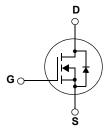


FDA24N50F **N-Channel MOSFET 500V, 24A, 0.2**Ω

Features

• $R_{DS(on)} = 0.166\Omega$ (Typ.)@ $V_{GS} = 10V$, $I_D = 12A$

Ğ D S


- Low Gate Charge (Typ. 65nC)
- Low C_{rss} (Typ. 32pF)
- · Fast Switching
- · 100% Avalanche Tested
- Improved dv/dt Capability
- · RoHS Compliant

Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advance technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficient switching mode power supplies and active power factor correction.

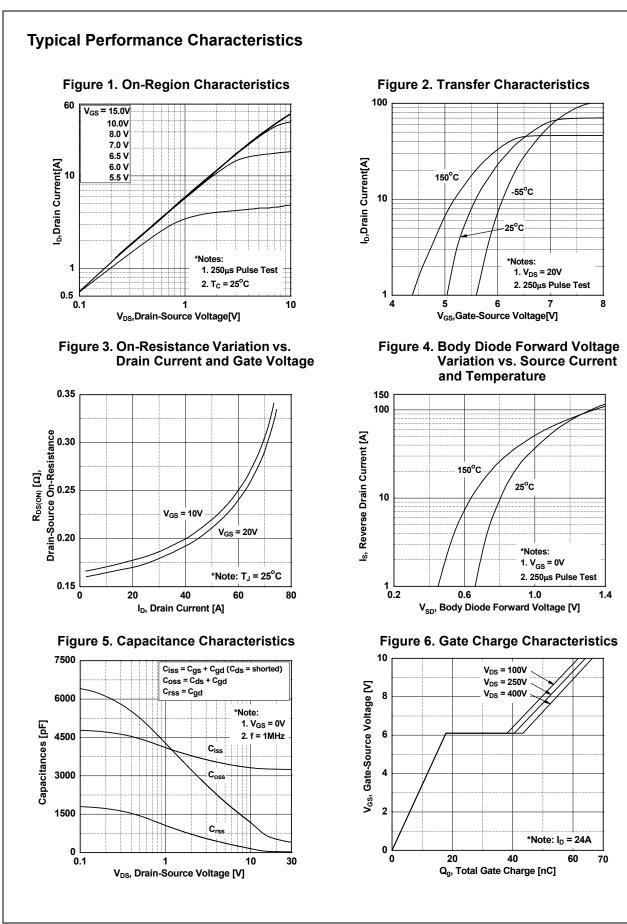
MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

TO-3PN

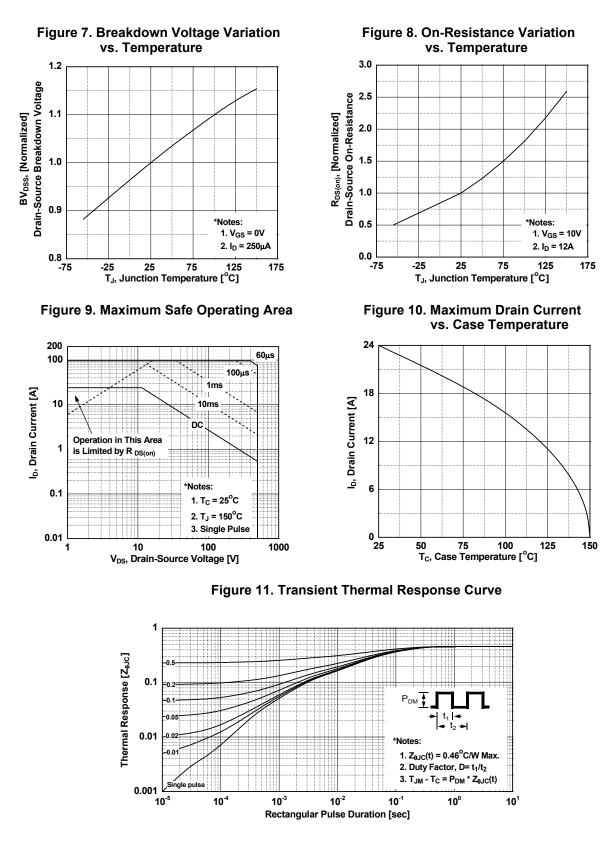
Symbol	Parameter			Ratings	Units	
V _{DSS}	Drain to Source Voltage			500	V	
V _{GSS}	Gate to Source Voltage			±30	V	
I _D	Drain Current	-Continuous ($T_C = 25^{\circ}C$)		24		
		-Continuous ($T_C = 100^{\circ}C$)		14	— A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	96	Α	
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	1872	mJ	
I _{AR}	Avalanche Current Repetitive Avalanche Energy		(Note 1)	24	Α	
E _{AR}			(Note 1)	27	mJ	
dv/dt	Peak Diode Recovery dv/d	lt	(Note 3)	20	V/ns	
P _D	Dewer Dissignation	$(T_{C} = 25^{\circ}C)$		270	W	
	Power Dissipation	- Derate above 25°C		2.2	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C	

Thermal Characteristics

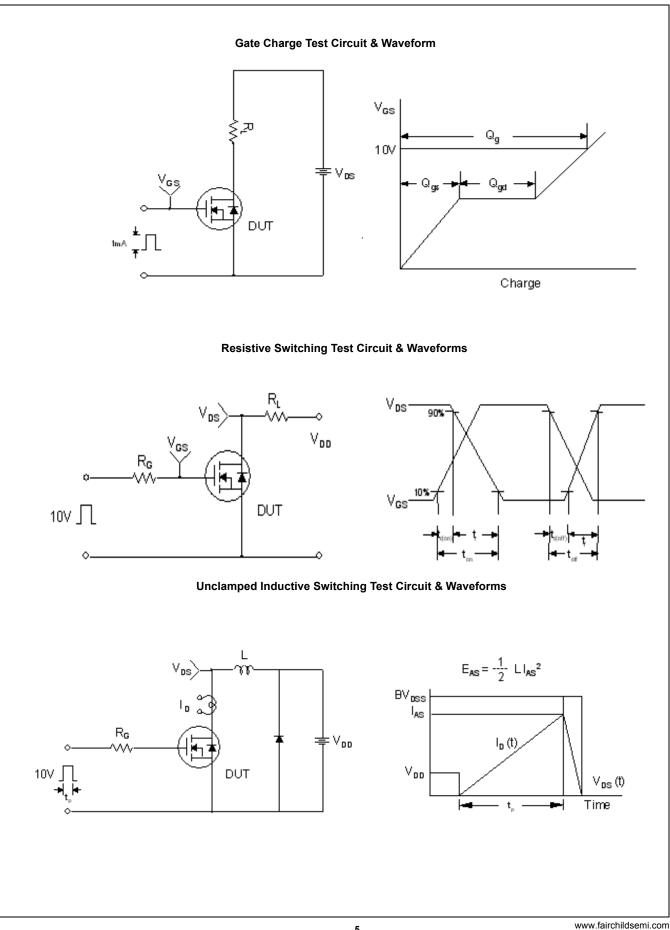
Symbol	Parameter	Ratings	Units
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	0.46	
$R_{\theta CS}$	Thermal Resistance, Case to Sink Typ.	0.24	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	40	

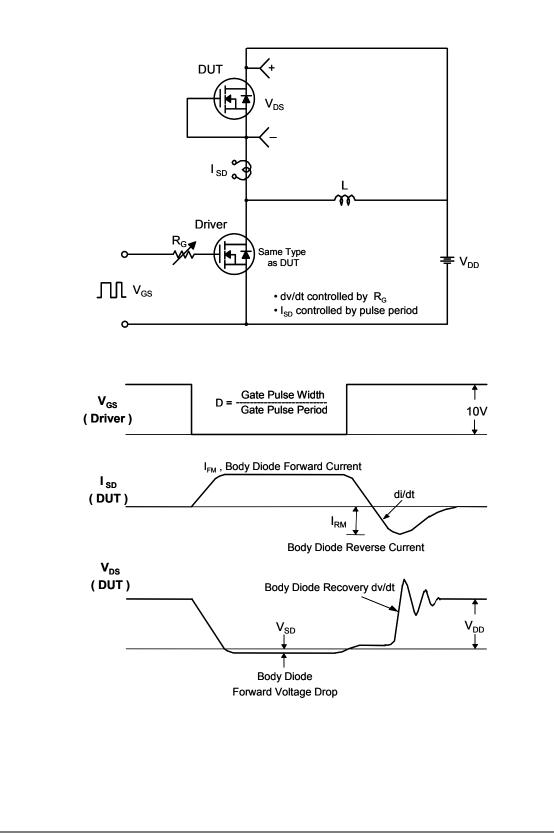

February 2012

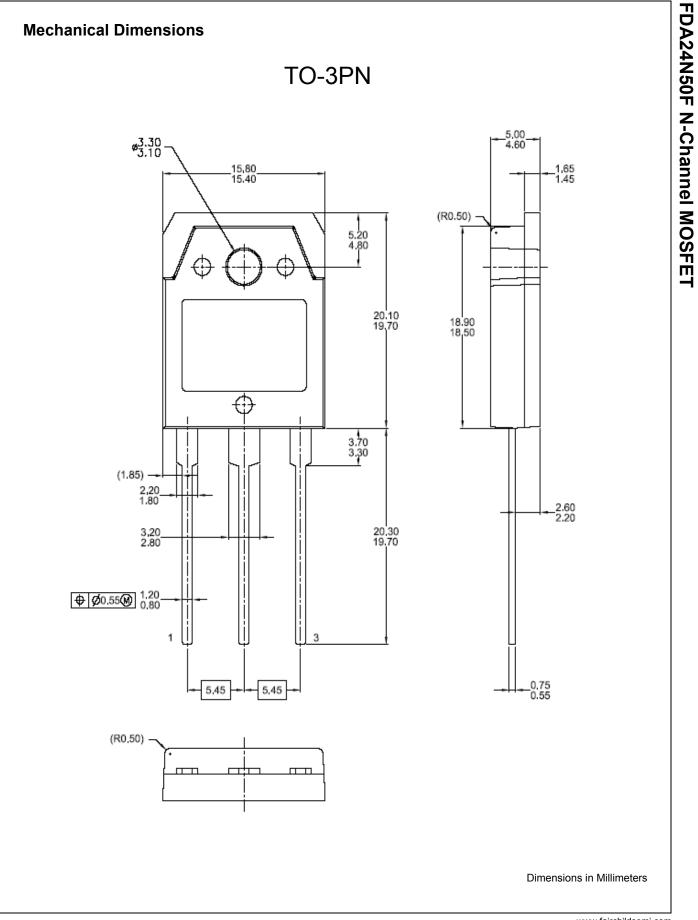
		Packa	PackageReel SizeTapeTO-3PN-		e Width		Quantity 30			
		TO-3				-				
Electrica	l Char	•acteristics ⊤ _c =	= 25ºC unles	s otherwi	se noted					
Symbol		Parameter			Test Condition	s	Min.	Тур.	Max.	Units
Off Charac	teristic	:S						Ľ	<u>.</u>	
BV _{DSS}	Drain to Source Breakdown Voltage $I_D = 250 \mu A, V_{GS} = 0V, T_J = 250 \mu A$		= 25°C	500	-	-	V			
ΔBV_{DSS}		Breakdown Voltage Temperature				000				
ΔT_{J}	Coeffic			I _D = 2	I_D = 250µA, Referenced to 25 ^o C		-	0.6	-	V/°C
			V _{DS} = 500V, V _{GS} = 0V		-	-	1			
DSS	Zero G	ate Voltage Drain Curr	rent	$V_{\rm DS} = 400V, T_{\rm C} = 125^{\rm o}{\rm C}$		-	-	10	μA	
I _{GSS}	Gate to	Body Leakage Currer	nt		±30V, V _{DS} = 0V		-	-	±100	nA
	toriotio	•		00	20			1	J	
On Charac		s hreshold Voltage		V	V _{DS} , I _D = 250μA		3.0	-	5.0	V
V _{GS(th)}		-	sistanco		10V, I _D = 12A		-	0.166	0.2	ν Ω
R _{DS(on)}	Static Drain to Source On Resistance Forward Transconductance		SISTALICE		20V, I _D = 12A	(Note 4)	-	30	- 0.2	S S
n	Forwar									0
9 _{FS}	Forwar			v _{DS} =	200, 10 - 12A	(14010 4)				1
Dynamic C				V _{DS} =	200,10 - 124	(1010 4)				
Dynamic C	Charact					(NOIC 4)	-	3240	4310	pF
Dynamic C _{Ciss}	Charact	eristics		V _{DS} =	25V, V _{GS} = 0V				4310 600	pF pF
Dynamic C C _{iss} C _{oss}	Character Input C Output	eristics apacitance	e		25V, V _{GS} = 0V		-	3240		
Dynamic C C _{iss} C _{oss} C _{rss}	Character Input C Output Revers	eristics apacitance Capacitance	e		25V, V _{GS} = 0V IHz		-	3240 450	600	pF
9FS Dynamic C C _{iss} C _{oss} C _{rss} Q _{g(tot)} Q _{gs}	Character Input C Output Revers Total G	eristics apacitance Capacitance e Transfer Capacitanc	e		25V, V _{GS} = 0V IHz 400V, I _D = 24A		-	3240 450 32	600 48	pF pF
Dynamic C C _{iss} C _{oss} C _{rss} Q _{g(tot)} Q _{gs}	Character Input C Output Revers Total G Gate to	eristics apacitance Capacitance e Transfer Capacitanc ate Charge at 10V			25V, V _{GS} = 0V IHz 400V, I _D = 24A		-	3240 450 32 65	600 48	pF pF nC
$\begin{array}{c} \textbf{Dynamic C}\\ \textbf{C}_{iss}\\ \textbf{C}_{oss}\\ \textbf{C}_{rss}\\ \textbf{C}_{rss}\\ \textbf{Q}_{g(tot)}\\ \textbf{Q}_{gs}\\ \textbf{Q}_{gd} \end{array}$	Charact Input C Output Revers Total G Gate to Gate to	eristics apacitance Capacitance e Transfer Capacitanc ate Charge at 10V o Source Gate Charge o Drain "Miller" Charge			25V, V _{GS} = 0V IHz 400V, I _D = 24A	(Note 4, 5)	-	3240 450 32 65 18	600 48 85 -	pF pF nC nC
Dynamic C C _{iss} C _{oss} C _{rss} Q _{g(tot)} Q _{gs}	Charact Input C Output Revers Total G Gate to Gate to	eristics apacitance Capacitance e Transfer Capacitanc ate Charge at 10V o Source Gate Charge o Drain "Miller" Charge			25V, V _{GS} = 0V IHz 400V, I _D = 24A		-	3240 450 32 65 18	600 48 85 -	pF pF nC nC
Dynamic C C_{iss} C_{oss} C_{rss} $Q_{g(tot)}$ Q_{gs} Q_{gd} Switching	Characte Input C Output Revers Total G Gate to Gate to Charac	eristics apacitance Capacitance e Transfer Capacitanc ate Charge at 10V o Source Gate Charge o Drain "Miller" Charge		V _{DS} = f = 1N V _{DS} = V _{GS} =	25V, V _{GS} = 0V IHz 400V, I _D = 24A 10V		-	3240 450 32 65 18	600 48 85 -	pF pF nC nC
Dynamic C C_{iss} C_{oss} C_{rss} $Q_{g(tot)}$ Q_{gs} Q_{gd} Switching	Character Input C Output Revers Total G Gate to Gate to Character Turn-Out	eristics apacitance Capacitance e Transfer Capacitanc ate Charge at 10V Source Gate Charge Drain "Miller" Charge		$V_{DS} =$ $f = 1N$ $V_{DS} =$ $V_{GS} =$ $V_{DD} =$	25V, V _{GS} = 0V IHz 400V, I _D = 24A 10V 250V, I _D = 24A		- - - - -	3240 450 32 65 18 26	600 48 85 - -	pF pF nC nC
Dynamic C C_{iss} C_{rss} $Q_{g(tot)}$ Q_{gs} Q_{gd} Switching $t_{d(on)}$	Charaction Input C Output Revers Total G Gate to Gate to Charaction Turn-Output	eristics apacitance Capacitance e Transfer Capacitanc ate Charge at 10V o Source Gate Charge Drain "Miller" Charge teristics n Delay Time		V _{DS} = f = 1N V _{DS} = V _{GS} =	25V, V _{GS} = 0V IHz 400V, I _D = 24A 10V 250V, I _D = 24A			3240 450 32 65 18 26 49	600 48 85 - -	pF pF nC nC nC
Dynamic C C_{iss} C_{oss} C_{rss} $Q_{g(tot)}$ Q_{gs} Q_{gd} Switching $t_{d(on)}$ t_r	Charact Input C Output Revers Total G Gate to Gate to Charact Turn-Ou Turn-Ou Turn-Ou	eristics apacitance Capacitance e Transfer Capacitanc ate Charge at 10V o Source Gate Charge Drain "Miller" Charge teristics n Delay Time n Rise Time		$V_{DS} =$ $f = 1N$ $V_{DS} =$ $V_{GS} =$ $V_{DD} =$	25V, V _{GS} = 0V IHz 400V, I _D = 24A 10V 250V, I _D = 24A		- - - - - -	3240 450 32 65 18 26 49 105	600 48 85 - - 108 220	pF pF nC nC nC nC
Dynamic C C_{iss} C_{rss} $Q_{g(tot)}$ Q_{gs} Q_{gd} Switching $t_{d(on)}$ t_r t_q $t_{d(off)}$ t_f	Characti Input C Output Revers Total G Gate to Gate to Characti Turn-Oi Turn-Oi Turn-Oi Turn-Oi Turn-Oi	eristics apacitance Capacitance e Transfer Capacitanc ate Charge at 10V o Source Gate Charge o Drain "Miller" Charge charge teristics n Delay Time n Rise Time ff Delay Time ff Fall Time		$V_{DS} =$ $f = 1N$ $V_{DS} =$ $V_{GS} =$ $V_{DD} =$	25V, V _{GS} = 0V IHz 400V, I _D = 24A 10V 250V, I _D = 24A	(Note 4, 5)	- - - - - -	3240 450 32 65 18 26 49 105 165	600 48 85 - - 108 220 340	pF pF nC nC nC nC nS ns
Dynamic C C_{iss} C_{rss} $Q_{g(tot)}$ Q_{gs} Switching $t_{d(on)}$ t_r $t_{d(off)}$ t_f Drain-Soul	Characte Input C Output Revers Total G Gate to Gate to Charace Turn-Oi Turn-Oi Turn-Oi Turn-Oi Turn-Oi	eristics apacitance Capacitance e Transfer Capacitanc ate Charge at 10V Source Gate Charge Drain "Miller" Charge Drain "Miller" Charge cteristics n Delay Time n Rise Time ff Delay Time	25	$V_{DS} =$ $f = 1N$ $V_{DS} =$ $V_{GS} =$ $V_{GS} =$ $R_{G} = 2$	25V, V _{GS} = 0V IHz 400V, I _D = 24A 10V 250V, I _D = 24A 25Ω	(Note 4, 5)	- - - - - -	3240 450 32 65 18 26 49 105 165	600 48 85 - - 108 220 340	pF pF nC nC nC nC nS ns
Dynamic C C _{iss} C _{oss} C _{rss} Qg(tot) Qgg Qgd Switching t _{d(off)} t _f Drain-Soul	Characte Input C Output Revers Total G Gate to Gate to Charace Turn-Of Turn-Of Turn-Of Turn-Of Turn-Of Turn-Of Turn-Of Turn-Of Turn-Of Turn-Of Maximu	eristics apacitance Capacitance e Transfer Capacitanc ate Charge at 10V Source Gate Charge Drain "Miller" Charge Drain "Miller" Charge teristics n Delay Time n Rise Time ff Delay Time ff Fall Time de Characteristic im Continuous Drain to	S Source Dio	$V_{DS} =$ $f = 1N$ $V_{DS} =$ $V_{GS} =$ $V_{DD} =$ $R_{G} = 2$ de Forwa	25V, $V_{GS} = 0V$ IHz 400V, $I_D = 24A$ 10V 250V, $I_D = 24A$ 25 Ω ard Current	(Note 4, 5)	- - - - - - - - - -	3240 450 32 65 18 26 49 105 165 87	600 48 85 - - 108 220 340 185	pF pF nC nC nC nC nS ns ns ns
Dynamic C C _{iss} C _{oss} C _{rss} Q _{g(tot)} Q _{gs} Q _{gd} Switching t _{d(off)} t _f Drain-Soul I _s I _s	Characte Input C Output Revers Total G Gate to Gate to Characte Turn-Ot Turn-Ot Turn-Ot Turn-Ot Turn-Ot Turn-Ot Turn-Ot Turn-Ot Maximu	eristics apacitance Capacitance e Transfer Capacitanc ate Charge at 10V Source Gate Charge Drain "Miller" Charge Drain "Miller" Charge teristics n Delay Time n Rise Time ff Delay Time ff Delay Time ff Fall Time de Characteristic	2S D Source Dio urce Diode Fr	$V_{DS} =$ $f = 1N$ $V_{DS} =$ $V_{GS} =$ $R_{G} = 2$ de Forwa	25V, $V_{GS} = 0V$ Hz 400V, $I_D = 24A$ 10V 250V, $I_D = 24A$ 25 Ω ard Current urrent	(Note 4, 5)	- - - - - - - - - - - -	3240 450 32 65 18 26 49 105 165 87	600 48 85 - - - 108 220 340 185	pF pF nC nC nC nC nS ns
Dynamic C C_{iss} C_{rss} $Q_{g(tot)}$ Q_{gs} Q_{gd} Switching $t_{d(on)}$ t_r $t_q(off)$ t_f	Charact Input C Output Revers Total G Gate to Gate to Charact Turn-Or	eristics apacitance Capacitance e Transfer Capacitanc ate Charge at 10V Source Gate Charge Drain "Miller" Charge Drain "Miller" Charge teristics n Delay Time n Rise Time ff Delay Time ff Fall Time de Characteristic im Continuous Drain to m Pulsed Drain to Sou	2S D Source Dio urce Diode Fr	$V_{DS} =$ $f = 1N$ $V_{DS} =$ $V_{GS} =$ $R_{G} = 2$ $de Forwa$ $rward C$ $V_{GS} =$	25V, $V_{GS} = 0V$ IHz 400V, $I_D = 24A$ 10V 250V, $I_D = 24A$ 25 Ω ard Current	(Note 4, 5)	- - - - - - - - - - - - - - -	3240 450 32 65 18 26 49 105 165 87 - -	600 48 85 - - - - 108 220 340 185 24 96	pF pF nC nC nC nC nS ns ns A A


4. Pulse Test: Pulse width $\leq 300 \mu s$, Duty Cycle $\leq 2\%$

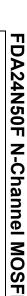
5. Essentially Independent of Operating Temperature Typical Characteristics


FDA24N50F N-Channel MOSFET




FDA24N50F N-Channel MOSFET

FDA24N50F N-Channel MOSFET



SEMICONDUCTOR

6

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™	F-PFS™	PowerTrench®	The Power Franchise [®]
AccuPower™	FRFET®	PowerXS™	the ®
AX-CAP™*	Global Power Resource SM	Programmable Active Droop™	puwer
BitSiC [®]	Green Bridge™	QFET®	franchise TinyBoost™
Build it Now™	Green FPS™	QS™	
CorePLUS™	Green FPS™ e-Series™	Quiet Series™	TinyBuck™ TinyColo™
CorePOWER™	Gmax™	RapidConfigure [™]	TinyCalc™ Tinyd a nie®
CROSSVOLT™	GTO™		TinyLogic®
CTL™	IntelliMAX [™]		
Current Transfer Logic™	ISOPLANAR™	Saving our world, 1mW/W/kW at a time™	TinyPower™ Tiny DN(MATM
DEUXPEED®	Marking Small Speakers Sound Louder	SignalWise™	TinyPWM™ Tiny M(ing ™
Dual Cool™	and Better™	SmartMax™	TinyWire™ Trans CiO®
EcoSPARK [®]	MegaBuck™	SMART START™	TranSiC [®]
EfficentMax™	MIČROCOUPLER™	Solutions for Your Success™	TriFault Detect™ TRUECURRENT [®] *
ESBC™	MicroFET™	SPM®	µSerDes™
F R	MicroPak™	STEALTH™	, itselfbes the
+ °	MicroPak2™	SuperFET®	SerDesĭ
Fairchild [®]	MillerDrive™	SuperSOT™-3	
Fairchild Semiconductor [®]	MotionMax™	SuperSOT™-6	UHC®
FACT Quiet Series™	Motion-SPM™	SuperSOT [™] -8	Ultra FRFET™
FACT®	mWSaver™	SupreMOS®	UniFET™
FAST®	OptoHiT™	SyncFET™	VCX™
FastvCore™	OPTOLOGIC®	Sync-Lock™	VisualMax™
FETBench™	OPTOPLANAR®	SYSTEM ®*	VoltagePlus™
FlashWriter [®] *		GENERAL	XS™
FPS™		GENERAL	
Trademarks of System General C	corporation, used under license by Fairchild	a Semiconductor.	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		
		Rev		

www.fairchildsemi.com