

Description

The ACE634 combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{DS(ON)}$. This device is ideal for load switch and battery protection applications.

Features

```
• N-Channel

V_{DS}(V)=20V

I_{D}=4A

R_{DS(ON)}

<35m\Omega (V_{GS}=4.5V)

<42m\Omega (V_{GS}=2.5V)

• P-Channel

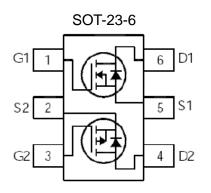
V_{DS}(V)=-20V

I_{D}=-2.5A

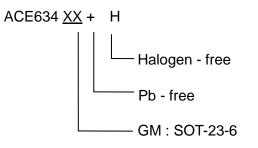
R_{DS(ON)}

<85m\Omega (V_{GS}=-4.5V)

<115m\Omega (V_{GS}=-2.5V)
```


Absolute Maximum Ratings

(T_A=25 $^\circ\!\mathrm{C}$ Unless otherwise noted)


Parameter		Тур	Unit		
Faiametei	Symbol	N-Channel	P-Channel	Unit	
Drain-Source Voltage	V_{DSS}	20	-20	V	
Gate-Source Voltage		±12	±12	V	
Continuous Drain Current (T _J =150°C) $T_A=2$	5℃	4	-2.5	А	
*AC	°C I _D	3.2	-2		
Drain Current (pulse) * B		13	-13	А	
Power Dissipation		1.1	1.1	w	
$T_{A}=7$	O°C FD	0.7	0.7	vv	
Operating Junction Temperature		-55 to	-55 to 150		
Storage Temperature Range	T_{STG}	-55 to 150		°C	

Packaging Type

Ordering information

Electrical Characteristics (N-Channel)

(T_A=25°C Unless otherwise noted)

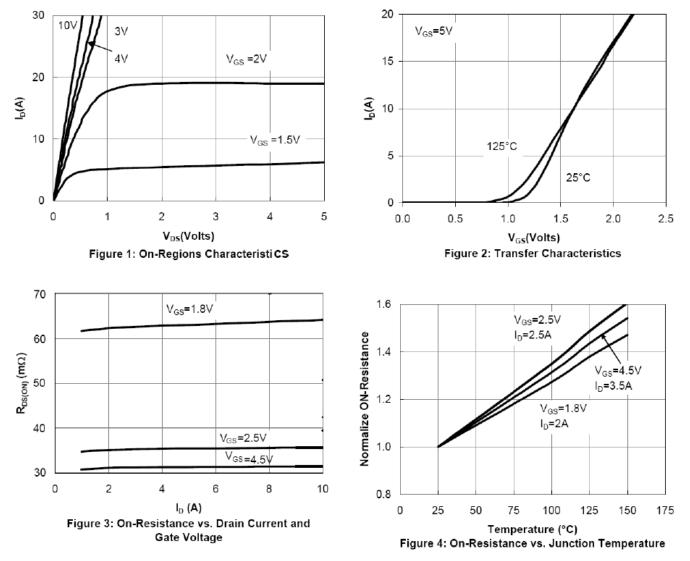
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
	St	tatic					
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} =0V, I _D =250uA	20			V	
		V _{GS} =4.5V, I _D =3.5A		29	35	mΩ	
Drain-Source On Resistance	R _{DS(ON)}	V _{GS} =2.5V, I _D =2.5A		35	42		
		V _{GS} =1.8V, I _D =2A		62	75		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250$ uA	0.6	0.75	1	V	
Gate Leakage Current	I _{GSS}	V _{DS} =0V, V _{GS} =±12V			100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =20V, V_{GS} =0V			1	uA	
Forward Transconductance	g fs	V _{DS} =5V, I _D =3A		16		S	
Diode Forward Voltage	V_{SD}	I _{SD} =1.7A, V _{GS} =0V		0.74	1.0	V	
Maximum Body-Diode Continuous Current	I _S				1.7	А	
	Swit	tching					
Total Gate Charge	Qg	V _{DS} =10V, V _{GS} =4.5V, I _D =4A		6.3	8.1	nC	
Gate-Source Charge	Q_gs			1.7	2.2		
Gate-Drain Charge	Q _{gd}			1.4	1.8		

VER 1.2 2

ACE634

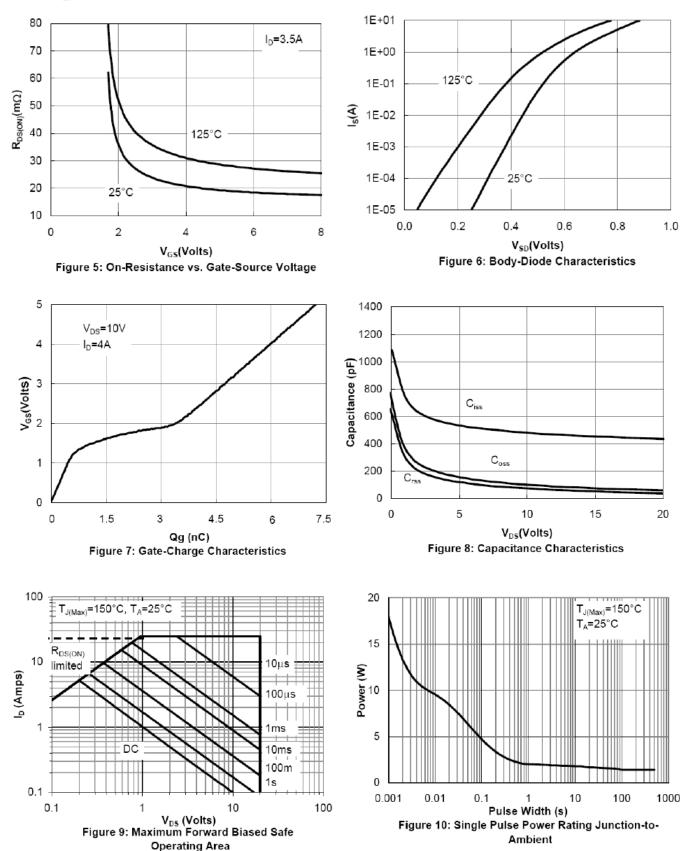
20V Complementary Enhancement Mode Field Effect Transistor

Turn-On Delay Time	t _{d(on)}		10.4	20.8		
Turn-On Rise Time	t _r	V_{GS} =4.5V, V_{DS} =10V,	4.4	8.8		
Turn-Off Delay Time	t _{d(off)}	I _D =1Α, R _G =6Ω	$I_D = IA, R_G = 0\Omega$ 27	27.4	54.8	ns
Turn- Off Rise Time	t _f		4.2	8.4		
	Dy	namic				
Input Capacitance	Ciss		522.3			
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =8V, f=1MHZ	98.5		pF	
Reverse Transfer capacitance	Crss		74.7			

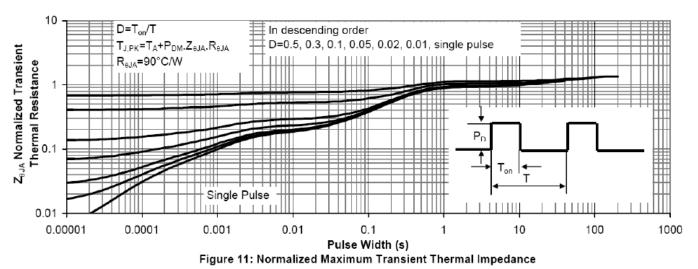

Note:

A: The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}$ C. The value in any given application depends on the user's specific board design.

B: Repetitive rating, pulse width limited by junction temperature.


C: The current rating is based on the t≤ 10s junction to ambient thermal resistance rating.

Typical Characteristics (N-Channel)


20V Complementary Enhancement Mode Field Effect Transistor

ACE634

ACE634 20V Complementary Enhancement Mode Field Effect Transistor

Electrical Characteristics (P-Channel)

(T_A=25°C Unless otherwise noted)

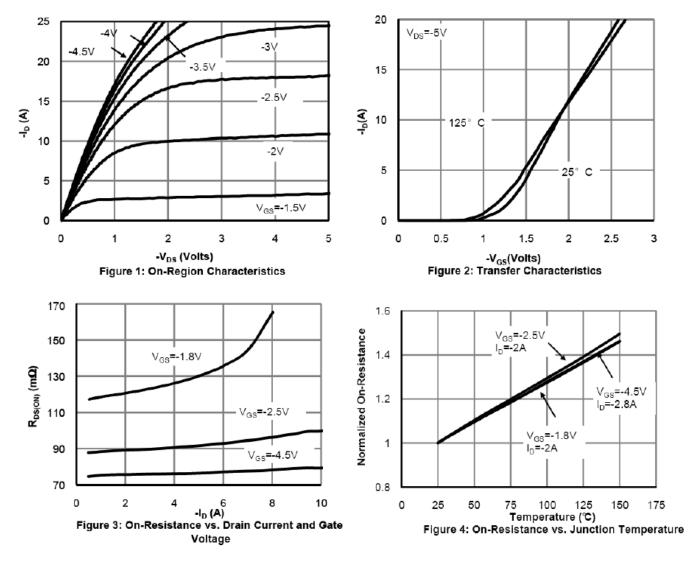
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
		Static				
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} =0V, I _D =250uA	-20			V
		V _{GS} =-4.5V, I _D =-2.8A		77	85	mΩ
Drain-Source On Resistance	R _{DS(ON)}	V _{GS} =-2.5V, I _D =-2A		92	115	
		V _{GS} =-1.8V, I _D =-2A		118	200	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=-250$ uA	-0.5	-0.6	-1	V
Gate Leakage Current	I _{GSS}	V_{DS} =0V, V_{GS} =±12V			±100	nA
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =-20V, V_{GS} =0V			-1	uA
Forward Transconductance	g _{FS}	V_{DS} =-5V, I_{D} =-2.5V		13		S
Diode Forward Voltage	V_{SD}	I _{SD} =-1.6A, V _{GS} =0V		-0.81	-1.0	V
Maximum Body-Diode Continuous Current	I _s				-1.6	А
		Switching				
Total Gate Charge	Qg	Switching		6.6	8.6	
Gate-Source Charge	Q _{gs}	V_{DS} =-6V, V_{GS} =-4.5V,		0.3	0.4	nC
Gate-Drain Charge	Q _{gd}	- I _D =-2.8A		1.3	1.7	
Turn-On Delay Time	t _{d(on)}	V_{DD} =-6V, R _G =6Ω, R _L =6Ω, V _{GEN} =-4.5V, I _D =-1A,		9.7	19.4	
Turn-On Rise Time	tr			3.6	7.1	ns
Turn-Off Delay Time	t _{d(off)}			33.3	66.6	
Turn- Off Rise Time	t _f			4.5	9	
		Dynamic				
Input Capacitance	Ciss	V _{GS} =0V, V _{DS} =-6V, f=1MHZ		589		pF

VER 1.2 5

20V Complementary Enhancement Mode Field Effect Transistor

ACE634

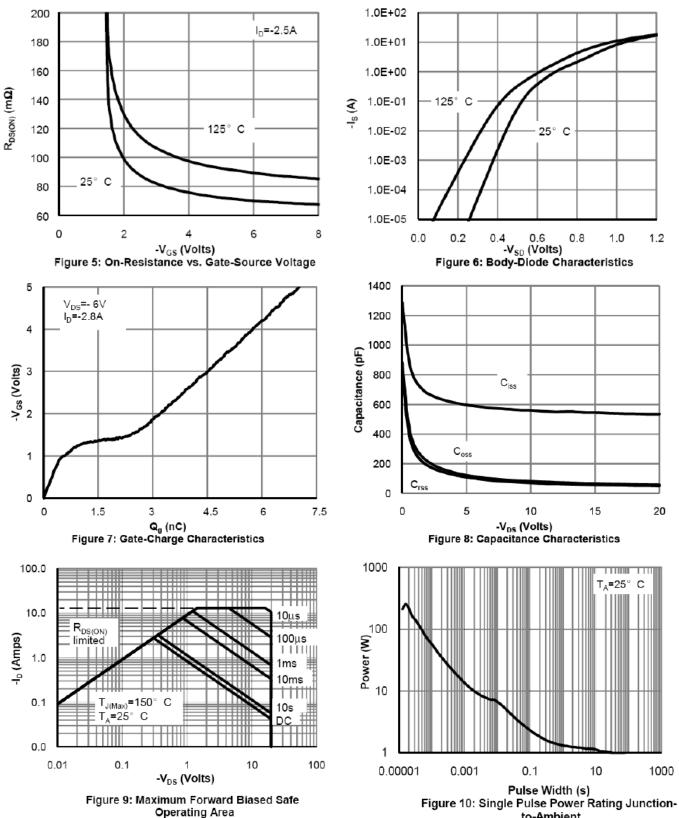
Output Capacitance	Coss		91.2	
Reverse Transfer capacitance	Crss		67.2	ĺ

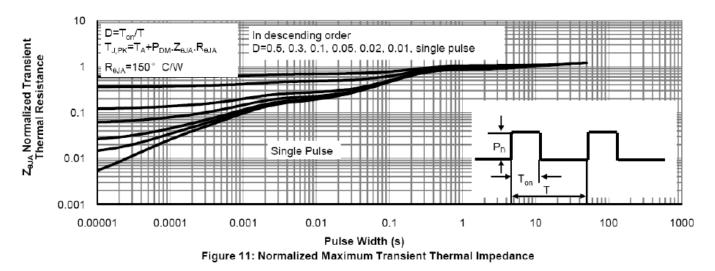

Note:

A: The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}$ C. The value in any given application depends on the user's specific board design.

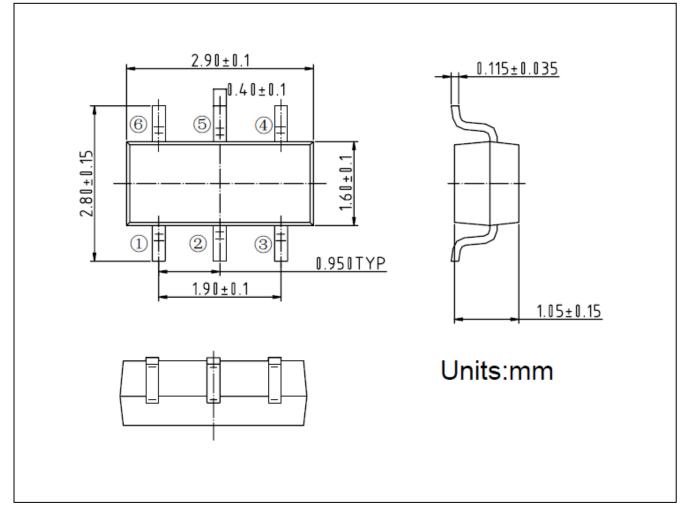
B: Repetitive rating, pulse width limited by junction temperature.

C: The current rating is based on the t \leq 10s junction to ambient thermal resistance rating.


Typical Characteristics (P-Channel)


20V Complementary Enhancement Mode Field Effect Transistor

ACE634



ACE634 20V Complementary Enhancement Mode Field Effect Transistor

Packing Information

SOT-23-6

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/