

Semiconductor

http://www.auk.co.kr

TO-252-3L

TO-220F-3L

ORDERING INFORMATION

Product	Marking	Package
SN317MPI	SN317MPI	TO-220F-3L
SN317MD	SN317MD	TO-252-3L

▲ Marking Detail Information

- ① AUK Logo
- 2 Grade & M Code & Year & Week Code
- ③ Device Code

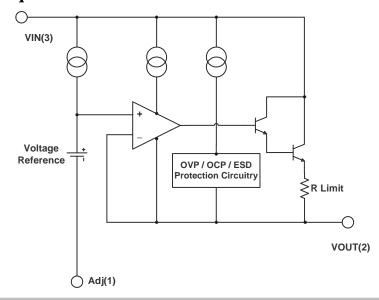
SN317Mx

[0.5 A Adjustable Output] Positive Voltage Regulator

Description

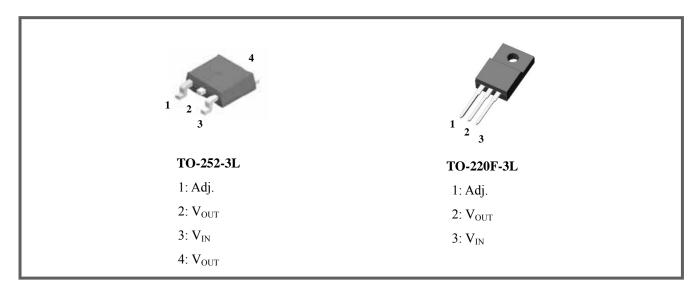
The SN317 is an adjustable 3-terminal positive voltage regulator capable of supplying in excess of 0.5A over an output voltage range of 1.2 V to 37 V. This voltage regulator is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, it employs internal current limiting, thermal shutdown and safe area compensation, making it essentially blow-out proof.

This device can also be used to make a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the SN317 can be used as a precision current regulator.

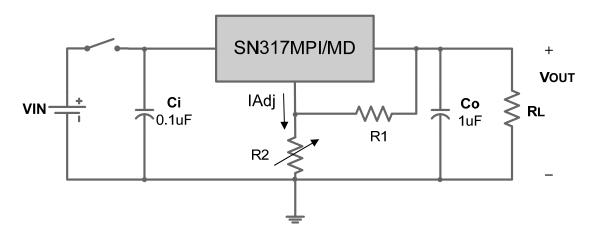

Application

- Consumer and personal electronics
- ◆ SMPS post-regulator / dc-to-dc modules
- ♦ High-efficiency linear power supplies
- ◆ LED Light Constant Current Controllers

Features and Benefits


- ♦ Output Current up to 0.5A
- ◆ Output Adjustable Level: 1.2V to 37V
- ♦ Built in OVP, CLP circuit.
- Built in TSD Protection.
- Output Transistor Safe Area Protection.
- ◆ Ultra High level of ESD [Built in ESD Protection Cell]

Equivalent Circuit



Pin Configuration

Standard Application

Ci is required if regulator is located an appreciable distance from power supply filter.

Co is not needed for stability, however, it is necessary to improve transient response.

Since I_{Adj} is controlled to less than 0.1mA, the error associated with this term is insignificant in most applications.

$$V_{OUT} = V_{ref(1.25V)} \times (1 + R_2/R_1) + I_{adj}R_2$$

2

Absolute Maximum Ratings ($Ta = 25^{\circ}C$)

Parameter		Symbol	Lin	T T •4	
			TO-220F-3L	TO-252-3L	Unit
Input-Output Voltage Differential		V_{I} - V_{O}	40		V
D D: : ::	TO-252-3L	D			W
Power Dissipation	TO-220F-3L	P _D Internally Limited		Limited	
Thermal Resistance	Thermal Resistance Junction to Case		5.0	5.0	°C/W
Thermal Resistance Junction to Air		$R_{\Theta JA}$	65	92	°C/W
Junction Temperature		T_{J}	150		$^{\circ}$ C
Operate Temperature Range		$T_{ m opr}$	0 ~ +125		$^{\circ}$
Storage Temperature Range		$T_{\rm stg}$	-55 ∼ +150		$^{\circ}\!$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the recommended operating conditions is not implied. Extended exposure to Stresses above the Recommended Operating Conditions may affect device reliability.

The maximum allowable power dissipation is a function of the maximum junction temperature, $T_{J(max)}$, the junction-to-ambient thermal resistance, θ_{JA} , and the ambient temperature, TA.

The maximum allowable power dissipation at any ambient temperature is calculated using:

 $PD(max) = (T_{J(max)} - T_A) \div \theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.

Electrical characteristics

(V_I - V_O =5V, I_O = 0.1A, T_J =0 $^{\circ}$ C \sim 125 $^{\circ}$ C, P_{DMAX} =7.5W; unless otherwise specified)

	G 1.1	Test Condition*		SN317Mx			***
Characteristic	Symbol			Min.	Тур.	Max.	Unit
Line Regulation *	$\Delta V_{O(Line)}$	$3.0V \le V_{I} \text{-} V_{O} \le 40V$	T _A =+25 °C	-	0.01	0.04	% / V
		$3.0V \le V_{I} \text{-} V_{O} \le 40V$	T _A =0~+125℃	-	0.02	0.07	
Load Regulation *	$\Delta V_{O(Load)}$	$10 \text{mA} \le I_{\text{O}} \le 0.5 \text{A}$ $T_{\text{A}} = +25 ^{\circ}\text{C}$	$V_{O} < 5V$ $V_{O} \ge 5V$	-	5.0 0.1	25.0 0.5	mV % / V _O
		$10 \text{mA} \le I_{\text{O}} \le 0.5 \text{A}$ $T_{\text{A}} = 0 \sim +125 ^{\circ}\text{C}$	$V_{O} < 5V$ $V_{O} \ge 5V$	-	20.0 0.3	70.0 1.5	mV % / V _O
Adjustable Pin Current	I_{ADJ}	-		-	50	100	uA
Adjustable Pin Current Change	$\Delta I_{ m ADJ}$	$3.0V \le V_I - V_O \le 40V$ $10mA \le I_O \le 0.5A, P_D < P_{DMAX}$		-	2.0	5.0	uA
Reference Voltage	$V_{ m REF}$	$3.0V \le V_I - V_O \le 40V$ $10mA \le I_O \le 0.5A$, $P_D < P_{DMAX}$		1.20	1.25	1.30	V
Temperature Stability	ST_T	$0^{\circ}\mathbb{C} \leq T_{j} \leq 125^{\circ}\mathbb{C}$		-	1.0	-	% / V _O
	RR	V _O =10V, f=120Hz without C _{ADJ}		-	65.0	-	dB
Ripple Rejection		V _O =10V, f=120Hz, C _{ADJ} = 10uF **		-	80.0	-	ub
Output Noise Voltage	V _{NO}	$10\text{Hz} \le \text{f} \le 100\text{kHz}$	T _A =25°C	-	0.003	-	%
Minimum Load Current to Maintain Regulation	$I_{L(MIN)}$	V_{I} - V_{O} = 40 V		-	3.5	10.0	mA
Maximum Output Current	$I_{O(MAX)}$	V_{I} - $V_{O} \le 15V$, $P_{D} < PD_{MAX}$	T _A =25℃	0.5	0.9	-	
		V_{I} - V_{O} \leq 40V, P_{D} $<$ PD_{MAX}		0.15	0.25	-	A
Long-Term Stability	ST	$T_A = +25$ °C for end point meas 1000HR	urements,	-	0.3	1.0	%

^{*} Load and line regulation are specified at constant temperature. Change in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

^{**} C_{ADJ} is connected between the adjustable pin and ground.

Fig.1 Adjustable Pin Current vs. Junction Temperature

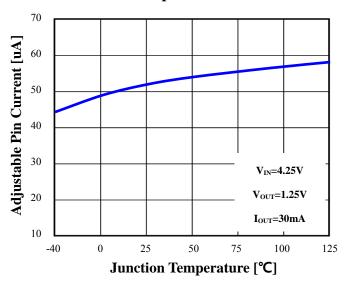


Fig.2 Output Peak Current vs. Input to Output Differential

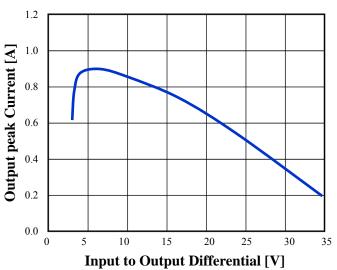


Fig.3 Output Voltage vs. Junction Temperature

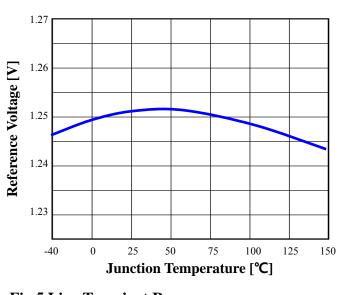


Fig.4 Dropout Voltage vs. Input Voltage

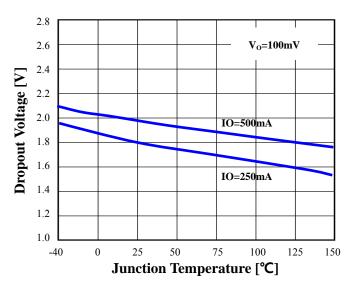


Fig.5 Line Transient Response

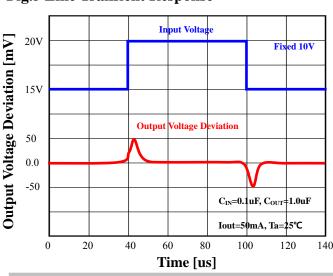
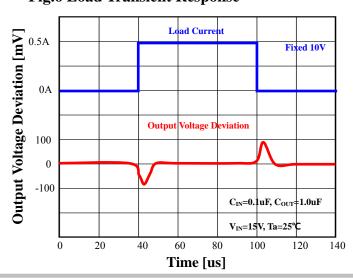
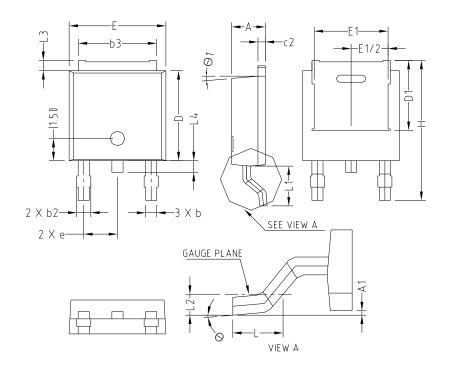
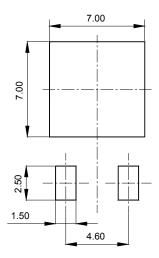
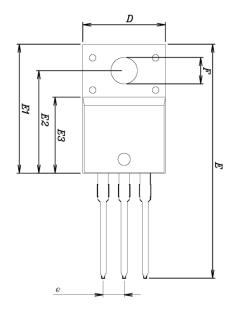
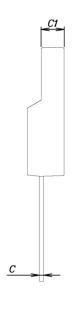




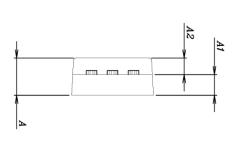
Fig.6 Load Transient Response

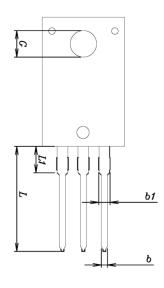


TO-252-3L Outline Dimension (Unit: mm)


SYMBOL		NOTE			
	МІМІМІМ	NOMINAL	MAXIMUM	NUIE	
Α	2.20	2.30	2.40		
A1	0.00		0.127		
Ь	0.66	0.76	0.86		
Ь2	-	-	1.96		
ь3	5.04	5.34	5.64		
c 2	0.40	0.50	0.60		
D	5.91	6.10	6.30		
D1					
Е	6.40	6.60	6.80		
E1		[5.04]			
е	2.30 BSC				
Н	9.20	9.50	9.80		
L	1.27 1.47 1.67		1.67		
L1	2.50	2.70	2.90		
L2	0				
L3	0.50	0.70	0.90		
L4	0.60	0.80	1.00		
Θ	0°	-	10°		
Θ1		5°			


* Recommend PCB solder land [Unit: mm]




♦ TO-220F-3L Outline Dimension (Unit: mm)

		NOTE		
SYMBOL	MINIMUM	NOMINAL	MAXIMUM	NOIE
Α	ı	_	4.60	
A1	2.45	2.50	2.55	
A2	1.95	2.00	2.05	
Ь	0.65	0.75	0.85	
b1	1.07	1.27	1.47	
C	0.40	0.50	0.60	
C1	2.70	2.80	2.90	
D	9.90	10.00	10.10	
Ε	28.00	_	28.60	
E1	15.50	15.60	15.70	
E2	12.30	12.40	12.50	
E3	9.15	9.20	9.25	
F	3.10	3.20	3.30	
G	3.30	3.40	3.50	
е	2.54 BSC			
L	12.40	- 13.00		
L1	3.46 BSC			

The AUK Corp. products are intended for the use as components in general electronic equipment (Office and communication equipment, measuring equipment, home appliance, etc.).

Please make sure that you consult with us before you use these AUK Corp. products in equipments which require high quality and / or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, transportation, combustion control, all types of safety device, etc.). AUK Corp. cannot accept liability to any damage which may occur in case these AUK Corp. products were used in the mentioned equipments without prior consultation with AUK Corp..

Specifications mentioned in this publication are subject to change without notice.