2.5V Drive Pch+SBD MOS FET

QS6U22

Structure

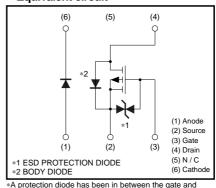
Silicon P-channel MOS FET Schottky Barrier DIODE

● Features

- 1) The QS6U22 combines Pch MOS FET with a Schottky barrier diode in a TSMT6 package.
- 2) Low on-state resistance with fast switching.
- 3) Low voltage drive (2.5V).
- 4) Built-in schottky barrier diode has low forward voltage.


Applications

Load switch, DC / DC conversion


Packaging specifications

	Package	Taping	
Type	Code	TR	
	Basic ordering unit (pieces)	3000	
QS6U22		0	

●External dimensions (Unit : mm)

Equivalent circuit

*A protection alode has been in between the gate and the source to protect against static electricity when the product is in use. Use the protection circuit when rated voltages are exceeded.

●Absolute maximum ratings (Ta=25°C)

<MOSFET>

Parameter		Symbol	Limits	Unit		
Drain-source voltage		V_{DSS}	-20	V		
Gate-source voltage	Gate-source voltage		±12	V		
Drain current	Continuous	ID	±1.5	Α		
	Pulsed	I _{DP} *1	±6.0	Α		
Source current	Continuous	Is	-0.75	Α		
(Body diode)	Pulsed	I _{SP} *1	-6.0	Α		
Channel temperature	Tch	150	°C			
Power dissipation	P _D *3	0.9	W / ELEMENT			
<di></di>						
Repetitive peak reverse voltage		V_{RM}	25	V		
Reverse voltage		VR	20	V		
Forward current		l _F	0.7	А		
Forward current surge peak		I _{FSM} *2	3.0	А		
Junction temperature	Tj	150	°C			
Power dissipation	Pp *3	0.7	W / ELEMENT			
<mosfet and="" di=""></mosfet>						
Total power dissipation	P _D *3	1.25	W / TOTAL			
Range of Storage temperatu	Tstg	-55 to +150	°C			

^{*1} Pw≤10μs, Duty cycle≤1% *2 60Hz•1cyc. *3 Mounted on a ceramic board

●Electrical characteristics (Ta=25°C)

 $\langle \mathsf{MOSFET} \rangle$

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Gate-source leakage	Igss	-	_	±10	μА	Vgs=±12V, Vps=0V
Drain-source breakdown voltage	V(BR) DSS	-20	ı	_	V	ID= -1mA, VGS=0V
Zero gate voltage drain current	IDSS	_	ı	-1	μΑ	Vps= -20V, Vgs=0V
Gate threshold voltage	VGS (th)	-0.7	ı	-2.0	V	V _{DS} = -10V, I _D = -1mA
Static drain-source on-state resistance		_	155	215	mΩ	I _D = -1.5A, V _G s= -4.5V
	RDS (on)*	_	170	235	mΩ	I _D = -1.5A, V _G s= -4V
		_	310	430	mΩ	Ip= -0.75A, Vgs= -2.5V
Forward transfer admittance	Yfs *	1.0	-	_	S	Vps= -10V, Ip= -0.75A
Input capacitance	Ciss	_	270	_	pF	Vps= -10V
Output capacitance	Coss	_	40	_	pF	V _G s=0V
Reverse transfer capacitance	Crss	_	35	_	pF	f=1MHz
Turn-on delay time	td (on) *	_	10	_	ns	I _D = -0.75A
Rise time	tr *	_	12	_	ns	VDD≒ -15V
Turn-off delay time	td (off) *	_	45	_	ns	V _{GS} = -4.5V R _L =20Ω
Fall time	t _f *	_	20	_	ns	R _G =10Ω
Total gate charge	Qg *	-	3.0	_	nC	V _{DD} ≒ −15V
Gate-source charge	Q _{gs} *	-	0.8	_	nC	$V_{GS} = -4.5V$ $R_{L} = 10\Omega / R_{G} = 10\Omega$
Gate-drain charge	Q _{gd} *	_	0.85	_	nC	ID= -1.5A

^{*}Pulsed

(Body diode (source-drain))

(===)						
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Forward voltage	V _{SD}	_	_	-1.2	V	I _S = -0.75A, V _{GS} =0V

⟨Di⟩

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Forward voltage drop	VF	_	_	0.49	V	I=0.7A
Reverse current	lr	-	_	200	μΑ	V _R =20V

Electrical characteristic curvesMOSFET>

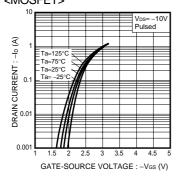


Fig.1 Typical Transfer Characteristics

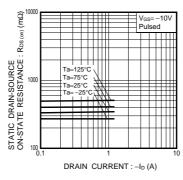


Fig.2 Static Drain-Source On-State Resistance vs. Drain Current (I)

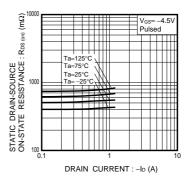


Fig.3 Static Drain-Source On-State Resistance vs. Drain Current (II)

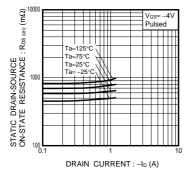


Fig.4 Static Drain-Source On-State Resistance vs. Drain Current (III)

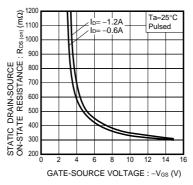


Fig.5 Static Drain-Source On-State Resistance vs. Gate-Source Voltage

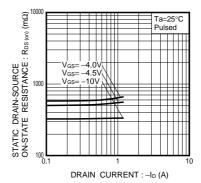


Fig.6 Static Drain-Source On-State Resistance vs. Drain Current (IV)

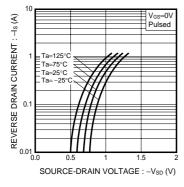


Fig.7 Reverse Drain Current vs. Source-Drain Voltage

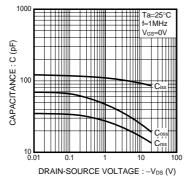


Fig.8 Typical Capacitance vs. Drain-Source Voltage

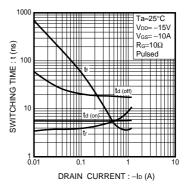


Fig.9 Switching Characteristics

Fig.10 Dynamic Input Characteristics

●Measurement circuits

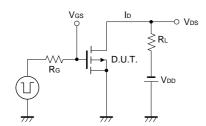


Fig.11 Switching Time Measurement Circuit

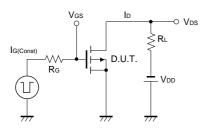


Fig.13 Gate Charge Measurement Circuit

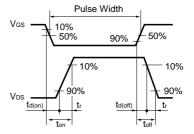


Fig.12 Switching Waveforms

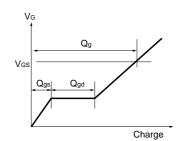


Fig.14 Gate Charge Waveform

ROHM

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

