PD - 90679E

# International Rectifier

## REPETITIVE AVALANCHE AND dv/dt RATED HEXFET® TRANSISTOR

IRHN7250 IRHN8250 JANSR2N7269U JANSH2N7269U

(REF:MIL-PRF-19500/603)

N CHANNEL

MEGA RAD Hard™

#### 200Volt, 0.100Ω, MEGA RAD Hard™ HEXFET®

International Rectifier's RAD Hard technology HEXFETs demonstrate excellent threshold voltage stability and breakdown voltage stability at total radiation doses as high as 1x10<sup>6</sup> Rads(Si). Under **identical** pre- and post-irradiation test conditions, International Rectifier's RAD Hard HEXFETs retain **identical** electrical specifications up to 1 x 10<sup>5</sup> Rads (Si) total dose. No compensation in gate drive circuitry is required. These devices are also capable of surviving transient ionization pulses as high as 1 x 10<sup>12</sup> Rads (Si)/Sec, and return to normal operation within a few microseconds. Since the RAD Hard process utilizes International Rectifier's patented HEXFET technology, the user can expect the highest quality and reliability in the industry.

RAD Hard HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high-energy pulse circuits in space and weapons environments.

#### **Product Summary**

| Part Number | BVDSS | RDS(on) | lD  |
|-------------|-------|---------|-----|
| IRHN7250    | 200V  | 0.100Ω  | 26A |
| IRHN8250    | 200V  | 0.100Ω  | 26A |

#### Features:

- Radiation Hardened up to 1 x 10<sup>6</sup> Rads (Si)
- Single Event Burnout (SEB) Hardened
- Single Event Gate Rupture (SEGR) Hardened
- Gamma Dot (Flash X-Ray) Hardened
- Neutron Tolerant
- Identical Pre- and Post-Electrical Test Conditions
- Repetitive Avalanche Rating
- Dynamic dv/dt Rating
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Electrically Isolated
- Ceramic EyeletsSurface Mount
- Light Weight

#### **Absolute Maximum Ratings** ①

#### **Pre-Irradiation**

|                                        | Parameter                       |               | Units |
|----------------------------------------|---------------------------------|---------------|-------|
| ID @ VGS = 12V, TC = 25°C              | Continuous Drain Current        | 26            |       |
| ID @ VGS = 12V, TC = 100°C             | Continuous Drain Current        | 16            | Α     |
| IDM                                    | Pulsed Drain Current @          | 104           |       |
| P <sub>D</sub> @ T <sub>C</sub> = 25°C | Max. Power Dissipation          | 150           | W     |
|                                        | Linear Derating Factor          | 1.2           | W/°C  |
| VGS                                    | Gate-to-Source Voltage          | ±20           | V     |
| EAS                                    | Single Pulse Avalanche Energy ③ | 500           | mJ    |
| IAR                                    | Avalanche Current ②             | 26            | А     |
| EAR                                    | Repetitive Avalanche Energy@    | 15            | mJ    |
| dv/dt                                  | Peak Diode Recovery dv/dt 4     | 5.0           | V/ns  |
| ТЈ                                     | Operating Junction              | -55 to 150    |       |
| TSTG Storage Temperature Range         |                                 |               | °C    |
|                                        | Pckg. Mounting Surface Temp.    | 300 (for 5 s) |       |
|                                        | Weight                          | 2.6 (typical) | g     |

#### **Pre-Irradiation**

#### **Electrical Characteristics** @ Tj = 25°C (Unless Otherwise Specified) ①

|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                                    | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Тур                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Max                                                                                                                                                  | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Test Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Drain-to-Source Breakdown Voltage            | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                    | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VGS = 0V, ID = 1.0mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Temperature Coefficient of Breakdown Voltage |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                    | V/°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reference to 25°C, ID = 1.0mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Static Drain-to-Source On-State              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.10                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VGS = 12V, ID = 16A (\$)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Resistance                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.11                                                                                                                                                 | 1 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VGS = 12V, ID = 26A ⑤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Gate Threshold Voltage                       | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0                                                                                                                                                  | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $V_{DS} = V_{GS}$ , $I_{D} = 1.0$ mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Forward Transconductance                     | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                    | S (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VDS > 15V, IDS = 16A ⑤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Zero Gate Voltage Drain Current              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V <sub>DS</sub> = 0.8 x Max Rating,V <sub>GS</sub> =0V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 250                                                                                                                                                  | μΑ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VDS = 0.8 x Max Rating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VGS = 0V, TJ = 125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Gate-to-Source Leakage Forward               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                                                                                                                                  | m Λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VGS = 20V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Gate-to-Source Leakage Reverse               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -100                                                                                                                                                 | nA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VGS = -20V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Gate Charge                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VGS =12V, ID = 26A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Gate-to-Source Charge                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                   | nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V <sub>DS</sub> = Max Rating x 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Gate-to-Drain ('Miller') Charge              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Turn-On Delay Time                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $V_{DD} = 100V, I_{D} = 26A,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Rise Time                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $R_G = 2.35\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Turn-Off Delay Time                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 140                                                                                                                                                  | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fall Time                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 140                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Internal Drain Inductance                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                    | nН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Internal Source Inductance                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                    | 11111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Input Capacitance                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VGS = 0V, VDS = 25V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Output Capacitance                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                    | pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f = 1.0MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Reverse Transfer Capacitance                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                              | Drain-to-Source Breakdown Voltage Temperature Coefficient of Breakdown Voltage Static Drain-to-Source On-State Resistance Gate Threshold Voltage Forward Transconductance Zero Gate Voltage Drain Current  Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Total Gate Charge Gate-to-Source Charge Gate-to-Drain ('Miller') Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance  Input Capacitance Output Capacitance | Drain-to-Source Breakdown Voltage Temperature Coefficient of Breakdown Voltage Static Drain-to-Source On-State — Resistance — Gate Threshold Voltage 2.0 Forward Transconductance 8.0 Zero Gate Voltage Drain Current — Gate-to-Source Leakage Forward — Gate-to-Source Leakage Reverse — Total Gate Charge — Gate-to-Source Charge — Gate-to-Drain ('Miller') Charge — Turn-On Delay Time — Rise Time — Turn-Off Delay Time — Fall Time — Internal Drain Inductance —  Input Capacitance — Output Capacitance —  Input Capacitance —  Input Capacitance —  Input Capacitance —  Output Capacitance —  Input Capacitance —  Input Capacitance —  Input Capacitance —  Input Capacitance —  Output Capacitance —  Input Capacit | Drain-to-Source Breakdown Voltage Temperature Coefficient of Breakdown Voltage Static Drain-to-Source On-State — — — — — — — — — — — — — — — — — — — | Drain-to-Source Breakdown Voltage         200         —         —           Temperature Coefficient of Breakdown Voltage         —         0.27         —           Static Drain-to-Source On-State         —         —         0.10           Resistance         —         —         0.11           Gate Threshold Voltage         2.0         —         4.0           Forward Transconductance         8.0         —         —           Zero Gate Voltage Drain Current         —         25         —         250           Gate-to-Source Leakage Forward         —         —         100         —         30         —         —         170         Gate-to-Source Leakage Reverse         —         —         170         Gate-to-Source Charge         —         —         170         Gate-to-Source Charge         —         —         170         Gate-to-Drain ('Miller') Charge         —         —         60         Turn-On Delay Time         —         —         140         Turn-Off Delay Time         —         —         140         Turn-Off Delay Time         —         —         140         —         —         —         —         —         —         —         —         —         —         —         — | Drain-to-Source Breakdown Voltage         200         —         V           Temperature Coefficient of Breakdown Voltage         —         0.27         —         V/°C           Static Drain-to-Source On-State Resistance         —         —         0.10         Ω           Resistance         —         —         0.11         Ω           Gate Threshold Voltage         2.0         —         4.0         V           Forward Transconductance         8.0         —         —         S (τ)           Zero Gate Voltage Drain Current         —         —         25         μΑ           Gate-to-Source Leakage Forward         —         —         100         nA           Gate-to-Source Leakage Reverse         —         —         -100         nA           Total Gate Charge         —         —         170         nC           Gate-to-Source Charge         —         —         30         nC           Gate-to-Drain ('Miller') Charge         —         —         60         n           Turn-On Delay Time         —         —         140         ns           Fall Time         —         —         140         n           Internal Drain Inductance         — |

#### **Source-Drain Diode Ratings and Characteristics** ①

|     | Parameter                              | Min                                                                                        | Тур | Max | Units | Test Conditions                     |  |  |
|-----|----------------------------------------|--------------------------------------------------------------------------------------------|-----|-----|-------|-------------------------------------|--|--|
| Is  | Continuous Source Current (Body Diode) | _                                                                                          | _   | 26  | Α     |                                     |  |  |
| ISM | Pulse Source Current (Body Diode) ②    | _                                                                                          | _   | 104 | ^     |                                     |  |  |
|     |                                        |                                                                                            |     |     |       |                                     |  |  |
| VSD | Diode Forward Voltage                  | _                                                                                          | _   | 1.4 | V     | Tj = 25°C, IS = 26A, VGS = 0V ⑤     |  |  |
| trr | Reverse Recovery Time                  | _                                                                                          | _   | 820 | ns    | Tj = 25°C, IF = 26A, di/dt ≥100A/μs |  |  |
| QRR | Reverse Recovery Charge                | —                                                                                          | —   | 12  | μС    | V <sub>DD</sub> ≤ 25V ⑤             |  |  |
| ton | Forward Turn-On Time Intrinsic turn-or | Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD |     |     |       |                                     |  |  |

#### **Thermal Resistance**

|          | Parameter            | Min | Тур | Max  | Units | Test Conditions                           |
|----------|----------------------|-----|-----|------|-------|-------------------------------------------|
| RthJC    | Junction-to-Case     | _   | _   | 0.83 | °C/W  |                                           |
| RthJ-PCB | Junction-to-PC board | _   | 6.6 | _    | C/VV  | Soldered to a 1 inch square clad PC board |

#### **Radiation Characteristics**

### IRHN7250, IRHN8250, JANSR-, JANSH-, 2N7269U Devices

#### Radiation Performance of Rad Hard HEXFETs

International Rectifier Radiation Hardened HEXFETs are tested to verify their hardness capability. The hardness assurance program at International Rectifier comprises three radiation environments.

Every manufacturing lot is tested in a low dose rate (total dose) environment per MIL-STD-750, test method 1019 condition A. International Rectifier has imposed a standard gate condition of 12 volts per note 6 and a  $V_{\rm DS}$  bias condition equal to 80% of the device rated voltage per note 7. Pre- and post- irradiation limits of the devices irradiated to 1 x 10 $^{\rm 5}$  Rads (Si) are identical and are presented in Table 1, column 1, IRHN7250. Post-irradiation limits of the devices irradiated to 1 x 10 $^{\rm 6}$  Rads (Si) are presented in

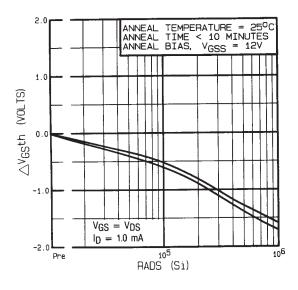
Table 1, column 2, IRHN8250. The values in Table 1 will be met for either of the two low dose rate test circuits that are used. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

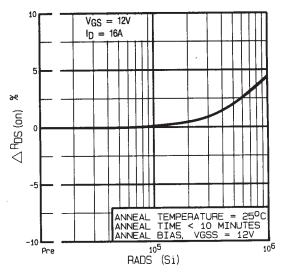
High dose rate testing may be done on a special request basis using a dose rate up to 1 x  $10^{12}$  Rads (Si)/Sec (See Table 2).

International Rectifier radiation hardened HEXFETs have been characterized in heavy ion Single Event Effects (SEE) environments. Single Event Effects characterization is shown in Table 3.

Table 1. Low Dose Rate ©©IRHN7250IRHN8250

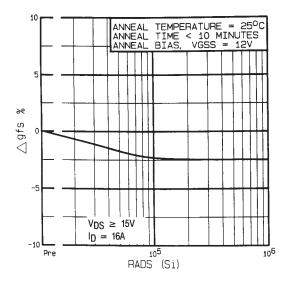
|                      | Parameter                         | 100K F | 100K Rads (Si) |      | 1000K Rads (Si) |    | Test Conditions ®                                      |
|----------------------|-----------------------------------|--------|----------------|------|-----------------|----|--------------------------------------------------------|
|                      |                                   | Min    | Max            | Min  | Max             |    |                                                        |
| BV <sub>DSS</sub>    | Drain-to-Source Breakdown Voltage |        | _              | 200  | _               | V  | $V_{GS} = 0V, I_{D} = 1.0 \text{mA}$                   |
| VGS(th)              | Gate Threshold Voltage            | 2.0    | 4.0            | 1.25 | 4.5             |    | $V_{GS} = V_{DS}$ , $I_D = 1.0 \text{mA}$              |
| IGSS                 | Gate-to-Source Leakage Forward    | _      | 100            | _    | 100             | nA | V <sub>GS</sub> = 20V                                  |
| I <sub>GSS</sub>     | Gate-to-Source Leakage Reverse    |        | -100           | _    | -100            |    | V <sub>GS</sub> = -20 V                                |
| IDSS                 | Zero Gate Voltage Drain Current   | _      | 25             | _    | 50              | μA | V <sub>DS</sub> =0.8 x Max Rating, V <sub>GS</sub> =0V |
| R <sub>DS(on)1</sub> | Static Drain-to-Source            | _      | 0.100          | _    | 0.155           | Ω  | Vgs = 12V, I <sub>D</sub> = 16A                        |
|                      | On-State Resistance One           |        |                |      |                 |    |                                                        |
| V <sub>SD</sub>      | Diode Forward Voltage ⑤           | _      | 1.4            | _    | 1.4             | V  | $T_C = 25^{\circ}C$ , $I_S = 26A$ , $V_{GS} = 0V$      |

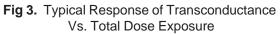

Table 2. High Dose Rate ®

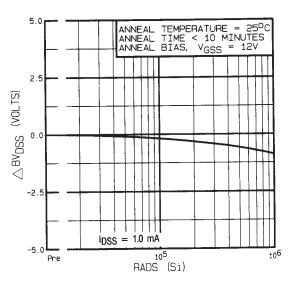

|                |                         | 10 <sup>11</sup> F | Rads | (Si)/sec | 10 <sup>12</sup> F | Rads ( | Si)/sec |        |                                            |
|----------------|-------------------------|--------------------|------|----------|--------------------|--------|---------|--------|--------------------------------------------|
|                | Parameter               | Min                | Тур  | Max      | Min                | Тур    | Max     | Units  | Test Conditions                            |
| VDSS           | Drain-to-Source Voltage | <u> </u>           | _    | 160      | _                  | _      | 160     | V      | Applied drain-to-source voltage during     |
|                |                         |                    |      |          |                    |        |         |        | gamma-dot                                  |
| IPP            |                         | _                  | 15   | _        | _                  | 15     | _       | Α      | Peak radiation induced photo-current       |
| di/dt          |                         | _                  | _    | 160      | _                  | _      | 8.0     | A/µsec | Rate of rise of photo-current              |
| L <sub>1</sub> |                         | 1.0                | _    | _        | 20                 | -      |         | μH     | Circuit inductance required to limit di/dt |

**Table 3. Single Event Effects** 

| lon | LET (Si) Fluence (ions/cm²) |        | Range<br>(µm) | V <sub>DS</sub> Bias<br>(V) | V <sub>GS</sub> Bias<br>(V) |
|-----|-----------------------------|--------|---------------|-----------------------------|-----------------------------|
| Cu  | 28                          | 3x 10⁵ | 43            | 180                         | -5                          |


#### **Post-Irradiation**

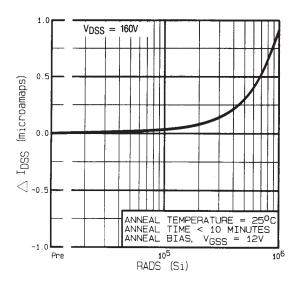



**Fig 1.** Typical Response of Gate Threshhold Voltage Vs. Total Dose Exposure

**Fig 2.** Typical Response of On-State Resistance Vs. Total Dose Exposure



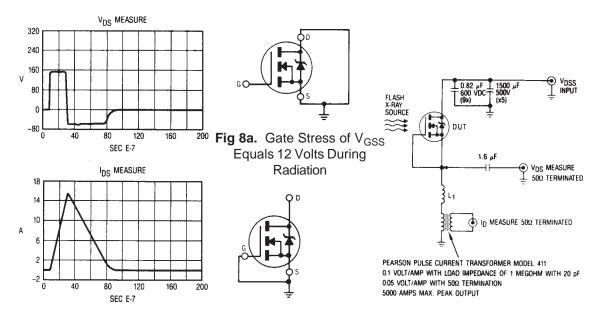





**Fig 4.** Typical Response of Drain to Source Breakdown Vs. Total Dose Exposure

#### **Post-Irradiation**

#### IRHN7250, IRHN8250, JANSR-, JANSH-, 2N7269U Devices




ANNEAL TEMPERATURE = 25°C
ANNEAL TIME < 10 MINUTES
ANNEAL BIAS, VGSS = 12V

NEUTRON FLUENCE (NEUTRON/CM²)

**Fig 5.** Typical Zero Gate Voltage Drain Current Vs. Total Dose Exposure

**Fig 6.** Typical On-State Resistance Vs. Neutron Fluence Level



**Fig 7.** Typical Transient Response of Rad Hard HEXFET During 1x10<sup>12</sup> Rad (Si)/Sec Exposure

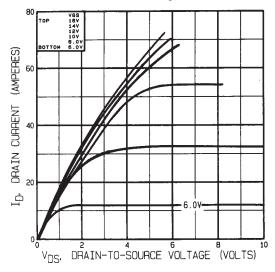

Fig 8b.  $V_{DSS}$  Stress Equals 80% of  $B_{VDSS}$  During Radiation

Fig 9. High Dose Rate (Gamma Dot) Test Circuit

#### **Radiation Characteristics**

**Devices** 

Note: Bias Conditions during radiation: Vgs = 12 Vdc, Vps = 0 Vdc



NOW TOP 1807 WILLIAM COMMENT OF THE PROPERTY O

**Fig 10.** Typical Output Characteristics Pre-Irradiation

**Fig 11.** Typical Output Characteristics Post-Irradiation 100K Rads (Si)

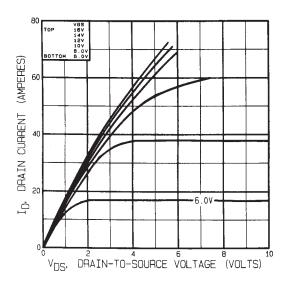



Fig 12. Typical Output Characteristics Post-Irradiation 300K Rads (Si)

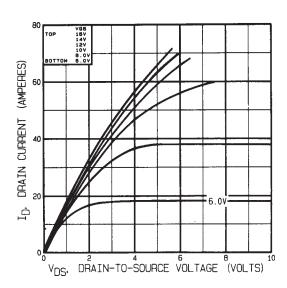
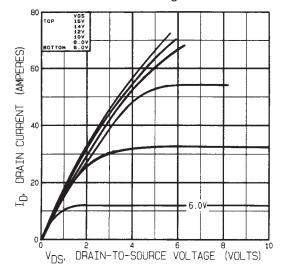




Fig 13. Typical Output Characteristics Post-Irradiation 1 Mega Rads(Si)

#### **Radiation Characteristics**

#### IRHN7250, IRHN8250, JANSR-, JANSH-, 2N7269U Devices

Note: Bias Conditions during radiation: Vgs = 0 Vdc, Vps = 160 Vdc



**Fig 14.** Typical Output Characteristics Pre-Irradiation

Fig 15. Typical Output Characteristics Post-Irradiation 100K Rads (Si)

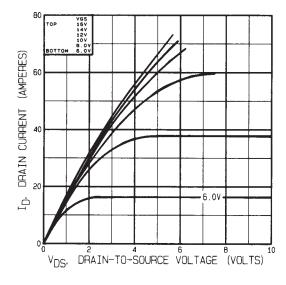
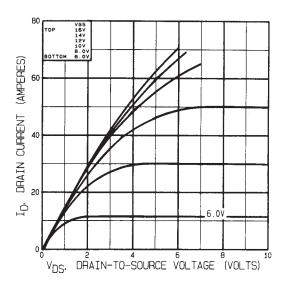
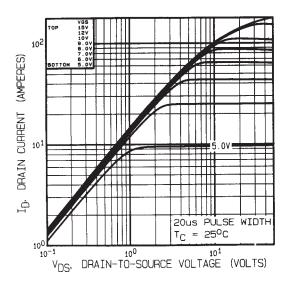
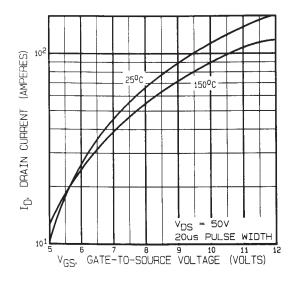



Fig 16. Typical Output Characteristics Post-Irradiation 300K Rads (Si)



Fig 17. Typical Output Characteristics Post-Irradiation 1 Mega Rads(Si)



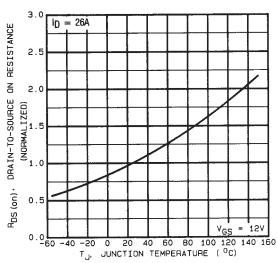
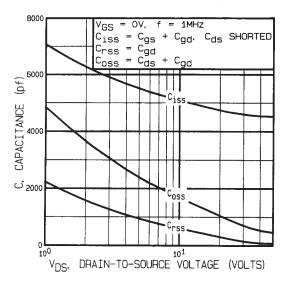

TOP 102 TOP 101 SOUND TO SOUND

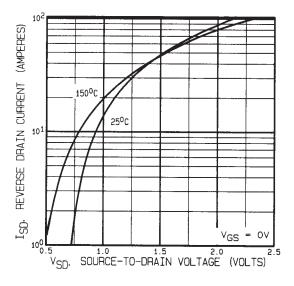
Fig 18. Typical Output Characteristics

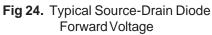

Fig 19. Typical Output Characteristics

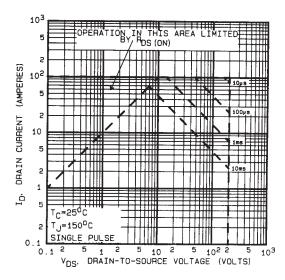




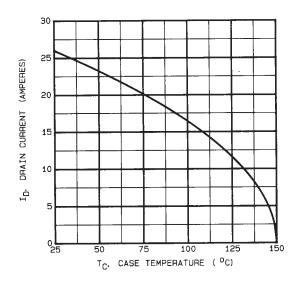



**Fig 21.** Normalized On-Resistance Vs. Temperature





 $I_D = 26A$ = 80V V<sub>DS</sub> (VOLTS) V<sub>DS</sub> = 50V 16 ۷DŞ = 20V GATE-TO-SOURCE VOLTAGE 12 V<sub>GS</sub> FOR TEST CIRCUIT SEE FIGURE 30 60 90 120 150 TOTAL GATE CHARGE (nC)

**Fig 22.** Typical Capacitance Vs. Drain-to-Source Voltage


**Fig 23.** Typical Gate Charge Vs. Gate-to-Source Voltage







**Fig 25.** Maximum Safe Operating Area



**Fig 26.** Maximum Drain Current Vs. Case Temperature

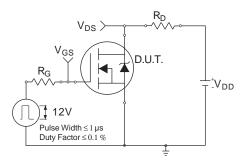



Fig 27a. Switching Time Test Circuit

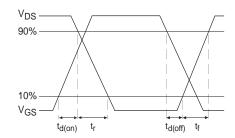



Fig 27b. Switching Time Waveforms

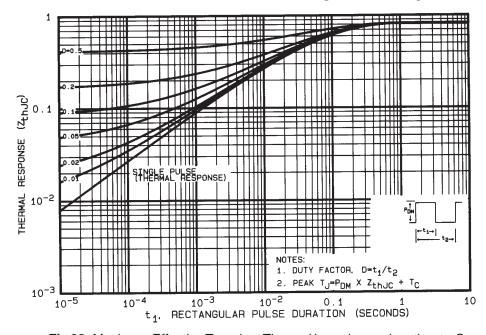



Fig 28. Maximum Effective Transient Thermal Impedance, Junction-to-Case

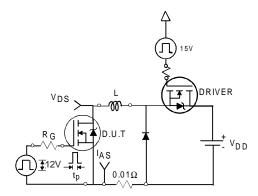



Fig 29a. Unclamped Inductive Test Circuit

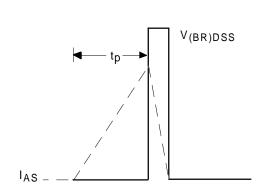



Fig 29b. Unclamped Inductive Waveforms

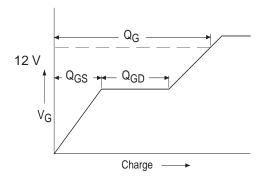
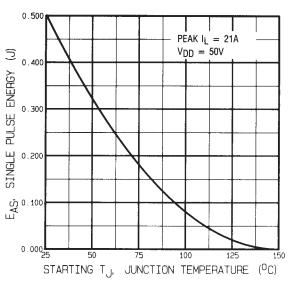
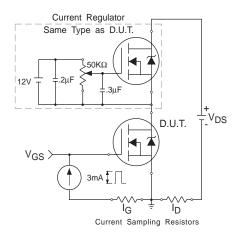
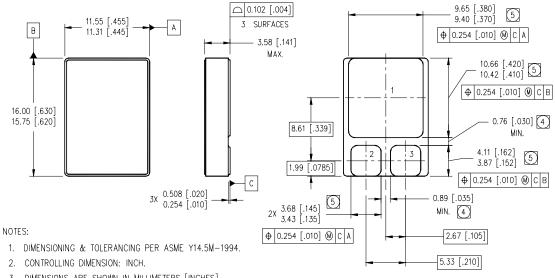




Fig30a. Basic Gate Charge Waveform



**Fig 29c.** Maximum Avalanche Energy Vs. Drain Current





Fig 30b. Gate Charge Test Circuit

#### **Pre-Irradiation**

- ① See Figures 18 through 31 for pre-irradiation curves
- 2 Repetitive Rating; Pulse width limited by maximum junction temperature.
- $^{\circ}$  V<sub>DD</sub> = 25V, Starting T<sub>J</sub> = 25°C, Peak I<sub>L</sub> = 26A,L=1.9mH, R<sub>G</sub>= $25\Omega$
- $\P$  ISD  $\leq$  26A, di/dt  $\leq$  190A/ $\mu$ s,  $V_{DD} \le BV_{DSS}, T_{J} \le 150^{\circ}C$ Suggested RG = $2.35\Omega$
- ⑤ Pulse width  $\leq 300 \mu s$ ; Duty Cycle  $\leq 2\%$

- **© Total Dose Irradiation with VGS Bias.** 12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, codition A.
- **7** Total Dose Irradiation with V<sub>DS</sub> Bias. V<sub>DS</sub> = 0.8 rated BV<sub>DSS</sub> (pre-radiation) applied and VGS = 0 during irradiation per MIL-STD-750, method 1019, condition A.
- This test is performed using a flash x-ray source operated in the e-beam mode (energy ~2.5 MeV), 30 nsec pulse.
- 9 All Pre-Irradiation and Post-Irradiation test conditions are identical to facilitate direct comparison for circuit applications.

#### Case Outline and Dimensions — SMD-1



- DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- DIMENSION INCLUDES METALLIZATION FLASH.
  - DIMENSION DOES NOT INCLUDE METALLIZATION FLASH.

#### PAD ASSIGNMENTS

1 = DRAIN

2 = GATE

3 = SOURCE

### International IOR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 252 7105 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 Data and specifications subject to change without notice.