

#### STRUCTURE

Silicon Monolithic Integrated Circuit

with I<sup>2</sup>C interface

PRODUCT NAME

Dual output DC / DC Converter IC built in synchronous rectifier,

TYPE

**BD91362MUV** 

FEATURES

Output Voltage : 8bit Adjustable Setting with I<sup>2</sup>C interface

(FB1=FB2=0.900~1.075V / 25mV step)

Output Current : 3.0A/1.0A

· High Efficiency and Fast Transient Response

· I<sup>2</sup>C Compatible Interface(Device address '1100011')

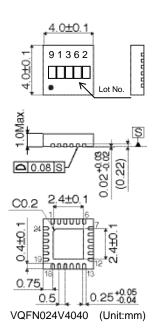
### OABSOLUTE MAXIMUM RATING (Ta=25°C)

| Parameter                      | Symbol     | Limit                           | Unit |
|--------------------------------|------------|---------------------------------|------|
| AVcc Voltage                   | Vcc        | -0.3 <b>~</b> +7 * <sup>1</sup> | V    |
| PVcc Voltage                   | PVcc       | -0.3~+7 * <sup>1</sup>          | V    |
| VDVDD Voltage                  | DVdd       | -0.3~+7 * <sup>1</sup>          | V    |
| BST Voltage                    | VBST       | -0.3~+13                        | V    |
| BST-SW Voltage                 | VBST-SW    | -0.3~+7                         | V    |
| EN · SW · ITH Voltage          | VEN        | -0.3~+7                         | V    |
| SCL · SDA Voltage              | VSDA, VSCL | -0.3~+7                         | V    |
| Power Dissipation 1            | Pd1        | 0.34 *2                         | W    |
| Power Dissipation 2            | Pd2        | 0.70 * <sup>3</sup>             | W    |
| Power Dissipation 3            | Pd3        | 2.21 * <sup>4</sup>             | W    |
| Power Dissipation 4            | Pd4        | 3.56 * <sup>5</sup>             | W    |
| Operating Temperature Range    | Topr       | -40~+105                        | °C   |
| Storage Temperature Range      | Tstg       | -55~+150                        | °C   |
| Operating Junction Temperature | Tjmax      | +150                            | °C   |

\*<sup>1</sup> Pd, ASO, and Tj=150°C should not be exceeded.
\*<sup>2</sup> IC only.
\*<sup>3</sup> 1 layer, mounted on a board 74.2mm × 74.2mm × 1.6mm Glass-epoxy PCB (Copper foil area : 10.29mm<sup>2</sup>)
\*<sup>4</sup> 4 layers, mounted on a board 74.2mm × 74.2mm × 1.6mm Glass-epoxy PCB (1<sup>st</sup>, 4<sup>th</sup> Copper foil area : 10.29mm<sup>2</sup> 2<sup>nd</sup>, 3<sup>rd</sup> Copper foil area : 5505mm<sup>2</sup>)
\*<sup>5</sup> 4 layers, mounted on a board 74.2mm × 74.2mm × 1.6mm Glass-epoxy PCB (Copper foil area : 5505mm<sup>2</sup>), copper foil in each layers.

#### OOPERATING CONDITIONS (Ta=-40~+105°C)

| Parameter                 | Symbol     | Min. | Тур. | Max.              | Unit |
|---------------------------|------------|------|------|-------------------|------|
| Vcc Voltage               | Vcc        | 2.7  | 5.0  | 5.5               | V    |
| PVcc Voltage              | PVcc       | 2.7  | 5.0  | 5.5               | V    |
| VDVDD Voltage             | DVDD *6    | 1.8  | 2.5  | Vcc               | V    |
| EN Voltage                | VEN        | 0    | -    | Vcc               | V    |
| SCL.SDA Voltage           | VSDA, VSCL | 0    | -    | DVdd              | V    |
| Output Voltage range*7    | Vout       | 1.0  | -    | 3.3* <sup>8</sup> | V    |
| SW Average Output Current | Isw1       | -    | -    | 3.0* <sup>9</sup> | А    |
| SW Average Output Current | Isw2       | -    | -    | 1.0* <sup>9</sup> | А    |


\*<sup>6</sup> VDVDD < VCC, PVCC</li>
\*<sup>7</sup> Initial set of I2C interfece
\*<sup>8</sup> In case set output voltage 1.6V or more, VccMin.=VOUT+1.2V.
\*<sup>9</sup> Pd and ASO should not be exceeded.
This product is not designed for protection against radioactive rays.

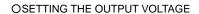


# OELECTRICAL CHARACTERISTICS (Unless otherwise specified , Ta=25°C VCC=PVCC=5.0V, DVDD =2.5V, EN=VCC)

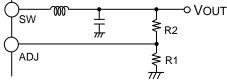
| Parameter                   | Cumbal |                   | Limit |                   | Unit | Condition           |
|-----------------------------|--------|-------------------|-------|-------------------|------|---------------------|
| Parameter                   | Symbol | Min. Typ.         |       | Max.              | Unit | Condition           |
| Standby Current             | ISTB   | -                 | 0     | 20                | μA   | EN=0V               |
| Bias Current                | Icc    | -                 | 500   | 800               | μA   |                     |
| EN Low Voltage              | VENL   | -                 | GND   | 0.8               | V    | Standby Mode        |
| EN High Voltage             | VENH   | 2.0               | Vcc   | -                 | V    | Active Mode         |
| EN Input Current            | len    | -                 | 2     | 10                | μA   | EN=2V               |
| Oscillation Frequency       | Fosc   | 0.8               | 1     | 1.2               | MHz  |                     |
|                             | RonH1  | -                 | 60    | 90                | mΩ   |                     |
| High-side FET ON Resistance | RonH2  | -                 | 170   | 255               | mΩ   |                     |
|                             | RonL1  | -                 | 55    | 83                | mΩ   |                     |
| Low-side FET ON Resistance  | RonL2  | -                 | 130   | 195               | mΩ   |                     |
| FB Reference Voltage1       | FB1    | 0.985             | 1.0   | 1.015             | V    | ±1.5%               |
| FB Reference Voltage2       | FB2    | 0.985             | 1.0   | 1.015             | V    | ±1.5%               |
| ITH sink current 1          | ITHSI1 | 10                | 18    | -                 | μA   | VFB1=1.2V           |
| ITH source current 1        | ITHSO1 | 10                | 18    | -                 | μA   | VFB1=0.8V           |
| ITH sink current 2          | ITHSI2 | 10                | 18    | -                 | μA   | VFB2=1.2V           |
| ITH source current 2        | ITHSO2 | 10                | 18    | -                 | μA   | VFB2=0.8V           |
| UVLO Threshold Voltage      | VUVLOL | 2.4               | 2.5   | 2.6               | V    | VCC=5→0V            |
| UVLO Release Voltage        | VUVLOH | 2.425             | 2.55  | 2.7               | V    | VCC=0→5V            |
| Soft Start Time             | Tss    | 0.5               | 1     | 2                 | ms   |                     |
| Timer Latch Time            | TLATCH | 0.5               | 1     | 2                 | ms   | SCP/TSD ON          |
| Output Short circuit        | VSCP1  | -                 | 0.5   | 0.7               | V    | FB1=1.0→0V(initial) |
| Threshold Voltage           | VSCP2  | -                 | 0.5   | 0.7               | V    | FB2=1.0→0V(initial) |
| Digital I/O (SCL,SDA)       |        |                   |       |                   |      |                     |
| INPUT Low Voltage           | VIL    | -                 | GND   | $0.2 \times DVDD$ | V    |                     |
| INPUT High Voltage          | VIH    | $0.8 \times DVDD$ | DVdd  | -                 | V    |                     |
| Inflow current              | lin    | -                 | 0     | 10                | μA   | SCL=SDA=2.5V        |
| Data Output Low voltage     | Vol    | -                 | -     | 0.6               | V    | IoL=6mA             |

# **OPHYSICAL DIMENSION**




#### **PIN NAME** PIN No PIN No **PIN NAME** 1 PVCC1 13 GND 2 BST 14 ITH2 SW1 FB2 3 15 4 SW1 ITH1 16 5 SW1 17 FB1 6 PGND1 18 VCC 7 PGND1 SCL 19 PGND1 SDA 8 20 PGND2 9 21 DVdd 10 SW2 22 N.C PVCC2 PVCC1 11 23 PVCC1 12 ΕN 24

# OFB Reference voltage


| FB1,FB2 |           |
|---------|-----------|
| 0.900 V |           |
| 0.925 V |           |
| 0.950 V |           |
| 0.975 V |           |
| 1.000 V | (initial) |
| 1.025 V |           |
| 1.050 V |           |
| 1.075 V |           |
|         |           |

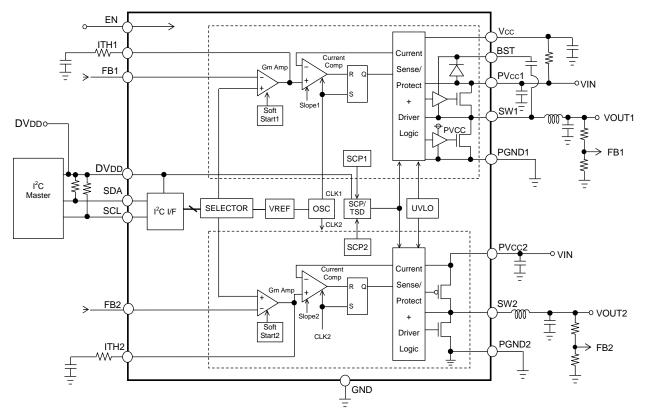
\*FB1,FB2 change after 10usec(max) pass from setting the voltage by I2C interface \*The time of 1step for FB1,FB2(25mV shift) take 5usec(max).

\*The time that output voltage reaches the setting value is 0.06msec(max).



**OPIN No., PIN NAME** 




The Output Voltage is set by the external resistor divider and is calculated as :

Volt=(R2/R1+1) × V<sub>FB</sub> · • ① V<sub>FB</sub> : FB pin feedback Voltage (1.0V typ) It's possible to adjust the output voltage by R1 and R2. (The Vout must be set from 1.0V to 3.3V. To control I<sup>2</sup>C BUS,The Vout can be set 0.9~3.475V)

Resistance R1=10k $\Omega$  is recommended. Please confirm the ripple voltage, if you can use the resistance more than 100k $\Omega$ .



# **OBLOCK DIAGRAM · APPLICATION CIRCUIT**



OI2C - BUS control map

| Byte | Bit7 | Bit6     | Bit5   | Bit 4 | Bit 3   | Bit 2    | Bit 1 | Bit 0 |
|------|------|----------|--------|-------|---------|----------|-------|-------|
| 1    |      |          | DEVICE | ADDRE | SS[6:0] |          |       | R/W   |
| 2    |      | FB1[2:0] |        | 0     |         | FB2[2:0] |       | 0     |

Byte 1 is DEVICE ADDRESS:[1100011]

Byte 2 is DATA BIT, from Bit5 to Bit7 set FB2[2:0] , from Bit1 to Bit3 set FB1[2:0]. Bit0 and Bit4 input '0' .

The mode of this IC is WRITE MODE only.

REGSEL REGISTER (Write), initial value : 00h

| REGISTRE | R/W | Bit7 | Bit6     | Bit5 | Bit4 | Bit3 | Bit2     | Bit1 | Bit0 |
|----------|-----|------|----------|------|------|------|----------|------|------|
| REGSEL   | w   |      | FB1[2:0] | ]    | 0    |      | FB2[2:0] |      | 0    |
| REGSEL   | vv  | 0    | 0        | 0    | 0    | 0    | 0        | 0    | 0    |

| Bit [7:5]: FB1[2:0] Set CH1 output volta | age Bit [3:1 | : FB2[2:0]      | Set CH2 output voltage |
|------------------------------------------|--------------|-----------------|------------------------|
| "000": 1.000V(initial)                   | "000":       | 1.000V(initial) |                        |
| "001": 0.925V                            | "001":       | 0.925V          |                        |
| "010": 0.950V                            | "010":       | 0.950V          |                        |
| "011": 0.975V                            | "011":       | 0.975V          |                        |
| "100": 0.900V                            | "100":       | 0.900V          |                        |
| "101": 1.025V                            | "101":       | 1.025V          |                        |
| "110": 1.050V                            | "110":       | 1.050V          |                        |
| "111": 1.075V                            | "111":       | 1.075V          |                        |



# ONOTES FOR USE

## (1) Absolute Maximum Ratings

We are careful enough for quality control about this IC. So, there is no problem under normal operation, excluding that it exceeds the absolute maximum ratings. However, this IC might be destroyed when the absolute maximum ratings, such as impressed voltages or the operating temperature range, is exceeded, and whether the destruction is short circuit mode or open circuit mode cannot be specified. Take into consideration the physical countermeasures for safety, such as fusing, if a particular mode that exceeds the absolute maximum rating is assumed.

#### (2) GND Potential

Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no terminals are at a potential lower than the GND voltage except for SW, PGND, GND terminals including an actual electric transient.

#### (3) Thermal design

Do not exceed the power dissipation (Pd) of the package specification rating under actual operation, and design enough temperature margins.

#### (4) Short circuit mode between terminals and wrong mounting

In order to mount the IC on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can destroy the IC. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or between the terminal and the power supply or the GND terminal, the IC can destroy

#### (5) Operation in Strong electromagnetic field

Be noted that using the IC in the strong electromagnetic radiation can cause operation failures.

#### (6) ASO(Area of Safety Operation.)

Do not exceed the maximum ASO and the absolute maximum ratings of the output driver.

(7) TSD(Thermal Shut-Down) circuit

The thermal shutdown circuit (TSD circuit) is built in this product. When IC chip temperature becomes higher, the thermal shutdown circuit operates and turns output off. The guarantee and protection of IC are not purpose. Therefore, do not use this IC after TSD circuit operates, nor use it for assumption that operates the TSD circuit.

(8) GND wiring pattern

Use separate ground lines for control signals and high current power driver outputs. Because these high current outputs that flows to the wire impedance changes the GND voltage for control signal. Therefore, each ground terminal of IC must be connected at the one point on the set circuit board. As for GND of external parts, it is similar to the above-mentioned.

(9) Operation in supply voltage range

Functional Circuit operation is guaranteed within operation ambient temperature, as long as it is within operation supply voltage range. The electrical characteristics standard value cannot be guaranteed.

However, there is no drastic variation in these values, as long as it is within operation supply voltage range.

(10) We are confident in recommending the above application circuit example, but we ask that you carefully check the characteristics of this circuit before using it. If using this circuit after modifying other external circuit constants, be careful to ensure adequate margins for variation between external devices and this IC, including not only static characteristics but also transient characteristics. If switching noise is high, insert the Low pass filter between Vcc pin and PVcc pin, insert the schottky barrier diodes between SW pin and PGND pin.

(11) Overcurrent protection circuit

The overcurrent protection circuit is built in the output. If the protection circuit operates more than for specific hours (when the load is short.), the output will be latched in OFF. The output returns when EN is turned on or UVLO is released again. These protection circuits are effective in the destruction prevention by broken accident. Do not use in continuous circuit operation.

(12) Selection of inductor

It is recommended to use an inductor with a series resistance element (DCR)  $0.1\Omega$  or less. Note that use of a high DCR inductor will cause an inductor loss, resulting in decreased output voltage. Should this condition continue for a specified period (soft start time + timer latch time), output short circuit protection will be activated and output will be latched OFF. When using an inductor over  $0.1\Omega$ , be careful to ensure adequate margins for variation between external devices and this IC, including transient as well as static characteristics.

(13) DVDD

The operating voltage range for DVDD is 1.8V~3.6V. The IC may not operate normally when the voltage is below than 1.8V. Therefore, a stabile power supply is required to ensure the supply voltage is within the DVDD operating voltage range.

When I2C is not been used, DVDD must be shorted to VCC.

Please be noticed that the output voltage from this IC can not be supplied to the DVDD.

|                                                                              | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                              | or reproduction of this document, in part or in whole, is permitted without the ROHM Co.,Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| The content                                                                  | specified herein is subject to change for improvement without notice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| "Products").                                                                 | specified herein is for the purpose of introducing ROHM's products (hereinafte<br>If you wish to use any such Product, please be sure to refer to the specifications<br>e obtained from ROHM upon request.                                                                                                                                                                                                                                                                                                                                                                                              |
| illustrate the                                                               | application circuits, circuit constants and any other information contained hereir<br>standard usage and operations of the Products. The peripheral conditions mus<br>account when designing circuits for mass production.                                                                                                                                                                                                                                                                                                                                                                              |
| However, sh                                                                  | vas taken in ensuring the accuracy of the information specified in this document<br>nould you incur any damage arising from any inaccuracy or misprint of such<br>ROHM shall bear no responsibility for such damage.                                                                                                                                                                                                                                                                                                                                                                                    |
| examples or<br>implicitly, an<br>other parties                               | al information specified herein is intended only to show the typical functions of and<br>f application circuits for the Products. ROHM does not grant you, explicitly o<br>y license to use or exercise intellectual property or other rights held by ROHM and<br>s. ROHM shall bear no responsibility whatsoever for any dispute arising from the<br>technical information.                                                                                                                                                                                                                            |
| equipment c                                                                  | es specified in this document are intended to be used with general-use electronic<br>or devices (such as audio visual equipment, office-automation equipment, commu-<br>ices, electronic appliances and amusement devices).                                                                                                                                                                                                                                                                                                                                                                             |
| The Product                                                                  | s specified in this document are not designed to be radiation tolerant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                              | A always makes efforts to enhance the quality and reliability of its Products, a<br>a fail or malfunction for a variety of reasons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| against the<br>failure of any<br>shall bear n                                | ure to implement in your equipment using the Products safety measures to guard<br>possibility of physical injury, fire or any other damage caused in the event of the<br>y Product, such as derating, redundancy, fire control and fail-safe designs. ROHM<br>o responsibility whatsoever for your use of any Product outside of the prescribed<br>t in accordance with the instruction manual.                                                                                                                                                                                                         |
| system whic<br>may result in<br>instrument,<br>controller or<br>of the Produ | ts are not designed or manufactured to be used with any equipment, device or<br>the requires an extremely high level of reliability the failure or malfunction of which<br>in a direct threat to human life or create a risk of human injury (such as a medica<br>transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-<br>other safety device). ROHM shall bear no responsibility in any way for use of any<br>ucts for the above special purposes. If a Product is intended to be used for any<br>I purpose, please contact a ROHM sales representative before purchasing. |
| be controlle                                                                 | I to export or ship overseas any Product or technology specified herein that may<br>d under the Foreign Exchange and the Foreign Trade Law, you will be required to<br>nse or permit under the Law.                                                                                                                                                                                                                                                                                                                                                                                                     |



Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

# ROHM Customer Support System

http://www.rohm.com/contact/