

M65845AFP

Digital Echo with Microphone Mixing Circuit

REJ03F0170-0201 Rev.2.01 Jan 25, 2007

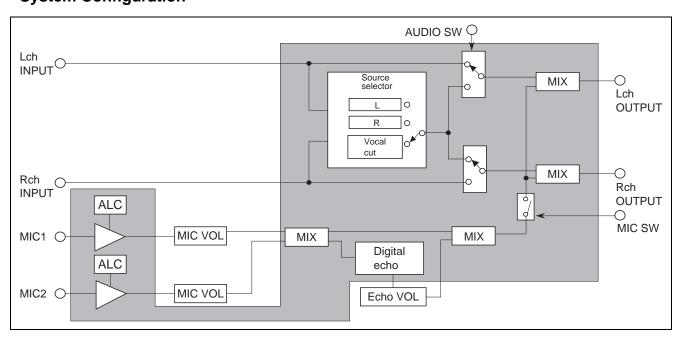
Description

The M65845AFP is a CMOS IC built-in digital echo function with microphone peripheral circuits for Karaoke equipment packed in a single chip.

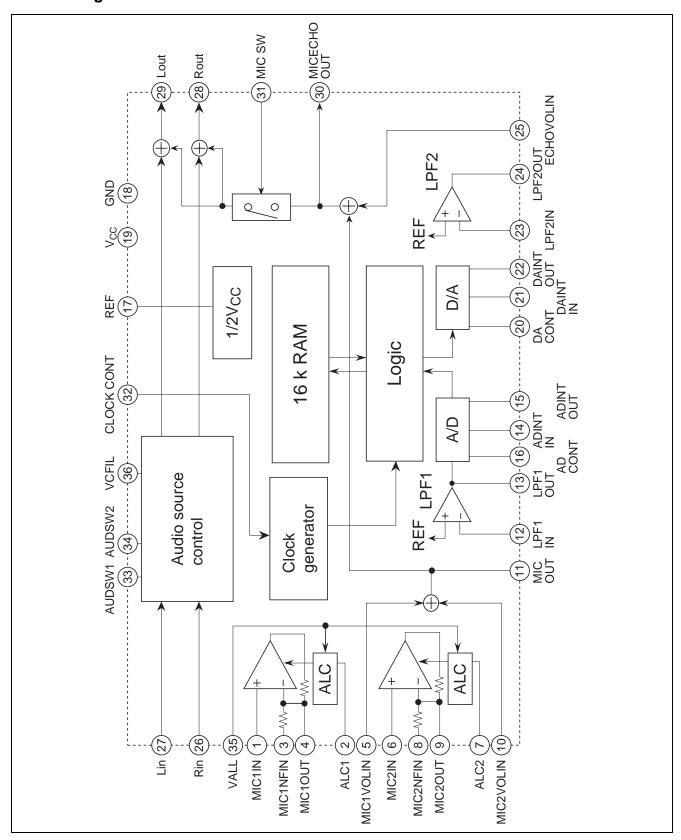
It is suitable for Karaoke equipments such as video CD player, mini stereo, CD-radio cassette, TV or VCR.

Being pin compatible with the M65845FP, the M65845AFP is suitable for upgrading the series.

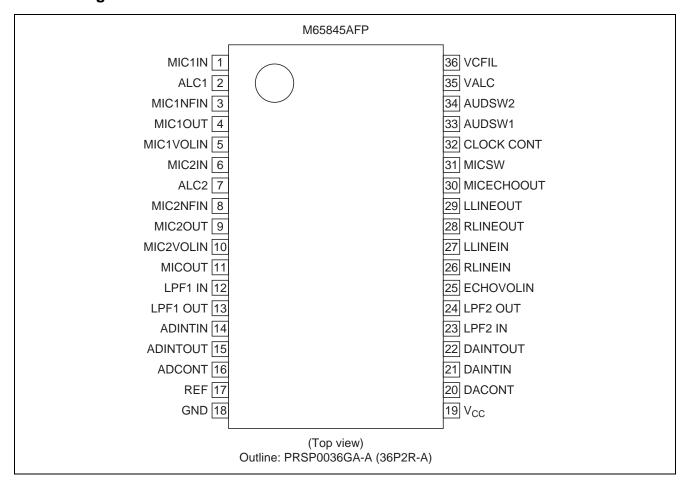
Features


- High performance digital echo circuit thanks to 16 Kbit memory
- Two microphone-mixing lines, vocal cut circuit, digital echo, and line-mixing amplifier are contained, enabling single-chip package of microphone peripheral circuit of Karaoke equipment.
- ALC-equipped microphone amplifiers permit excessively high-input. ALC operating voltage can be set as desired.
- Vocal cut circuit of complete stereo construction
- Compatibility with the M65845FP
- Built-in current-control oscillation circuit
- Built-in automatic reset circuit activated with power on
- Single power supply (5 V)

Recommended Operating Condition


• Supply voltage range: $V_{CC} = 4.5 \text{ V}$ to 5.5 V

• Rated supply voltage: $V_{CC} = 5 \text{ V}$


System Configuration

Block Diagram

Pin Arrangement

Pin Description

Pin				
No.	Symbol	Pin Name	Function	
1	MIC1IN	MIC1 input	Connect MIC1	
2	ALC1	ALC1 control	Connect C which determine recovery time	
3	MIC1NFIN	MIC1 NF input	Set up MIC1 amp gain for feedback circuit	
4	MIC1OUT	MIC1 output		
5	MIC1VOLIN	MIC1 volume input	Connect microphone volume which turn down input signal	
6	MIC2IN	MIC2 input	Connect MIC2	
7	ALC2	ALC2 control	Connect C which determine ALC attack, recovery time	
8	MIC2NFIN	MIC2 NF input	Forms MIC2 amp gain with feedback	
9	MIC2OUT	MIC2 output		
10	MIC2VOLIN	MIC2 volume input	Connect microphone volume which turn down input signal	
11	MICOUT	MIC output	Mixing output with MIC1 and MIC2	
12	LPF1 IN	Low pass filter 1 input	Forms the front low pass filter with external CR for digital echo	
13	LPF1 OUT	Low pass filter 1 output		
14	ADINTIN	A/D integral input	Forms integrator with external C and R	
15	ADINTOUT	A/D integral output		
16	ADCONT	A/D control	ADM A/D adaptive control	
17	REF	Reference	1/2 V _{CC} , connect filter C	
18	GND	GND		
19	V _{CC}	Power supply		
20	DACONT	D/A control	ADM A/D adaptive control	
21	DAINTIN	D/A integral input	Forms integrator with external C	
22	DAINTOUT	D/A integral output		
23	LPF2 IN	Low pass filter 2 input	Forms post low pass filter with external CR for digital echo	
24	LPF2 OUT	Low pass filter 2 output]	
25	ECHOVOLIN	Echo volume input	Connect microphone volume which turn down input signal	
26	RLINEIN	Rch line input		
27	LLINEIN	Lch line input		
28	RLINEOUT	Rch line output	Mixing output with line and microphone	
29	LLINEOUT	Lch line output		
30	MICECHOOUT	MIC echo output	Mixing output with microphone and echo	
31	MICSW	MIC SW	L: Microphone OFF, H: Microphone ON	
32	CLOCK CONT	Clock control	Controls built-in clock generation circuit with external R	
33	AUDSW1	Audio SW1	Changing source sound signal	
34	AUDSW2	Audio SW2]	
35	VALC	ALC supply voltage control	Form ALC operation voltage with control voltage	
36	VCFIL	Vocal cut filter	Through frequency under vocal level	

Absolute Maximum Ratings

(Ta = 25°C, unless otherwise noted)

Item	Symbol	Rations	Unit	Conditions
Supply voltage	V _{CC}	6.0	V	
Circuit current	Icc	85	mA	
Input voltage	Vi	-0.3 to $V_{CC} + 0.3$	V	
Power dissipation	Pd	860	mW	
Operating temperature	Topr	-20 to +75	°C	
Storage temperature	Tstg	-40 to +125	°C	

Recommended Operating Condition

		Limits				
Item	Symbol	Min	Тур	Max	Unit	Conditions
Supply voltage	V _{CC}	4.5	5	5.5	V	
L input voltage	V _{IL}	0	_	1	V	Pin 33, 34
H input voltage	V _{IH}	4	_	V _{CC}	V	

Electrical Characteristics

 $(V_{CC} = 5 \text{ V}, f = 1 \text{ kHz}, Vi = 100 \text{mVrms}, \text{fck} = 2 \text{ MHz}, \text{Ta} = 25 ^{\circ}\text{C}, \text{unless otherwise noted})$

Item Symbol		,	Limits			,	
		Symbol	Min Typ Max		Max	Unit	Conditions
Total	Circuit current	Icc	25	34	70	mA	No signal
Microphone	Voltage gain	G _{VO}	44	47	50	dB	Vo = −17 dBV
amplifier	Distortion 1	THD1	_	0.5	1.5	%	Vo = -17 dBV, without ALC
	Distortion 2	THD2	_	3.0	6.0	%	Vi = −27 dBV, ALC operate
	ALC voltage	Vo _{ALC}	-3	0	+3	dB	at -10 to +3 dBV
	ALC attack time	T _{ALCAT}	25	40	55	ms	at C = 4.7 μF
	ALC recovery time	T _{ALCRE}	1.0	1.5	2.0	S	at C = 4.7 μF
	Maximum output voltage	Vo _{MAX}	-1	2	_	dBV	THD = 10%
	Noise voltage	No	_	-68	-57	dBV	$G_V = 47 \text{ dB}, \text{JIS-A}, \text{VI} = 0 \text{ Vrms}$
	Input impedance	Zi	5	10	20	kΩ	
Echo	Delay time	Td	167	197	226	ms	$R_C = 51 \text{ k}\Omega$
	Voltage gain	Gv	-3	0	+3	dB	
	Distortion	THD	_	2.0	4.0	%	
	Maximum output voltage	Vo _{MAX}	-3	+1	_	dBV	THD = 10%
	Noise voltage	No	_	-82	-67	dBV	JIS-A
Line	Voltage gain	Gv	-3	0	+3	dB	
	Distortion	THD	_	0.02	0.1	%	
	Maximum output voltage	Vo _{MAX}	1	4	_	dBV	THD = 10%
	Noise voltage	No	_	-97	-88	dBV	JIS-A, MICSW = OFF
	Input impedance	Zi	10	20	40	kΩ	
Vocal cut	Noise voltage	No	_	-95	-72	dBV	JIS-A, Vocal cut ON
	Voltage gain	Gv	-3	0	+3	dB	Input one side channel
	Maximum output voltage	Vo _{MAX}	1	4	_	dBV	THD = 10%
	Vocal rejection ratio	G _{REJ}	14	18	_	dB	

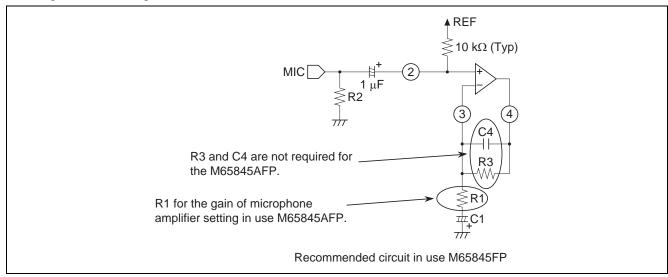
Function Description

Microphone Amplifier

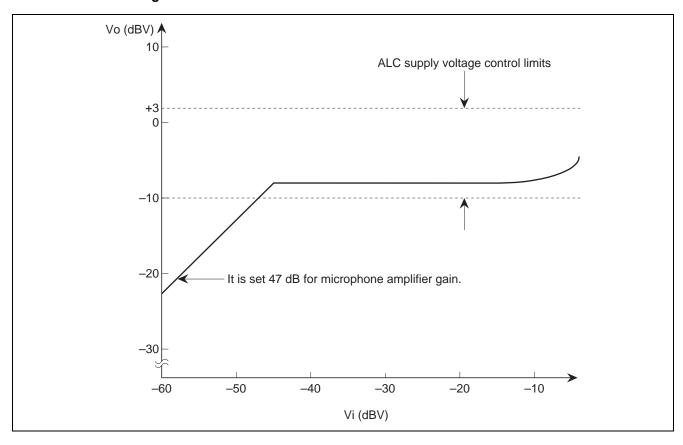
The gain (G_V) and low cut-off frequency (fcl) of microphone amplifier are expressed as follows.

$$G_V = 20log \bullet \frac{R1 + 1.5 \text{ k} + 334 \text{ k}}{R1 + 1.5 \text{ k}} \quad \text{fcl} = \frac{1}{2\pi \bullet (R1 + 1.5 \text{ k}) \bullet C1}$$

$$G_V (max) = 47 dB, fcl = 50 Hz$$

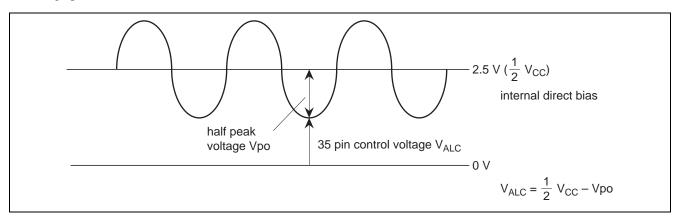

R1 = 0
$$\Omega$$
, C1 = 2.2 μ F

Assuming $G_V = 37$ dB, fcl = 15 Hz, for instance, the constants take the following values.


$$R1 = 3.3 \text{ k}\Omega$$
, $C1 = 2.2 \mu\text{F}$

<Attention point when M65845FP is replaced with M65845AFP>

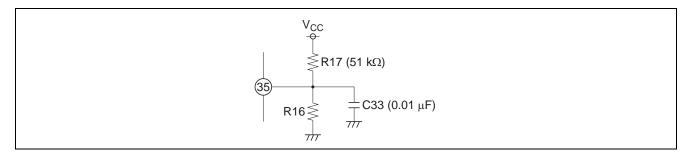
R3 and C4 are required for the M65845FP, not for the M65845AFP. As mentioned above, the gain of microphone amplifier can set it up with R1.


ALC Level Block Diagram

ALC Operation Voltage Control

ALC operation voltage can be formed within the limits of -10 to +3 dBV controlled by DC control voltage which connect pin 35.

(Setting up forms)


When ALC operation voltage is -5 dBV (at $V_{CC} = 5$ V)

$$-5 \text{ dBV} = 0.56 \text{ Vrms} = 1.59 \text{ Vp-p} = 0.80 \text{ Vp-o}$$

$$V_{ALC} = 2.5 - 0.8 = 1.7 \text{ V}$$

are concerned.

Input impedance to pin 35 is so high (1 M Ω) that ALC base voltage can be determined by division resistance.

at $V_{CC} = 5 \text{ V}$

ALC Operation Voltage (dBV)	Pin 35 Control Voltage VALC (V)	Resistance R16 (Ω)
+3	0.50	5.6 k
0	1.09	15 k
-2	1.38	20 k
-4	1.61	24 k
-6	1.79	27 k
-8	1.94	33 k
-10	2.05	36 k

MIC SW

Input low level to pin 31 (MIC SW), then microphone and echo signal can be cut.

Pin 31 (MIC SW)	MIC SW	Echo Signal Output	
H or Open	On	On	
L	Off	Mute	

Audio Source Select

Changing the switch, sound source changes four patterns matching with Karaoke soft.

Pin 33 AUDSW1: D1	Pin 34 AUDSW2: D2	Movements	
L	L	Stereo	
L	Н	Lch monaural	
Н	L	Rch monaural	
Н	Н	Vocal cut	

1. Stereo

Under the conditions usual 2ch are played back to each outputs.

2 Lch monaural

Under the conditions Lch source is played back to 2ch outputs and suitable for Karaoke reproduction of multiple Karaoke soft and main sound reproduction of laser disks.

3. Rch monaural

Under the conditions Rch source is played back to 2ch outputs and suitable for reference vocal reproduction of multiple Karaoke soft and sub sound reproduction of laser disks.

4. Vocal cut

It is a method turned down Lch and Rch input having the same phase and sound.

Low pass cut off frequency fc is determined by a capacitance which connect to pin 36 (vocal cut filter).

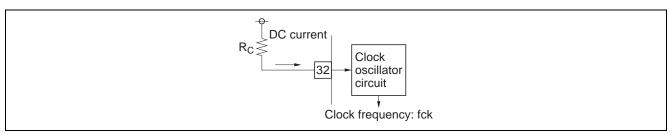
It is also having a function which through frequency under vocal level for supplying a lack of low level sound.

$$R_{VC} = 20 \text{ k}\Omega \text{ (Typ)}$$

at fc = 50 Hz, $C34 = 0.15 \mu F$ is determined.

Caution: Inside resistance is changeable one by one which rate is $\pm 30\%$.

Digital Echo


1. Clock oscillator circuit

This IC incorporates a current control type clock oscillator circuit in it, thus providing circuit configuration just by connecting an R_C for current control pin 32 (CLOCK CONT).

Fully internal clock supply prevents occurrence of undesired radiation without affecting any external circuit.

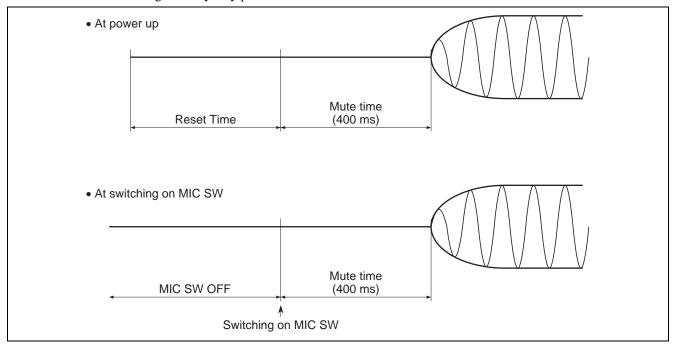
The oscillator frequency fck is following.

$$fck = 2 MHz (R_C = 51 k\Omega)$$

Note: The delay time (Td) for echo is determined by the clock frequency (fck).

Delay time = $1/fck \times 24 \times N$

(N = the number of memory bits = 16384)

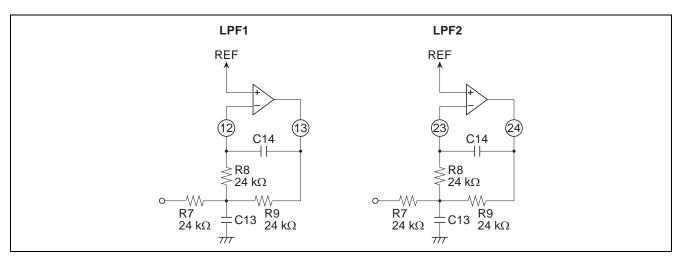

 $fck = 2 MHz (Rc = 51 k\Omega)$: Delay time = 197 ms

fck = 2.6 MHz (Rc = 39 k Ω): Delay time = 150 ms

fck = 3.9 MHz (Rc = $24 \text{ k}\Omega$): Delay time = 100 ms

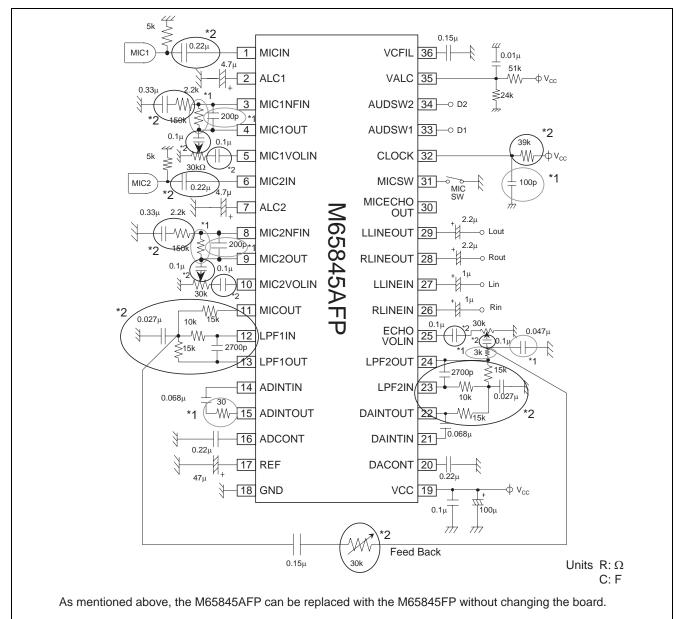
2. Auto mute function

The IC carries out auto mute function at the time of powering up and switching on MIC SW in order to suppress shock noise that the digital delay may produce.


3. Input and output LPF

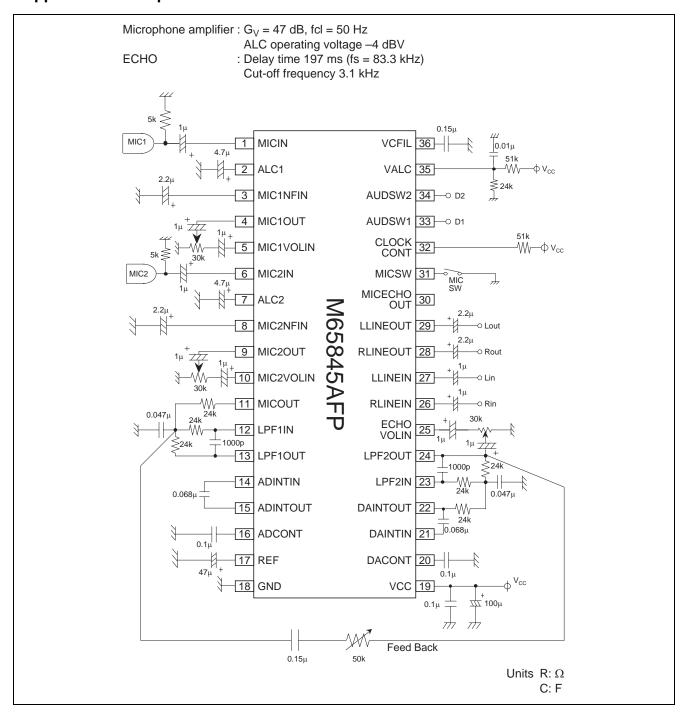
Signal through frequency fsig is also determined by LPF of digital echo cut off frequency.

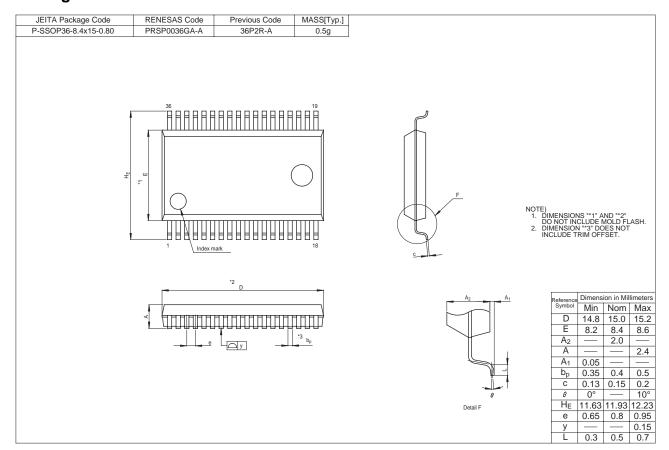
2 degree LPF of digital echo is formed by external resistance and capacitor. (refer to next figure)


So, cut off frequency is determined by next formula.

$$fsig = \frac{1}{2\pi \sqrt{R8 \cdot R9 \cdot C13 \cdot C14}}$$

Compatibility with M65845FP


<Application Example in Use M65845FP>


Notes: *1. The components marked with a circle are required for the M65845FP, not for the M65845AFP.

*2. The M65845AFP is different from the M65845FP a part of the components marked with a circle.

Application Example

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the such procedures and procedures are such as that disclosed through our website. (http://www.renesas.com/)

 3. Renesas has su used reasonable care in compling the information included in this document, but the respect to the procedure of the procedu

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510