage Current ${ }^{(1)}$	VDd = Max., VIN = OV to Vdd	-	30	$\mu \mathrm{A}$
\|liol	Output Leakage Current	Vout $=0 \mathrm{~V}$ to VDDQ, Device Deselected	-	5	$\mu \mathrm{A}$			
VoL	Output Low Voltage	$\mathrm{lOL}=+8 \mathrm{~mA}, \mathrm{VdD}=\mathrm{Min}$.	-	0.4	V			
VOH	Output High Voltage	$\mathrm{IOH}=-8 \mathrm{~mA}, \mathrm{VDD}=\mathrm{Min}$.	2.4	-	V			

NOTE:
5281 tbl 21

1. The $\overline{\mathrm{LBO}}$ pin will be internally pulled to VDD if it is not actively driven in the application.

DC Electrical Characteristics Over the Operating

Temperature and Supply Voltage Range ${ }^{(1)}(\mathbf{V d D}=3.3 \mathrm{~V}+/-5 \%)$

Symbol	Parameter	Test Conditions	200MHz	166MHz		133MHz		100MHz		Unit
			Com'l Only	Com'l	Ind	Com'l	Ind	Com'l	Ind	
IDD	Operating Power Supply Current	Device Selected, Outputs Open, ADV/LD = X, VdD = Max., VIN \geq VIH or $\leq V_{I L}, f=$ fmax $^{(2)}$	400	350	360	300	310	250	255	mA
ISB1	CMOS Standby Power Supply Current	Device Deselected, Outputs Open, Vdd = Max., VIN \geq Vhd or $\leq \operatorname{VLD}$, f $=0^{(2,3)}$	40	40	45	40	45	40	45	mA
ISB2	Clock Running Power Supply Current	Device Deselected, Outputs Open, Vdd = Max., VIN \geq Vhd or < VLd, f $=f$ fmax ${ }^{(2.3)}$	130	120	130	110	120	100	110	mA
IsB3	Idle Power Supply Current	Device Selected, Outputs Open, $C E N \geq V^{\prime}, V_{d D}=M a x$., VIN \geq VHD or $\leq V$ LD, $f=$ fmax $^{(2,3)}$	40	40	45	40	45	40	45	mA

NOTES:
5281 tbl 22

1. All values are maximum guaranteed values.
2. At $f=f$ max, inputs are cycling at the maximum frequency of read cycles of $1 / t c y c ; f=0$ means no input lines are changing

AC Test Loads

AC Test Conditions
(VdDQ = 3.3V)

Input Pulse Levels	0 to 3 V
Input Rise/Fall Times	2 ns
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
AC Test Load	See Figure 1

Figure 2. Lumped Capacitive Load, Typical Derating

AC Electrical Characteristics

(Vdd = 3.3V +/-5\%, Commercial and Industrial Temperature Ranges)

Set Up Times

tse	Clock Enable Setup Time	1.5	-	1.5	-	1.7	-	2.0	-	ns
tsA	Address Setup Time	1.5	-	1.5	-	1.7	-	2.0	-	ns
tSD	Data In Setup Time	1.5	-	1.5	-	1.7	-	2.0	-	ns
tsw	Read/Write (R/W) Setup Time	1.5	-	1.5	-	1.7	-	2.0	-	ns
tSADV	Advance/Load (ADV/LD) Setup Time	1.5	-	1.5	-	1.7	-	2.0	-	ns
tsc	Chip Enable/Select Setup Time	1.5	-	1.5	-	1.7	-	2.0	-	ns
tsB	Byte Write Enable ($\overline{\mathrm{BW}} \mathrm{x}$) Setup Time	1.5	-	1.5	-	1.7	-	2.0	-	ns
Hold Times										
the	Clock Enable Hold Time	0.5	-	0.5	-	0.5	-	0.5	-	ns
tha	Address Hold Time	0.5	-	0.5	-	0.5	-	0.5	-	ns
thD	Data In Hold Time	0.5	-	0.5	-	0.5	-	0.5	-	ns
tHW	Read/Write (R/W) Hold Time	0.5	-	0.5	-	0.5	-	0.5	-	ns
thadv	Advance/Load (ADV/位) Hold Time	0.5	-	0.5	-	0.5	-	0.5	-	ns
thC	Chip Enable/Select Hold Time	0.5	-	0.5	-	0.5	-	0.5	-	ns
thB	Byte Write Enable ($\overline{\mathrm{BW}} \mathrm{x}$) Hold Time	0.5	-	0.5	-	0.5	-	0.5	-	ns

NOTES:
5281 tbl 24

1. $t F=1 / t \mathrm{CYC}$.
2. Measured as HIGH above 0.6 V dDQ and LOW below 0.4 VDDQ .
3. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state.
4. These parameters are guaranteed with the AC load (Figure 1) by device characterization. They are not production tested.
5. To avoid bus contention, the output buffers are designed such that tCHZ (device turn-off) is about 1 ns faster than tCLz (device turn-on) at a given temperature and voltage. The specs as shown do not imply bus contention because tcLz is a Min. parameter that is worse case at totally different test conditions (0 deg. $\mathrm{C}, 3.465 \mathrm{~V}$) than tchz, which is a Max. parameter (worse case at 70 deg. C, 3.135 V).
6. Commercial temperature range only.

Timing Waveform of Read Cycle ${ }^{(1,2,3,4)}$

[^0]Timing Waveform of Write Cycles ${ }^{(1,2,3,4,5)}$

1. $D\left(A_{1}\right)$ represents the first input to the external address $A_{1} . D\left(A_{2}\right)$ represents the first input to the external address $A_{2} ; D\left(A_{2}+1\right)$ represents the next input data in the burst sequence of the base address A_{2}, etc. where address bits A_{0} and A_{1} are advancing for the four word burst in the sequence defined by the state of the LBO input. CE2 timing transitions are identical but inverted to the CE1 and CE2 signals. For example, when
2. $R \overline{/ W}$ is don't care when the SRAM is bursting (ADV/ $\bar{L} \bar{D}$ sampled HIGH). The nature of the burst access (Read or Write) is fixed by the state of the R/W signal when new address and control are
 the actual data is presented to the SRAM.

Timing Waveform of Combined Read and Write Cycles ${ }^{(1,2,3)}$

NOTES: 2. CE_{2} timing transitions are identical but inverted to the $\overline{\mathrm{CE}_{1}}$ and $\overline{\mathrm{CE}}_{2}$ signals. For example, when $\overline{\mathrm{CE}}_{\overline{1}}$ and $\overline{\mathrm{CE}}_{2}$ are LOW on this waveform, CE_{2} is HIGH^{2}.
 the actual data is presented to the SRAM.

Timing Waveform of CEN Operation ${ }^{(1,2,3,4)}$

NOTES:

1. $Q\left(A_{1}\right)$ represents the first output from the external address $A_{1} . D\left(A_{2}\right)$ represents the input data to the $S_{R A M}$ corresponding to address A_{2}.
2. C_{2} timing transitions are identical but inverted to the $\overline{C_{E}} 1$ and $\bar{C} E_{2}$ signals. For example, when $\overline{C_{1}} 1$ and $\overline{\mathrm{C}} 2$ are $L O W$ on this waveform, CE 2 is $H_{\mathrm{G}} \mathrm{GH}$.
3. $\overline{C E N}$ when sampled high on the rising edge of clock will block that L-H transition of the clock from propogating into the SRAM. The part will behave as if the L-H clock transition did not occur. All internal registers in the SRAM will retain their previous state. the actual data is presented to the SRAM.

Timing Waveform of $\overline{\mathbf{C S}}$ Operation ${ }^{(1,2,3,4)}$

1. $Q\left(A_{1}\right)$ represents the first output from the external address $A_{1} . D\left(A_{3}\right)$ represents the input data to the $S R A M$ corresponding to address A_{3}.
2. CE_{2} timing transitions are identical but inverted to the $\overline{\mathrm{C}}_{1}$ and $\overline{\mathrm{C}}_{2}$ signals. For example, when $\overline{\mathrm{C}}_{1}$ and $\overline{\mathrm{C}}_{2}$ are LOW on this waveform, CE 2 is HIGH^{1}.
3. $\overline{C E N}$ when sampled high on the rising edge of clock will block that L-H transition of the clock from propogating into the SRAM. Thepart will behave as if the L-H clock transition did not occur. All internal registers in the SRAM will retain their previousstate.
4. Individual Byte Write signals $(\overline{\mathrm{BW}} \mathrm{x})$ mustbe valid onall write and burst-write cycles. A write cycle is initiated when $\mathrm{R} \overline{\mathrm{W}}$ signal is sampled LOW. The byte write information comes in two cycles before the actual data is presented to the SRAM.

JTAG Interface Specification (SA Version only)

NOTES:

1. Device inputs = All device inputs except TDI, TMS and TRST.
2. Device outputs $=$ All device outputs except TDO.
3. During power up, $\overline{\text { TRST }}$ could be driven low or not be used since the JTAG circuit resets automatically. $\overline{\text { TRST }}$ is an optional JTAG reset.

JTAG AC Electrical

Characteristics ${ }^{(1,2,3,4)}$

Symbol				
	Parameter	Min.	Max	Units
	JTAG Clock Input Period	100	-	ns
tJCH	JTAG Clock HIGH	40	-	ns
tJCL	JTAG Clock Low	40	-	ns
tJR	JTAG Clock Rise Time	-	$5^{(1)}$	ns
tJF	JTAG Clock Fall Time	-	$5^{(1)}$	ns
tJRST	JTAG Reset	50	-	ns
tJRSR	JTAG Reset Recovery	50	-	ns
tJCD	JTAG Data Output	-	20	ns
tJDC	JTAG Data Output Hold	0	-	ns
tJS	JTAG Setup	25	-	ns
tJH	JTAG Hold	25	-	ns

Scan Register Sizes

Register Name	Bit Size
Instruction (IR)	4
Bypass (BYR)	1
JTAG Identification (JIDR)	32
Boundary Scan (BSR)	Note (1)

|5281 tbl 03
NOTE:

1. The Boundary Scan Descriptive Language (BSDL) file for this device is available by contacting your local IDT sales representative.

NOTES:

1. Guaranteed by design.
2. $A C$ Test Load (Fig. 1) on external output signals.
3. Refer to AC Test Conditions stated earlier in this document.
4. JTAG operations occur at one speed (10 MHz). The base device may run at any speed specified in this datasheet.

JTAG Identification Register Definitions (SA Version only)

Instruction Field	Value	Description
Revision Number (31:28)	0×2	Reserved for version number.
IDT Device ID (27:12)	$0 \times 208,0 \times 20 \mathrm{~A}$	Defines IDT part number 71V3556SA and 71V3558SA, respectively.
IDT JEDEC ID (11:1)	0×33	Allows unique identification of device vendor as IDT.
ID Register Indicator Bit (Bit 0)	1	Indicates the presence of an ID register.

15281 tbl 02

Available JTAG Instructions

Instruction	Description	OPCODE
EXTEST	Forces contents of the boundary scan cells onto the device outputs ${ }^{(1)}$. Places the boundary scan register (BSR) between TDI and TDO.	0000
SAMPLE/PRELOAD	Places the boundary scan register (BSR) between TDI and TDO. SAMPLE allows data from device inputs ${ }^{(2)}$ and outputs ${ }^{(1)}$ to be captured in the boundary scan cells and shifted serially through TDO. PRELOAD allows data to be input serially into the boundary scan cells via the TDI.	0001
DEVICE_ID	Loads the JTAG ID register (JIDR) with the vendor ID code and places the register between TDI and TDO.	0010
HIGHZ	Places the bypass register (BYR) between TDI and TDO. Forces all device output drivers to a High-Z state.	0011
RESERVED	Several combinations are reserved. Do not use codes other than those identified for EXTEST, SAMPLE/PRELOAD, DEVICE_ID, HIGHZ, CLAMP, VALIDATE and BYPASS instructions.	0100
RESERVED		0101
RESERVED		0110
RESERVED		0111
CLAMP	Uses BYR. Forces contents of the boundary scan cells onto the device outputs. Places the bypass register (BYR) between TDI and TDO.	1000
RESERVED	Same as above.	1001
RESERVED		1010
RESERVED		1011
RESERVED		1100
VALIDATE	Automatically loaded into the instruction register whenever the TAP controller passes through the CAPTURE-IR state. The lower two bits '01' are mandated by the IEEE std. 1149.1 specification.	1101
RESERVED	Same as above.	1110
BYPASS	The BYPASS instruction is used to truncate the boundary scan register as a single bit in length.	1111

15281 tbl 04

NOTES:

1. Device outputs = All device outputs except TDO.
2. Device inputs = All device inputs except TDI, TMS, and TRST.

100-Pin Plastic Thin Quad Flatpack (TQFP) Package Diagram Outline

Rensions

NOTES:
ALL DIMENSIONINE AND TOLERANGING CONFORM TO ANSI Y14.5M-1982
42 TOP PACKAGE NAY BE SMALLER THAN BOTTOM PACKAGE BY . 15 mm
S datums A-日 and -o- to be determined at datum plane -H-
4 dimensicns a and e are to be determined at seating plane -C-
S DIMENSIONS aI AND E1 DO NOT INCLUDE NOLD PROTRUSION. ALLOWABLE
 SIZE OIMENSIONS INELUOING MOLD MSMATCH
A DETALS OF PIN 1 IDENIIFER IS OPTIGNAL BUT MUST BE LOCATED WTHIN
A DIMENSIDN D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PRUTRUSION 15 . OG MII IN EXCESS OF THE G UIMENSION AT MAXIMUM material condition. dambar cannot ee located on the lower radus OR THE FOO

8 EXACT SHAPE OF EACH CORNER IS OPIIONAL
Q THESE BIMENSIONS APPIY TO THE FLAT SECTION OF THE LEAD BETWEE 10 AND .25 mm FRDIM THE LEAD TI

10 ALL DIMENSIONS ARE IN MLLIMETERS
$11 \begin{aligned} & \text { THIS OUTUNE CONFORMS TO JEDEC FUELCATION } 95 \text { REGISTRATION MO-136, } \\ & \text { VARIATIUN DJ AND BX }\end{aligned}$

LAND PATTERN DIMENSIONS

119 Ball Grid Array (BGA) Package Diagram Outline

(119 BALL SHOWN)

(119 BALL)

$\begin{aligned} & \hline s \\ & \text { s } \\ & \text { u } \\ & \text { B } \\ & \hline \end{aligned}$	JEDEC VARIATION			N
	4 A			
	NIN	NOM	MAX	
A	-	2.15	2.36	
A1	. 50	. 60	. 70	
A2	-	-	1.20	
D	22.00 BSC			
01	20.32 日SC			
E	14.00 BSC			
E1	7.62 ESC			
M	17			3
ME	7			3
N	119			3
e	1.2785%			
b	60	75	90	5
c	. 51	. 56	. 61	
000	-	-	15	
bbb	-	-	. 25	
ccc	-	-	35	
ddd	-	-	. 30	
еее	-	-	10	

notes:
AL OIUENSIONNG AND TOLERANCINC CONFORM TO ANSI Y14.5M-1982
4 Seating plane and primary batum - -C- are defined by the SPHERICAL CROWNS OF THE SOLDER BALIS

3 "MQ" IS THE BALL MATRXX SIZE IN THE "D" DIRECTION "ME" IS THE BALL MATRXX SIZE IN THE "E" DIRECTION

4 PACKAGE NAY EXTEND TO EDGE PERIPHERY ANO MAY CONSIST OF NOLLING COMPQUND, EPOXY, METAL, CERAME OR OTHER MATERIAL
LS IIMENSION "b" I5 MEASURED AT THE MAXIMUM SOLDER GALL DAMETER, PARALLEL TO PRIMARY DATUM -C-

A "A1" ID CORNER MUST BE IDENTIFIED IDENTIFCATION MAY BE BY MEANS OF CHAMER, METALLIZED SR INK MARK. INDENTATION DR OTHER FEATURE
OF THE PACKAGE BBOYY. MARK MUST BE VISIBLE FROM TOP SURFACE

A ACtual 5hape of this feature is dPtional
8 AL DIUENSIONS ARE IN MLLIMETERS
this drawing conforms to jedec publication 95 resilitration ms-028, varlation AA

165 Fine Pitch Ball Grid Array (fBGA) Package Diagram Outline

NOTES:

All diuensioning and tolerancng conform to asme yit.5M-1994
"e" Represents the basic sollorr ball crid ptch
"m" rerpesenis the maximum solder ball matilix size
"n" represents the ballcount mmber
D) DMENSION b" IS MEASURED AT THE MAXIMMM 5OLDER BALL DIAMETER,
PARALLEL TO PRIMMRY DATUM - C-

"A1" ID CORNER ИUST BE IIEENTFIED BY CHAMFER, INK MARK, METALLIZED "A1" ID CORNER ИUST BE IDENTFIED BY CHANFER, INK MARK,
MARKING, INOENTATON OR DTER FEATURE CN PACKAGE BCOY
A IF "AA" ID CORNER IS ON PACKAGE BOOY, II MUST Be LOCATED WITHIN THE ZONE INDKATED
9 ALL DIMENSIONS ARE IN MLLIMETERS
(165 BALL)

Timing Waveform of $\overline{\text { OE Operation }}{ }^{(1)}$

NOTE:

1. A read operation is assumed to be in progress.

Ordering Information

[^1]5281 drw 12

Datasheet Document History

$\begin{aligned} & \text { 6/30/99 } \\ & \text { 8/23/99 } \end{aligned}$		Updated to new format
		Added SmartZBTfunctionality
	Pg. 4, 5	Added Note 4 and changed Pins 38, 42, and 43 to DNU
	Pg. 6	Changed U2-U6 to DNU
	Pg. 14	AddedSmartZBTACElectrical Characteristics
	Pg. 15	Improved tcd and toe(max) at 166 MHz
		Revised tchz(min) forf $\leq 133 \mathrm{MHz}$
		Revised tohz (max) for f $\leq 133 \mathrm{MHz}$
		Improved tch, tcl for f $\leq 166 \mathrm{MHz}$
		Improved setup times for $100-200 \mathrm{MHz}$
	Pg. 22	Added BGA package diagrams
	Pg. 24	Added DatasheetDocument History
10/4/99	Pg. 14	Revised ACElectrical Characteristics table
	Pg. 15	Revised tCHz to match tCLz and tCDC at 133MHz and 100MHz
12/31/99		RemovedSmartfunctionality
		Added Industrial Temperature range offerings at the 100 to 166 MHz speed grades.
04/30/00	Pg. 5, 6	Insertclarification note to Recommended Operating Temperature and Absolute Max Ratingstables
	Pg. 6	AddBGA capacitance table
	Pg. 5,6, 7	Add note to TQFP and BGA Pin Configurations; corrected typo in pinout
	Pg. 21	Add 100pinTQFP package Diagram Outline
05/26/00		Add new package offering, $13 \times 15 \mathrm{~mm} 165 \mathrm{fBGA}$
	Pg. 23	Correct 119BGA Package Diagram Outline
07/26/00	Pg. 5-8	Add ZZ sleep mode reference note to BG119, PK100 and BQ165 pinouts
	Pg. 8	Update BQ165 pinout
	Pg. 23	UpdateBG119 package diagram outline dimensions
10/25/00		Remove Preliminary status
	Pg. 8	Add note to pin N5 on BQ165, reserved for JTAG TRST
1/24/02	Pg. 1-8, 22,23,27	Added JTAG "SA" versionfunctionality

for SALES:

800-345-7015 or 408-727-6116
fax: 408-492-8674
www.idt.com
for Tech Support:
sramhelp@idt.com
800-544-7726, x4033

[^0]: NOTES: $Q\left(A_{1}\right)$ represents the first output from the external address $A_{1} . Q\left(A_{2}\right)$ represents the first output from the external address $A_{2} ; Q\left(A_{2+1}\right)$ represents the next output data in the burst sequence of the base address A 2 , etc. where address bits A 0 and A 1 are advancing for the four word burst in the sequence defined by the state of the LBO input. 2. CE_{2} timing transitions are identical but inverted to the $\overline{\mathrm{C}}_{1}$ and $\overline{\mathrm{C}}_{2}$ signals. For example, when
 4. $R \bar{W}$ is don't care when the SRAM is bursting (ADV/ $\overline{/ D}$ sampled $H I G H$). The nature of the burst access (Read or Write) is fixed by the state of the R / \bar{W} signal when new address and control are loaded into the SRAM.

[^1]: * Commercial temperature range only
 ** JTAG (SA Version) is not available with 100-pin TQFP package

