COB LC75412WS - Electronic Volume Controller for Car Audio Systems

Overview

The LC75412WS are electronic volume controllers that enable control of volume, balance, fader, bass/treble, loudness, input switching, and input gain using only a small number of external components.

Functions

- Volume
- Fader
- Bass/treble
- Input gain
- Input switching
- Loudness
: 0 dB to -79 dB in 1 dB steps, and $-\infty$ (81 positions) Balance function with separate L / R control
: Rear output or front output can be attenuated across 16 positions (in 1 dB steps from 0 dB to -2 dB , 2 dB steps from -2 dB to $-20 \mathrm{~dB}, 10 \mathrm{~dB}$ steps from -20 dB to -30 dB , and $-45 \mathrm{~dB},-60 \mathrm{~dB},-\infty$)
: Each band can be controlled in 2 dB steps from $\pm 0 \mathrm{~dB}$ to $\pm 18 \mathrm{~dB}$.
$: 0 \mathrm{~dB}$ to $+18.75 \mathrm{~dB}(1.25 \mathrm{~dB}$ steps $)$ amplification is possible for the input signal.
: Six input signals can be selected for Left and for Right (five are singleended inputs and one is a differential input.)
: A tap is output from the -32 dB position of a volume control resistor ladder.
A loudness function can be implemented by connecting an external RC circuit.

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$\mathrm{V}_{\mathrm{DD}} \max$	V_{DD}	11	V
Maximum input voltage	$\mathrm{V}_{\mathrm{IN}} \max$	All input pins	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Operating temperature	Topr		-40 to +85	${ }^{\circ} \mathrm{C}$

[^0]\square Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.

- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

LC75412WS
Allowable Operating Ranges at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Supply voltage	$V_{\text {DD }}$	$\mathrm{V}_{\text {DD }}$	6.0		10	V
Input high-level voltage	V_{IH}	CL, DI, CE	4.0		10	V
Input low-level voltage	$\mathrm{V}_{\text {IL }}$	CL, DI, CE	$\mathrm{V}_{\text {SS }}$		1.0	V
Input amplitude voltage	$\mathrm{V}_{\text {IN }}$		V_{SS}		V_{DD}	Vp-p
Input pulse width	TфW	CL	1			$\mu \mathrm{s}$
Setup time	Tsetup	CL, DI, CE	1			$\mu \mathrm{s}$
Hold time	Thold	CL, DI, CE	1			$\mu \mathrm{s}$
Operating frequency	fopg	CL			500	kHz

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VDD}_{\mathrm{DD}}=9 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}$

Parameter	Symbol	Pin Name	Conditions	Ratings			Unit
				min	typ	max	
[Input block]							
Input resistance	Rin	L1 to L4, L6, R1 to R4, R6		30	50	70	k Ω
Minimum input gain	Ginmin	L1 to L4, L6, R1 to R4, R6		-1	0	+1	dB
Maximum input gain	Ginmax			+16.5	+18.75	+21	dB
Step setting error	ATerr					± 0.6	dB
L/R balance	BAL					± 0.5	dB
[Volume block]							
Input resistance	Rvr	LVRIN, RVRIN	loudness off	25	50	100	$\mathrm{k} \Omega$
Step setting error	ATerr		0dB to -40dB			± 0.5	dB
L/R balance	BAL		0dB to -40dB			± 0.5	dB
[Tone block]							
Step setting error	ATerr		-8 dB to +8 dB			± 1.0	dB
Bass control range	Gbass		max. boost/cut	± 15	± 18	± 21	dB
Treble control range	Gtre		max. boost/cut	± 15	± 18	± 21	dB
L/R balance	BAL					± 0.5	dB
[Fader block]							
Input resistance	Rfed	LFIN, RFIN		25	50	100	$\mathrm{k} \Omega$
Step setting error	ATerr		OdB to -2dB			± 0.5	dB
			-2dB to -20dB			± 1	dB
			-20dB to -30dB			± 2	dB
			-30dB to -60dB			± 3	dB
L/R balance	BAL		0dB to -60dB			± 0.5	dB
[General]							
Total harmonic distortion	THD (1)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBV}, \mathrm{f}=1 \mathrm{kHz}$			0.004	0.01	\%
	THD (2)	$V_{\text {IN }}=-10 \mathrm{dBV}, \mathrm{f}=10 \mathrm{kHz}$			0.006	0.01	\%
Input crosstalk	CT	$\mathrm{V}_{\text {IN }}=1 \mathrm{Vrms}, \mathrm{f}=1 \mathrm{kHz}$		80	88		dB
L/R crosstalk	CT	$\mathrm{V}_{\text {IN }}=1 \mathrm{Vrms}, \mathrm{f}=1 \mathrm{kHz}$		80	88		dB
Maximum attenuated output	Vomin (1)	$\mathrm{V}_{\text {IN }}=1 \mathrm{Vrms}, \mathrm{f}=1 \mathrm{kHz}$		80	88		dB
	Vomin (2)	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vrms}, \mathrm{f}=1 \mathrm{kHz}$ INMUTE, fader ∞		90	95		dB
Output noise voltage	VN (1)	Flat overall, IHF-A filter			5	10	$\mu \mathrm{V}$
	VN (2)	Flat overall, 20 to 20 kHzBPF			7	15	$\mu \mathrm{V}$
Current drain	${ }^{\text {I DD }}$				55	60	mA
Input high-level current	$\mathrm{IIH}^{\text {I }}$	$C L, D I, C E, V_{\text {IN }}=9 \mathrm{~V}$				10	$\mu \mathrm{A}$
Input low-level current	IIL	CL, DI, CE, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		-10			$\mu \mathrm{A}$
Maximum input voltage	VCL	$\begin{aligned} & \text { THD }=1 \%, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \text { flat overall, } \mathrm{f} \mathrm{IN}=1 \mathrm{kHz} \end{aligned}$		2.3	2.5		Vrms
Common-mode rejection ratio	CMRR	$\mathrm{V}_{\text {IN }}=0 \mathrm{~dB}, \mathrm{f}=1 \mathrm{kHz}$			70		dB

Package Dimensions

unit : mm (typ)
3190A

Pin Assignment

Equivalent Circuit Block Diagram/Sample Application Circuit

Control Timing and Data Format

To control the LC75412WS input specified serial data to the DI, CE, and CL pins.
The data configuration consists of a total of 52 bits broken down into 8 address bits and 44 data bits.

1) Address code (B 0 to A 3)

The LC75412WS use 8-bit address code and can be used in common with ICs that support SANYO's CCB serial bus.
Address Code

$(L S B)$	B0	B1	B2	B3	A0	A1	A2
(33							
	1	0	0	0	0	0	0
(81HEX)							

2) Control code allocation

Input Switching Control

D0	D1	D2	Setting
0	0	0	L1 (R1)
1	0	0	L2 (R2)
0	1	0	L3 (R3)
1	1	0	L4 (R4)
0	0	1	L5 (R5)
1	0	1	L6 (R6)

D3	Bit for IC testing: Normally set to 0

Input Gain Control

D4	D5	D6	D7	Operation
0	0	0	0	OdB
1	0	0	0	+1.25 dB
0	1	0	0	+2.50 dB
1	1	0	0	+3.75 dB
0	0	1	0	+5.00 dB
1	0	1	0	+6.25 dB
0	1	1	0	+7.50 dB
1	1	1	0	+8.75 dB
0	0	0	1	+10.00 dB
1	0	0	1	+11.25 dB
0	1	0	1	+12.50 dB
1	1	0	1	+13.75 dB
0	0	1	1	+15.00 dB
1	0	1	1	+16.25 dB
0	1	1	1	+17.50 dB
1	1	1	1	+18.75 dB

Volume Control (0 to -50 dB)

D8	D9	D10	D11	D12	D13	D14	D15	Operation
0	0	0	0	0	0	0	0	OdB
1	0	0	0	0	0	0	0	-1dB
0	1	0	0	0	0	0	0	-2dB
1	1	0	0	0	0	0	0	-3dB
0	0	1	0	0	0	0	0	-4dB
1	0	1	0	0	0	0	0	-5dB
0	1	1	0	0	0	0	0	-6dB
1	1	1	0	0	0	0	0	-7dB
0	0	0	1	0	0	0	0	-8dB
1	0	0	1	0	0	0	0	-9dB
0	1	0	1	0	0	0	0	-10dB
1	1	0	1	0	0	0	0	-11dB
0	0	1	1	0	0	0	0	-12dB
1	0	1	1	0	0	0	0	-13dB
0	1	1	1	0	0	0	0	-14dB
1	1	1	1	0	0	0	0	-15dB
0	0	0	0	1	0	0	0	-16dB
1	0	0	0	1	0	0	0	-17dB
0	1	0	0	1	0	0	0	-18dB
1	1	0	0	1	0	0	0	-19dB
0	0	1	0	1	0	0	0	-20dB
1	0	1	0	1	0	0	0	-21dB
0	1	1	0	1	0	0	0	-22dB
1	1	1	0	1	0	0	0	-23dB
0	0	0	1	1	0	0	0	-24dB
1	0	0	1	1	0	0	0	-25dB
0	1	0	1	1	0	0	0	-26dB
1	1	0	1	1	0	0	0	-27dB
0	0	1	1	1	0	0	0	-28dB
1	0	1	1	1	0	0	0	-29dB
0	1	1	1	1	0	0	0	-30dB
1	1	1	1	1	0	0	0	-31dB
0	0	0	0	0	1	0	0	-32dB
1	0	0	0	0	1	0	0	-33dB
0	1	0	0	0	1	0	0	-34dB
1	1	0	0	0	1	0	0	-35dB
0	0	1	0	0	1	0	0	-36dB
1	0	1	0	0	1	0	0	-37dB
0	1	1	0	0	1	0	0	-38dB
1	1	1	0	0	1	0	0	-39dB
0	0	0	1	0	1	0	0	-40dB
1	0	0	1	0	1	0	0	-41dB
0	1	0	1	0	1	0	0	-42dB
1	1	0	1	0	1	0	0	-43dB
0	0	1	1	0	1	0	0	-44dB
1	0	1	1	0	1	0	0	-45dB
0	1	1	1	0	1	0	0	-46dB
1	1	1	1	0	1	0	0	-47dB
0	0	0	0	1	1	0	0	-48dB
1	0	0	0	1	1	0	0	-49dB
0	1	0	0	1	1	0	0	-50dB

Continued from preceding page.
Volume Control (-51 to $-\infty \mathrm{dB}$)

D8	D9	D10	D11	D12	D13	D14	D15	Operation
1	1	0	0	1	1	0	0	-51dB
0	0	1	0	1	1	0	0	-52dB
1	0	1	0	1	1	0	0	-53dB
0	1	1	0	1	1	0	0	-54dB
1	1	1	0	1	1	0	0	-55dB
0	0	0	1	1	1	0	0	-56dB
1	0	0	1	1	1	0	0	-57dB
0	1	0	1	1	1	0	0	-58dB
1	1	0	1	1	1	0	0	-59dB
0	0	1	1	1	1	0	0	-60dB
1	0	1	1	1	1	0	0	-61dB
0	1	1	1	1	1	0	0	-62dB
1	1	1	1	1	1	0	0	-63dB
0	0	0	0	0	0	1	0	-64dB
1	0	0	0	0	0	1	0	-65dB
0	1	0	0	0	0	1	0	-66dB
1	1	0	0	0	0	1	0	-67dB
0	0	1	0	0	0	1	0	-68dB
1	0	1	0	0	0	1	0	-69dB
0	1	1	0	0	0	1	0	-70dB
1	1	1	0	0	0	1	0	-71dB
0	0	0	1	0	0	1	0	-72dB
1	0	0	1	0	0	1	0	-73dB
0	1	0	1	0	0	1	0	-74dB
1	1	0	1	0	0	1	0	-75dB
0	0	1	1	0	0	1	0	-76dB
1	0	1	1	0	0	1	0	-77dB
0	1	1	1	0	0	1	0	-78dB
1	1	1	1	0	0	1	0	-79dB
*1	1	1	1	1	1	1	0	$-\infty$

*1: '0' or ' 1 '

Tone Control

D16	D17	D18	D19	D40	Bass
D24	D25	D26	D27	D41	Treble
1	1	0	0	1	+18dB
0	1	0	0	1	+16dB
1	0	0	0	1	$+14 \mathrm{~dB}$
0	1	1	0	0	+12dB
1	0	1	0	0	+10dB
0	0	1	0	0	+8dB
1	1	0	0	0	+6dB
0	1	0	0	0	$+4 \mathrm{~dB}$
1	0	0	0	0	+2dB
0	0	0	0	0	OdB
1	0	0	1	0	$-2 \mathrm{~dB}$
0	1	0	1	0	-4dB
1	1	0	1	0	-6dB
0	0	1	1	0	-8dB
1	0	1	1	0	-10dB
0	1	1	1	0	-12dB
1	0	0	1	1	-14dB
0	1	0	1	1	-16dB
1	1	0	1	1	-18dB

D20	D21	D22	D23	Setting
0	0	0	0	Set to 0

Fader Volume Control

D28	D29	D30	D31	Operation
0	0	0	0	OdB
1	0	0	0	-1 dB
0	1	0	0	-2 dB
1	1	0	0	-4 dB
0	0	1	0	-6 dB
1	0	1	0	-8 dB
0	1	1	0	-10 dB
1	1	1	0	-12 dB
0	0	0	1	-14 dB
1	0	0	1	-16 dB
0	1	0	1	-18 dB
1	1	0	1	-20 dB
0	0	1	1	-30 dB
1	0	1	1	-45 dB
0	1	1	1	-60 dB
1	1	1	1	$-\infty$

Channel Selection Control

D32	D33	Setting
1	0	RCH
0	1	LCH
1	1	L/R simultaneously

Fader Rear/Front Control

D34	Setting
0	Rear
1	Front

Loudness Control

D35	Setting
0	OFF
1	ON

Zero-Cross Control

D36	D37	Setting
0	0	Data write through zero-cross detection
1	1	Zero-cross detection stopped (data write at falling edge of CE)

Zero-Cross Signal Detection Block Control

D38	D39	Setting
0	0	Selector
1	0	Volume
0	1	Tone
1	1	Fader

Test Mode Control

D42	D43	Setting
0	0	For IC testing. Always set to 0.

Pin Functions

Pin	Pin No.	Function	Equivalent circuit
L1 L2 L3 L4 L6 R1 R2 R3 R4 R6	54 53 52 51 55 59 60 61 62 58	- Single-end input pins.	
$\begin{aligned} & \text { L5M } \\ & \text { L5P } \\ & \text { R5M } \\ & \text { R5P } \end{aligned}$	$\begin{aligned} & 50 \\ & 49 \\ & 63 \\ & 64 \end{aligned}$	- Differential input pins.	
$\begin{aligned} & \text { LSELO } \\ & \text { RSELO } \end{aligned}$	$\begin{gathered} 48 \\ 1 \end{gathered}$	- Input selector output pins.	
$\begin{aligned} & \text { LCT } \\ & \text { RCT } \end{aligned}$	$\begin{gathered} 46 \\ 3 \end{gathered}$	- Loudness pins. Connect high-pass compensation CR between LCT (RCT) and LVRIN (RVRIN), and connect low-pass compensation CR between LCT (RCT) and GND.	
LVRIN RVRIN	$\begin{gathered} 47 \\ 2 \end{gathered}$	- Volume and equalizer input pins.	
LF1C1 LF1C2 LF1C3 RF1C1 RF1C2 RF1C3	$\begin{gathered} 42 \\ 41 \\ 40 \\ 7 \\ 8 \\ 9 \end{gathered}$	- Equalizer F1 band filter configuration capacitor connection pins. Connect capacitor between LF1C1 (RF1C1) and LF1C2 (RF1C2) LF1C2 (RF1C2) and LF1C3 (RF1C3)	
LF3C1 LF3C2 LF3C3 RF3C1 RF3C2 RF3C3	$\begin{aligned} & 36 \\ & 35 \\ & 34 \\ & 13 \\ & 14 \\ & 15 \end{aligned}$	- Equalizer F3 band filter configuration capacitor connection pins. Connect capacitor between LF3C1 (RF3C1) and LF3C2 (RF3C2) LF3C2 (RF3C2) and LF3C3 (RF3C3)	

Continued on next page.

LC75412WS
Continued from preceding page.

Continued on next page.

LC75412WS
Continued from preceding page.

Pin	Pin No.	Function	
TIM	20	\bullet Timer pin when there is no signal in the zero-cross circuit. Forcibly set data when there is no zero-cross signal, from the time the data is set until the timer ends.	
CL	26	•Input pin for serial data and clock used for control.	
DI	24	Chip enable pin. Data is written to the internal latch and the analog switches are operated when the level changes from High to Low. Data transfer is enabled when the level is High.	

Internal Equivalent Circuit Block Diagram

Selector Block Equivalent Circuit Block Diagram

Volume Block Equivalent Circuit Block Diagram
OdB\& $-\infty A S W=1 \mathrm{k} \Omega$
Others ASW $=3 \mathrm{k} \Omega$

Tone Control Block Equivalent Circuit Diagram

Total resistance: $59.359 \mathrm{k} \Omega$
Same for right channel

During boost, SW1 and SW3 are ON, during cut SW2 and SW4 are ON, and when 0dB, 0dB SW and SW2 and SW3 are ON.

F1/F3 Band Circuit
The equivalent circuit and the formula for calculating the external CR with a mean frequency of 1 kHz are shown below.

- F1/F3 band equivalent circuit block diagram

- Calculation example

Specification Mean frequency : f0 $=1 \mathrm{kHz}$
Gain during maximum boost $: \mathrm{G}_{+18 \mathrm{~dB}}=18 \mathrm{~dB}$
Let us use $\mathrm{R} 1=0.665 \mathrm{k} \Omega, \mathrm{R} 2=58.704 \mathrm{k} \Omega$, and $\mathrm{C} 1=\mathrm{C} 2=\mathrm{C}$.
$\mathrm{G}_{+18 \mathrm{~dB}}=20 \times \operatorname{LOG}_{0}\left(1+\frac{\mathrm{R} 2}{2 \mathrm{R} 3+\mathrm{R} 1}\right)$

1) Calculate $R 3$ with $G_{+18 \mathrm{~dB}}=18 \mathrm{~dB}$:

$$
\mathrm{R} 3=\left(\frac{\mathrm{R} 2}{10^{\mathrm{G} / 20}-1}-\mathrm{R} 1\right) \div 2=3900 \Omega
$$

2) Calculate C with the center frequency $\mathrm{f} 0=1 \mathrm{kHz}$

$$
\begin{aligned}
& \mathrm{f} 0=\frac{1}{2 \pi \sqrt{(\mathrm{R} 1+\mathrm{R} 2) \mathrm{R} 3 \mathrm{C} 1 \mathrm{C} 2}} \\
& \mathrm{C}=\frac{1}{2 \pi \mathrm{f} 0 \sqrt{(\mathrm{R} 1+\mathrm{R} 2) \mathrm{R} 3}}=\frac{1}{2 \pi \times 1000 \sqrt{39359 \times 3900}}=0.010 \times 10^{-6} \cong 0.01 \mu \mathrm{~F}
\end{aligned}
$$

3) Calculate Q :

$$
\mathrm{Q}=\frac{1}{\sqrt{(\mathrm{R} 1+\mathrm{R} 2) \mathrm{R} 3}} \times \frac{\mathrm{R} 3(\mathrm{R} 1+\mathrm{R} 2)}{(2 \mathrm{R} 3+\mathrm{R} 1)} \cong 1.789
$$

Fader Volume Block Equivalent Circuit Block Diagram

When $-\infty$ data is sent to the main volume, S 1 and S 2 become open, and S 3 and S 4 simultaneously become ON .

Usage Cautions

(1) Data transmission at power ON

The status of internal analog switches is unstable at power ON. Therefore, perform muting or some other countermeasure until the data has been set.
(2) Description of zero-cross switching circuit operation

The LC75412WS have a function to switch zero-cross comparator signal detection locations, enabling the selection of the optimum detection location for blocks whose data is to be updated. Basically, the switching noise can be minimized by inputting the signal immediately following the block whose data is to be updated to the zero-cross comparator, so it is necessary to switch the detection location every time.

LC75412WS Zero-Cross Detection Circuit
(3) Zero-cross switching control method

The zero-cross switching control method consists of setting the zero-cross control bits to the zero-cross detection mode (D36, D37 = 0), and specifying the detection blocks (D38, D39) before transmitting the data. These control bits are latched immediately following data transfer, that is to say beforehand in sync with the falling edge of CE, so when updating data of volumes, etc., it is possible to perform mode setting and zero-cross switching with one data transfer. An example of control when updating the data of the volume block is shown below.

D36	D37	D38	D39
0	0	1	0
Zero-cross detection mode setting	$\underbrace{}_{$ Volume block setting $}$		

(4) Zero-cross timer setting

If the input signal becomes lower than the zero-cross comparator detection sensitivity, or if only low-frequency signals are input, zero-cross detection continues to be impossible, and data is not latched during this time.
The zero-cross timer can set a time for forcible latch during such a status when zero-cross detection is not possible.
For example, to set 25 ms , using $\mathrm{T}=0.69 \mathrm{CR}$ and $\mathrm{C}=0.033 \mu \mathrm{~F}$, we obtain

$$
\mathrm{R}=\frac{25 \times 10^{-3}}{0.69 \times 0.033 \times 10^{-6}} \approx 1.1 \mathrm{M} \Omega
$$

Normally, a value between 10 ms and 50 ms is set.
(5) Cautions related to serial data transfer

1) To ensure that the high-frequency digital signals transferred to the CL, DI, and CE pins do not spill over to the analog signal block, either guard these signal lines with a ground pattern, or perform transmission using shielded wires.
2) The data format of the LC75412WS uses 8-bit addresses and 44-bit data. When sending data using multiples of 8 (when sending 48 bits), use the method described in Figure 1.

Method for Receiving Data Using Multiple of 8 of LC75412WS

Figure 1
(6) Note on usage of external muting

See Figure 2, to control muting with an external switch. If a microcontroller is used for the control, it is likely that an overvoltage is applied to the microcontroller via the MUTE pin because the MUTE pin is connected internally to VDD. To avoid such problems, add the resister R2 as shown in Figure 3 to resistor-divide the voltage at the MUTE pin.

Figure 2

Figure 3

As an example, the relationship between the voltages at the $\overline{\text { MUTE }}$ pin and the values of R 2 when V_{DD} is 9 volts is shown below. The characteristic curve shown in the figure is a standard one.

* $\mathrm{V}_{\text {IH }}$ (High detection voltage) at the $\overline{\text { MUTE }}$ pin must always be 4 V or higher regardless of the supply voltage to be used.

■ SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
■ SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
\square Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.

- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of January, 2009. Specifications and information herein are subject to change without notice.

[^0]: - CCB is a registered trademark of SANYO Electric Co., Ltd.
 - CCB is SANYO Semiconductor's original bus format. All bus addresses are managed by SANYO Semiconductor for this format.

