

SANYO Semiconductors DATA SHEET

CMOSIC B LC75812PT — 1/8, 1/9 Duty Dot Matrix LCD Display **Controllers/Drivers with Key Input Function**

Overview

The LC75812PT is 1/8, 1/9 duty dot matrix LCD display controllers/drivers that support the display of characters, numbers, and symbols. In addition to generating dot matrix LCD drive signals based on data transferred serially from a microcontroller, the LC75812PT also provide on-chip character display ROM and RAM to allow display systems to be implemented easily. These products also provide up to 3 general-purpose output ports and incorporate a key scan circuit that accepts input from up to 35 keys to reduce printed circuit board wiring.

Features

- Key input function for up to 35 keys (A key scan is performed only when a key is pressed.)
- Controls and drives a 5×7 or 5×8 dot matrix LCD.
- Supports accessory display segment drive (up to 65 segments)
- Display technique: 1/8 duty 1/4 bias drive (5×7 dots)
 - $1/9 \text{ duty } 1/4 \text{ bias drive } (5 \times 8 \text{ dots})$
- Display digits: 13 digits×1 line (5×7 dots), 12 digits×1 line (5×8 dots)
- Display control memory

CGROM: 240 characters (5×7 or 5×8 dots) CGRAM: 16 characters (5×7 or 5×8 dots) ADRAM: 13×5 bits DCRAM: 52×8 bits

• Instruction function

Display on/off control Display shift function

Continued on next page.

- CCB is a registered trademark of SANYO Semiconductor Co., Ltd.
- CCB is SANYO Semiconductor's original bus format. All bus addresses are managed by SANYO Semiconductor for this format.
- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

SANYO Semiconductor Co., Ltd. www.semiconductor-sanyo.com/network

Continued from preceding page.

- Sleep mode can be used to reduce current drain.
- Built-in display contrast adjustment circuit
- Switching between key scan output and general-purpose output ports can be controlled with instructions.
- PWM output for adjusting the LED backlight brightness
- The frame frequency of the common and segment output waveforms can be controlled by instructions.
- Serial data control of switching between the RC oscillator operating mode and external clock operating mode.
- Independent LCD driver block power supply V_{LCD}
- A voltage detection type reset circuit is provided to initialize the IC and prevent incorrect display.
- The INH pin is provided. This pin turns off the display, disables key scanning, and forces the general-purpose output ports to the low level.
- RC oscillator circuit

Specifications

Absolute Maximum Ratings at Ta = $25^{\circ}C$, $V_{SS} = 0V$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max	V _{DD}	-0.3 to +4.2	N/
	V _{LCD} max	V _{LCD}	-0.3 to +11.0	V
Input voltage	V _{IN} 1	CE, CL, DI, INH	-0.3 to +4.2	
		CE, CL, DI, INH V _{DD} =2.7 to 3.6V	-0.3 to +6.5	V
	V _{IN} 2	OSC, KI1 to KI5, TEST	-0.3 to V _{DD} +0.3	
	V _{IN} 3	V _{LCD} 1, V _{LCD} 2, V _{LCD} 3, V _{LCD} 4	-0.3 to V _{LCD} +0.3	
Output voltage	V _{OUT} 1	DO	-0.3 to +6.5	
	V _{OUT} 2	OSC, KS1 to KS7, P1 to P3	-0.3 to V _{DD} +0.3	V
	V _{OUT} 3	V _{LCD} 0, S1 to S65, COM1 to COM9	-0.3 to V _{LCD} +0.3	
Output current	IOUT ¹	S1 to S65	300	μA
	IOUT ²	COM1 to COM9	3	
	IOUT ³	KS1 to KS7	1	mA
	IOUT ⁴	P1 to P3	5	
Allowable power dissipation	Pd max	Ta=85°C	200	mW
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-55 to +125	°C

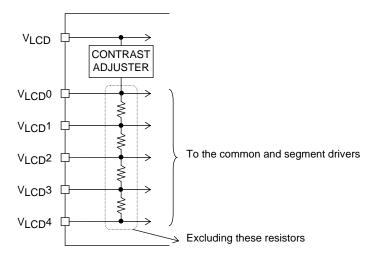
Allowable Operating Range at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS} = 0V$

Deremeter	Symphol	Conditions		Ratings		it
Parameter	Symbol	Conditions	min	typ	max	unit
Supply voltage	V _{DD}	V _{DD}	2.7		3.6	
	V _{LCD}	VLCD When the display contrast adjustment circuit is used.	7.0		10.0	V
		V _{LCD} When the display contrast adjustment circuit is not used.	4.5		10.0	v
Output voltage	V _{LCD} 0	VLCD0	V _{LCD} 4 +4.5		VLCD	V
Input voltage	V _{LCD} 1	V _{LCD} 1		3/4 (V _{LCD} 0- V _{LCD} 4)	V _{LCD} 0	
	V _{LCD} 2	V _{LCD} 2		2/4 (V _{LCD} 0- V _{LCD} 4)	V _{LCD} 0	V
	V _{LCD} 3	V _{LCD} 3		1/4 (V _{LCD} 0- V _{LCD} 4)	V _{LCD} 0	
	V _{LCD} 4	V _{LCD} 4	0		1.5	

Continued on next page.

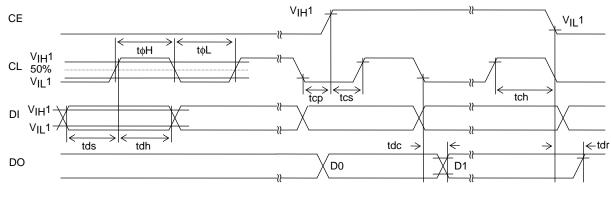
Deremeter	Symbol	Conditions		Ratings		it
Parameter	Symbol	Conditions	min	typ	max	unit
Input high level voltage	V _{IH} 1	CE, CL, DI, INH	0.8V _{DD}		3.6	
		CE, CL, DI, INH V _{DD} =2.7 to 3.6V	0.8V _{DD}		5.5	V
	V _{IH} 2	OSC external clock operating mode	0.8V _{DD}		V _{DD}	
	V _{IH} 3	KI1 to KI5	0.6V _{DD}		V _{DD}	
Input low level voltage	V _{IL} 1	CE, CL, DI, INH, KI1 to KI5	0		0.2V _{DD}	.,
	V _{IL} 2	OSC external clock operating mode	0		0.2V _{DD}	V
Output pull-up voltage	VOUP	DO	0		5.5	V
Recommended external resistor for RC oscillation	Rosc	OSC RC oscillator operating mode		10		kΩ
Recommended external capacitor for RC oscillation	Cosc	OSC RC oscillator operating mode		470		pF
Guaranteed range of RC oscillation	fosc	OSC RC oscillator operating mode	150	300	600	kHz
External clock operating frequency	fCK	OSC external clock operating mode [Figure 4]	100	300	600	kHz
External clock duty cycle	D _{CK}	OSC external clock operating mode [Figure 4]	30	50	70	%
Data setup time	tds	CL, DI [Figure 2],[Figure 3]	160			ns
Data hold time	tdh	CL, DI [Figure 2],[Figure 3]	160			ns
CE wait time	tcp	CE, CL [Figure 2],[Figure 3]	160			ns
CE setup time	tcs	CE, CL [Figure 2],[Figure 3]	160			ns
CE hold time	tch	CE, CL [Figure 2],[Figure 3]	160			ns
High level clock pulse width	tøH	CL [Figure 2],[Figure 3]	160			ns
Low level clock pulse width	tøL	CL [Figure 2],[Figure 3]	160			ns
DO output delay time	tdc	DO R _{PU} =4.7kΩ C _L =10pF *1 [Figure 2],[Figure 3]			1.5	μs
DO rise time	tdr	DO R_{PU} =4.7k Ω CL=10pF *1 [Figure 2],[Figure 3]			1.5	μs

Note: *1. Since the DO pin is an open-drain output, these times depend on the values of the pull-up resistor R_{PU} and the load capacitance C_L .

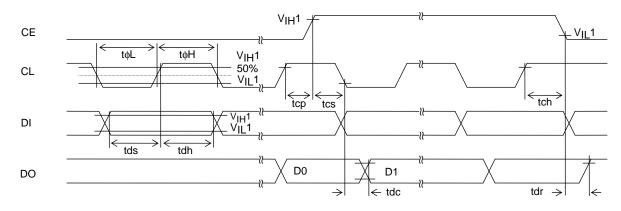

Electrical Characteristics for the Allowable Operating Ranges

Parameter	Cumbal	Pins	Conditions		Ratings		unit
Parameter	Symbol	Pins	Conditions	min	typ	max	unit
Hysteresis	V _H	CE, CL, DI, INH, KI1 to KI5			0.1V _{DD}		V
Power-down detection voltage	VDET			2.0	2.2	2.4	V
Input high level current	I _{IH} 1	CE, CL, DI, INH	V _I =3.6V			5.0	
			V _I =5.5V V _{DD} =2.7 to 3.6V			5.0	μΑ
	I _{IH} 2	OSC	$V_I = V_{DD}$ external clock operating mode			5.0	
Input low level current	IIL1	CE, CL, DI, INH	V _I =0V	-5.0			A
	I _{IL} 2	OSC	V _I =0V external clock operating mode	-5.0			μA
Input floating voltage	VIF	KI1 to KI5				0.05V _{DD}	V
Pull-down resistance	R _{PD}	KI1 to KI5	V _{DD} =3.3V	50	100	250	kΩ
Output off leakage current	IOFFH	DO	V _O =5.5V			6.0	μA
Output high level voltage	V _{OH} 1	S1 to S65	Ι _Ο =-20μΑ	V _{LCD} 0-0.6			
	V _{OH} 2	COM1 to COM9	I _O =-100μA	V _{LCD} 0-0.6			V
	V _{OH} 3	KS1 to KS7	I _O =-250μA	V _{DD} -0.8	V _{DD} -0.4	V _{DD} -0.1	v
	V _{OH} 4	P1 to P3	I _O =-1mA	V _{DD} -0.9			
Output low level voltage	V _{OL} 1	S1 to S65	Ι _Ο =20μΑ			V _{LCD} 4+0.6	
	V _{OL} 2	COM1 to COM9	I _O =100μA			V _{LCD} 4+0.6	
	V _{OL} 3	KS1 to KS7	I _O =12.5μA	0.1	0.4	1.2	V
	V _{OL} 4	P1 to P3	I _O =1mA			0.9	
	V _{OL} 5	DO	I _O =1mA		0.1	0.3	

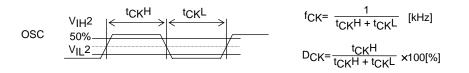
Continued on next page.


Continued from preceding pa	ge.						
Parameter	Symbol	Pins	Conditions		Ratings		unit
Farameter	Symbol	FIIIS	Conditions	min	typ	max	unit
Output middle level	V _{MID} 1	S1 to S65	I _O =±20μA	2/4		2/4	
voltage *2				(V _{LCD} 0		(V _{LCD} 0	
				-V _{LCD} 4)		-V _{LCD} 4)	
				-0.6		+0.6	
	V _{MID} 2	COM1 to COM9	Ι _Ο =±100μΑ	3/4		3/4	
				(V _{LCD} 0		(V _{LCD} 0	V
				-V _{LCD} 4)		-V _{LCD} 4)	
				-0.6		+0.6	
	V _{MID} 3	COM1 to COM9	I _O =±100μA	1/4		1/4	
				(V _{LCD} 0		(V _{LCD} 0	
				-V _{LCD} 4)		-V _{LCD} 4)	
				-0.6		+0.6	
Oscillator frequency	fosc	OSC	Rosc=10kΩ, Cosc=470pF	210	300	390	kHz
Current drain	I _{DD} 1	V _{DD}	sleep mode			100	
	I _{DD} 2	V _{DD}	V _{DD} =3.6V, output open, fosc=300kHz		500	1000	
	I _{LCD} 1	V _{LCD}	sleep mode			15	
	I _{LCD} 2	VLCD	V _{LCD} =10.0V, output open, fosc=300kHz, When the display contrast adjustment circuit is used.		450	900	μΑ
	I _{LCD} 3	V _{LCD}	V _{LCD} =10.0V, output open, fosc=300kHz, When the display contrast adjustment circuit is not used.		200	400	

Note: *2. Excluding the bias voltage generation divider resistor built into the V_{LCD}0, V_{LCD}1, V_{LCD}2, V_{LCD}3, and V_{LCD}4. (See Figure 1.)

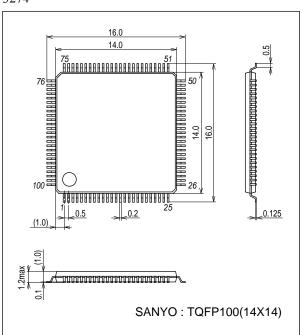

[Figure 1]

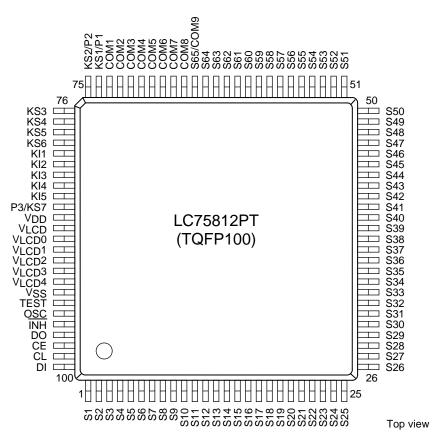
(1) When CL is stopped at the low level



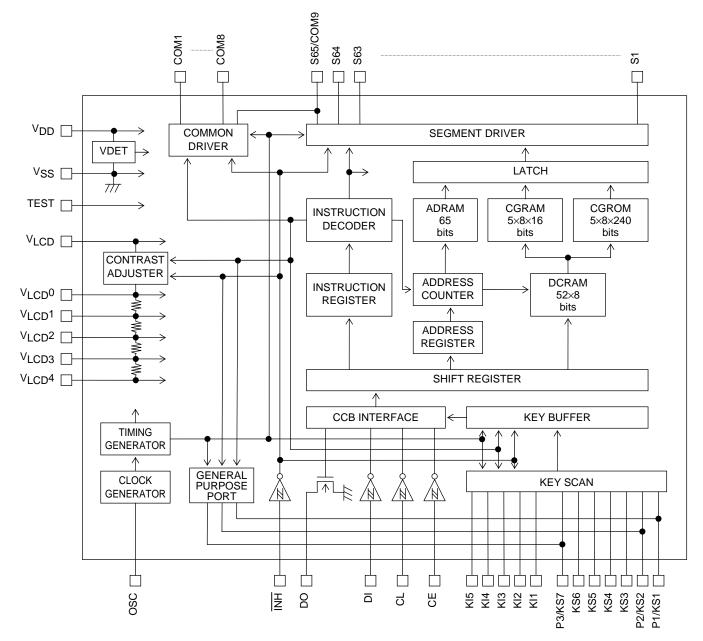
(2) When CL is stopped at the high level

[Figure 3]


(3) OSC pin clock timing in external clock operating mode


[Figure 4]

Package Dimensions


unit : mm (typ) 3274

Pin Assignments

Block Diagram

Pin Functions

Pin	Pin No.	Function	Active	I/O	Handling when unuse
S1 to S64 S65/COM9	1 to 64 65	Segment driver outputs. S65/COM9 can be used as common driver output pin under the	-	0	OPEN
COM1 to COM8	73 to 66	"set display technique" instruction. Common driver outputs.	-	0	OPEN
KS1/P1	74	Key scan outputs. Although normal key scan timing lines require		-	0. 1.1
KS2/P2	75	diodes to be inserted in the timing lines to prevent shorts, since			
KS3 to KS6	76 to 79	these outputs are unbalanced CMOS transistor outputs, these			
KS7/P3	85	outputs will not be damaged by shorting when these outputs are		0	ODEN
		used to form a key matrix.	-	0	OPEN
		KS1/P1, KS2/P2, and KS7/P3 can be used as general-purpose			
		output ports under the "set key scan output port/general-purpose			
		output port state" instruction.			
KI1 to KI5	80 to 84	Key scan inputs.	н	1	GND
		These pins have built-in pull-down resistors.	11	1	OND
OSC	95	Oscillator connections. An oscillator circuit is formed by			
		connecting an external resistor and capacitor to this pin.	-	I/O	V _{DD}
		This pin can also be used as the external clock input pin with the		1, 0	<u>الل</u>
		"set display technique" instruction.			
CE	98	Serial data interface connections to the controller. Note that DO,	н	I	
CL	99	being an open-drain output, requires a pull-up resistor.	\wedge	1	GND
		CE: Chip enable		1	GND
DI	100	CL: Synchronization clock	-	I	
DO	97	DI: Transfer data	-	0	OPEN
ĪNH	96	DO: Output data		-	-
	90	Input that turns the display off, disables key scanning, and forces the general-purpose output ports low.			
		When INH is low (V _{SS}):			
		Display off			
		S1 to S64="L" (V_{LCD} 4)			
		S65/COM9="L" (V _{LCD} 4)			
		COM1 to COM8="L" (V _{LCD} 4)			
		• General-purpose output ports P1 to P3=low (V _{SS})			
		• Key scanning disabled: KS1 to KS7=low (V _{SS})			
		All the key data is reset to low.	L	I	VDD
		• When INH is high (V _{DD}):			
		Display on			
		The state of the pins as key scan output pins or			
		general-purpose output ports can be set with the			
		"set key scan output port/general-purpose output			
		port state" instruction.			
		Key scanning is enabled.			
		However, serial data can be transferred when the INH pin is low.			
TEST	94	This pin must be connected to ground.	-	I	-
V _{LCD} 0	88	LCD drive 4/4 bias voltage (high level) supply pin. The level on this			
		pin can be changed by the display contrast adjustment circuit.			
		However, (V _{LCD} 0 - V _{LCD} 4) must be greater than or equal to 4.5V.	-	0	OPEN
		Also, external power must not be applied to this pin since the pin			
		circuit includes the display contrast adjustment circuit.			
V _{LCD} 1	89	LCD drive 3/4 bias voltage (middle level) supply pin. This pin can			
		be used to supply the 3/4 (V_LCD - V_LCD4) voltage level externally.	-		OPEN
V _{LCD} 2	90	LCD drive 2/4 bias voltage (middle level) supply pin. This pin can			
		be used to supply the 2/4 (V_LCD0 - V_LCD4) voltage level	-	I	OPEN
		externally.			

Continued on next page.

Pin	Pin No.	Function	Active	I/O	Handling when unused
V _{LCD} 3	91	LCD drive 1/4 bias voltage (middle level) supply pin. This pin can be used to supply the 1/4 (V_{LCD} 0 - V_{LCD} 4) voltage level externally.	-	I	OPEN
V _{LCD} 4	92	LCD drive 0/4 bias voltage (low level) supply pin. Fine adjustment of the display contrast can be implemented by connecting an external variable resistor to this pin. However, ($V_{LCD}0 - V_{LCD}4$) must be greater than or equal to 4.5V, and $V_{LCD}4$ must be in the range 0V to 1.5V, inclusive.	-	I	GND
V _{DD}	86	Logic block power supply connection. Provide a voltage of between 2.7 to 3.6V.	-	-	-
VLCD	87	LCD driver block power supply connection. Provide a voltage of between 7.0 to 10.0V when the display contrast adjustment circuit is used and provide a voltage of between 4.5 to 10.0V when the circuit is not used.	-	-	-
V _{SS}	93	Power supply connection. Connect to ground.	-	-	-

Block Functions

• AC (address counter)

AC is a counter that provides the addresses used for DCRAM and ADRAM. The address is automatically modified internally, and the LCD display state is retained.

• DCRAM (data control RAM)

DCRAM is RAM that is used to store display data expressed as 8-bit character codes. (These character codes are converted to 5×7 or 5×8 dot matrix character patterns using CGROM or CGRAM.) DCRAM has a capacity of 52×8 bits, and can hold 52 characters. The table below lists the correspondence between the 6-bit DCRAM address loaded into AC and the display position on the LCD panel.

• When the DCRAM address loaded into AC is 00H.

Display digit	1	2	3	4	5	6	7	8	9	10	11	12	13
DCRAM address (hexadecimal)	00	01	02	03	04	05	06	07	08	09	0A	0B	0C

However, when the display shift is performed by specifying MDATA, the DCRAM address shifts as shown below.

Display digit	1	2	3	4	5	6	7	8	9	10	11	12	13	(abift laft)
DCRAM address (hexadecimal)	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	(shift left)

Display digit	1	2	3	4	5	6	7	8	9	10	11	12	13	(abift right)
DCRAM address (hexadecimal)	33	00	01	02	03	04	05	06	07	08	09	0A	0B	(shift right)

Note: *3. The DCRAM address is expressed in hexadecimal.

Least	significa ↓	nt bit			Most	significai ↓	nt bit	
		MSB						
DCRAM address	DCRAM address DA0 DA1 DA2 DA3							
-	`	Hexade	cimal —	/	∕_ Hexa	decimal /		

Example: When the DCRAM address is 2EH.

DA0	DA1	DA2	DA3	DA4	DA5
0	1	1	1	0	1

Note: *4. 5×7 dots •••• 13th digit display 5×7 dots 5×8 dots •••• 13th digit display 4×8 dots

• ADRAM (Additional data RAM)

ADRAM is RAM that is used to store the ADATA display data. ADRAM has a capacity of 13×5 bits, and the stored display data is displayed directly without the use of CGROM or CGRAM. The table below lists the correspondence between the 4-bit ADRAM address loaded into AC and the display position on the LCD panel.

Display digit	1	2	3	4	5	6	7	8	9	10	11	12	13
ADRAM address (hexadecimal)	0	1	2	3	4	5	6	7	8	9	А	В	С

However, when the display shift is performed by specifying ADATA, the ADRAM address shifts as shown below.

Display digit	1	2	3	4	5	6	7	8	9	10	11	12	13	(obift loft)
ADRAM address (hexadecimal)	1	2	3	4	5	6	7	8	9	А	В	С	0	(shift left)
Display digit	1	2	3	4	5	6	7	8	9	10	11	12	13	(obift right)
ADRAM address (hexadecimal)	С	0	1	2	3	4	5	6	7	8	9	А	В	(shift right)

Note: *5. The ADRAM address is expressed in hexadecimal.

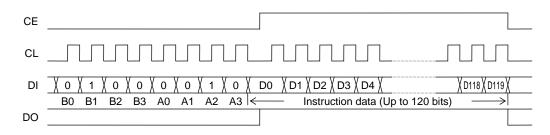
Leas	st significa ↓	ant bit	Most	nt bit								
	LSB			MSB								
ADRAM address	RA0	RA1	RA2	RA3								

Example: When the ADRAM address is AH.

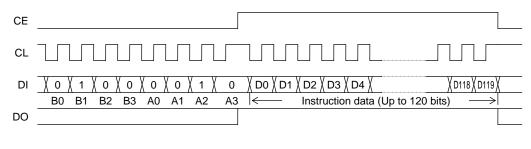
RA0	RA1	RA2	RA3
0	1	0	1

Note: *6. 5×7 dots •••• 13th digit display 5 dots 5×8 dots •••• 13th digit display 4 dots

• CGROM (Character generator ROM)


CGROM is ROM that is used to generate the 240 kinds of 5×7 or 5×8 dot matrix character patterns from the 8-bit character codes. CGROM has a capacity of 240×40 bits. When a character code is written to DCRAM, the character pattern stored in CGROM corresponding to the character code is displayed at the position on the LCD corresponding to the DCRAM address loaded into AC.

• CGRAM (Character generator RAM)


CGRAM is RAM to which user programs can freely write arbitrary character patterns. Up to 16 kinds of 5×7 or 5×8 dot matrix character patterns can be stored. CGRAM has a capacity of 16×40 bits.

Serial Data Input

(1) When CL is stopped at the low level

(2) When CL is stopped at the high level

• B0 to B3, A0 to A3: CCB address 42H

• D0 to D119: Instruction data

The data is acquired on the rising edge of the CL signal and latched on the falling edge of the CE signal. When transferring instruction data from the microcontroller, applications must assure that the time from the transfer of one set of instruction data until the next instruction data transfer is significantly longer than the instruction execution time.

Instruction Table

	Execution time *11	0μs/ 108μs *7	0µs/27µs *8	27µs	27µs	27μs/tiμs *9	27μs/tiμs *10	27µs	sή0	snlo	't care
	D116 D117 D118 D119	0 0 1	0 0 1 0	0 0 1 1	0 1 0 0	0 1 0 1	0 1 1 0	0 1 1 1	1 0 0 0	1 0 0 1	X: don't care
	D112 D113 D114 D115	DT FC0 FC1 OC	M A SC SP	M A R/L X	RA0 RA1 RA2 RA3	IM1 IM2 X X	IM1 IM2 X X	x x x x	CTC X X X	X X X X	
	D104 D105 D106 D107 D108 D109 D110 D111		DG9 DG10 DG11 DG12 DG13 X X X		DA0 DA1 DA2 DA3 DA4 DA5 X X	DA0 DA1 DA2 DA3 DA4 DA5 X X	RAO RA1 RA2 RA3 X X X X	CA0 CA1 CA2 CA3 CA4 CA5 CA6 CA7	CT0 CT1 CT2 CT3 X X X X	KC4 KC5 KC6 KC7 KP1 KP2 KP3 X	
	D96 D97 D98 D99 D100 D101 D102 D103		DG1 DG2 DG3 DG4 DG5 DG6 DG7 DG8			AC0 AC1 AC2 AC3 AC4 AC5 AC6 AC7	AD1 AD2 AD3 AD4 AD5 X X X	× × × × × × × ×		PC32 PF0 PF1 PF2 PF3 KC1 KC2 KC3	•
	D88D93 D94 D95							CD33 CD40		W34 W35 PC10PC31	
	D80D85 D86 D87							CD25 CD32		W22W25W33	
	D72D77 D78 D79							CD17 CD24		W10W15 W20 W21	
anic	D0D56D71							CD1CD16			
	Instruction	Set display technique *7	Display on/off control	Display shift	Set AC address	DCRAM data write *9	ADRAM data write *10	CGRAM data write	Set display contrast	Set key scan output port/ general-purpose output port state	

*7. Be sure to execute the "set display technique" instruction first after power-on (VDET-based system reset). Note that the execution time of this first instruction is 108µs *8. When the sleep mode (SP = 1) is set, the execution time is 27μ s (when fosc = 300kHz, fCK = 300kHz). (fosc=300kHz, fCK=300kHz). Notes:

⁹. The data format differs when the DCRAM data write instruction is executed in the normal increment mode (IM1=1, IM2=0) or in the super increment mode (IM1=0, IM2=1).

*10. The data format differs when the ADRAM data write instruction is executed in the normal increment mode (IM1=1, IM2=0) or in the super increment mode Note that the execution time for the DCRAM data write instruction executed in the super increment mode is tips (fosc=300kHz, fCK=300kHz). (See the detailed descriptions.)

(IM1=0, IM2=1). Note that the execution time for the ADRAM data write instruction executed in the super increment mode is tips (fosc=300kHz, fCK=300kHz). (See the detailed descriptions.)

*11. The execution times listed here apply when fosc=300kHz, fCK=300kHz. The execution times differ when the oscillator frequency fosc or the external clock frequency fCK differs. Example: When fosc = 210kHz, fCK = 210kHz

 $27\mu s \times \frac{300}{210} = 39\mu s$, 108 $\mu s \times \frac{300}{210} = 155\mu s$, t $\mu s \times \frac{300}{210} = ti \times 1.43\mu s$

Detailed Instruction Descriptions

• Set display technique ... <Sets the display technique> (Display technique)

	Code													
D112	D113 D11	4 D115	D116	D117	D118	D119								
DT	FC0 FC1	OC	0	0	0	1								
	X: don't care													

Note: Be sure to execute the "set display technique" instruction first after power-on (VDET-based system reset).

DT: Sets the display technique

DT	Diaplay technique	Output pins
ы	Display technique	S65/COM9
0	1/8 duty, 1/4 bias drive	S65
1	1/9 duty, 1/4 bias drive	COM9

Note: *12. S65: Segment output COM9: Common output

FC0, FC1: Sets the frame fre	quency of the common and	l segment output waveforms
1 co, 1 cl. bots the hume he	quelley of the common and	· segment output nuteronnis

		Frame fr	requency
FC0	FC1	1/8 duty, 1/4 bias drive	1/9 duty, 1/4 bias drive
		f8[Hz]	f9[Hz]
0	0	fosc/3072, f _{CK} /3072	fosc/3456, f _{CK} /3456
1	0	fosc/1536, f _{CK} /1536	fosc/1728, f _{CK} /1728
0	1	fosc/768, f _{CK} /768	fosc/864, f _{CK} /864

OC: Sets the RC oscillator operating mode and external clock operating mode.

OC	OSC pin function
0	RC oscillator operating mode
1	External clock operating mode

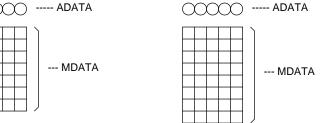
Note: *13. When selecting the RC oscillator operating mode, be sure to connect an external resistor Rosc and an external capacitor Cosc to the OSC pin.

• Display on/off control ... < Turns the display on or off>

(Display ON/OFF control)

Code																						
D96 D97	D98	D99	D100	D101	D102	D103	D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
DG1 DG2	DG3	DG4	DG5	DG6	DG7	DG8	DG9	DG10	DG11	DG12	DG13	Х	Х	Х	М	А	SC	SP	0	0	1	0

X: don't care


M, A: Specifies the data to be turned on or off

М	А	Display operating state
0	0	Both MDATA and ADATA are turned off (The display is forcibly turned off regardless of the DG1 to DG13 data.)
0	1	Only ADATA is turned on (The ADATA of display digits specified by the DG1 to DG13 data are turned on.)
1	0	Only MDATA is turned on (The MDATA of display digits specified by the DG1 to DG13 data are turned on.)
1	1	Both MDATA and ADATA are turned on
	1	(The MDATA and ADATA of display digits specified by the DG1 to DG13 data are turned on.)

Note: *14. MDATA, ADATA 5×7 dot matrix display

5×8 dot matrix display

Ι	DG1 to DG13: Specifies the display digit														
	Display digit	1	2	3	4	5	6	7	8	9	10	11	12	13	
ſ	Display digit data	DG1	DG2	DG3	DG4	DG5	DG6	DG7	DG8	DG9	DG10	DG11	DG12	DG13	

For example, if DG1 to DG7 are 1, and DG8 to DG13 are 0, then display digits 1 to 7 will be turned on, and display digits 8 to 13 will be turned off (blanked).

SC: Controls the common and segment output pins

SC	Common and segment output pin states
0	Output of LCD drive waveforms
1	Fixed at the V _{LCD} 4 level (all segments off)

Note: *15. When SC is 1, the S1 to S65 and COM1 to COM9 output pins are set to the V_{LCD}4 level, regardless of the M, A, and DG1 to DG13 data.

SP: Controls the normal mode and sleep mode

SP	Mode
0	Normal mode
1	Sleep mode The common and segment pins go to the $V_{LCD}4$ level and the oscillator on the OSC pin is stopped (although it operates during key scan operations) in RC oscillator operating mode (OC="0") and reception of the external clock is stopped (external clock is received during key scan operations) in external clock operating mode (OC="1"), to reduce current drain. Although the "display on/off control", "set display contrast" and "set key scan output port/general-purpose output port state" (disallowed to set pins P1 to P3 for PWM signal output and pin P3 for clock signal output) instructions can be executed in this mode, applications must return the IC to normal mode to execute any of the other instruction setting. When the IC is in external clock operating mode, be sure to stop the external clock input after the lapse of the instruction execution time (27 μ s: f _{CK} =300kHz).

• Display shift ... < Shifts the display>

(Display shift)

			Co	de									
D112	D113	D114	D115	D116	D117	D118	D119						
М	А	R/L	х	0	0	1	1						

M, A: Specifies the data to be shifted

М	А	Shift operating state
0	0	Neither MDATA nor ADATA is shifted
0	1	Only ADATA is shifted
1	0	Only MDATA is shifted
1	1	Both MDATA and ADATA are shifted

R/L: Specifies the shift direction

R/L	Shift direction
0	Shift left
1	Shift right

							Co	ode							
104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
DA0	DA1	DA2	DA3	DA4	DA5	х	Х	RA0	RA1	RA2	RA3	0	1	0	0
A0 to	o DA5	: DCF	RAM a	addres	s								X:	don't o	care
DA0	DA1	D	A2	DA3	DA4	DA5									
LSB ↑						MSB ↑	6								
ast s	ignifica	nt bit			Mos	t signifi	cant bi	t							
A0 to	o RA3	: ADF	RAM a	addres	S										
RA0	RA1	R	A2	RA3											
LSB				MSB											
↑				\uparrow											

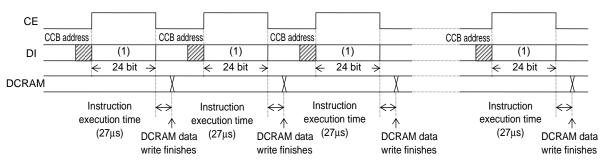
This instruction loads the 6-bit DCRAM address DA0 to DA5 and the 4-bit ADRAM address RA0 to RA3 into the AC.

• DCRAM data write ... < Specifies the DCRAM address and stores data at that address> (Write data to DCRAM)

	1100 0		0 0 0	iu iii																			
	Code																						
D96	D97	D98	D99	D100	D101	D102	D103	D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
AC0	AC1	AC2	AC3	AC4	AC5	AC6	AC7	DA0	DA1	DA2	DA3	DA4	DA5	Х	Х	IM1	IM2	Х	Х	0	1	0	1
	X: don't care															re							
DA0	A0 to DA5: DCRAM address																						
DAC) [DA1	DA2	2 [DA3	DA4	D	0A5															
LSE	3							ISB															
Ŷ								↑															
Least	signif	icant l	bit			Mo	ost sig	gnifica	nt bit														
AC0	to A	C7: [OCRA	AM d	lata (c	harac	ter c	ode)															
ACO) /	AC1	AC2	2 4	AC3	AC4	A	C5	AC6	A	C7												
LSE	3									М	SB												
Ŷ											↑												

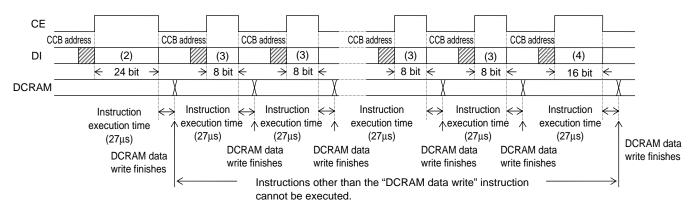
Least significant bit

Most significant bit

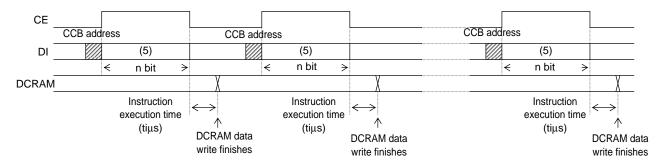

This instruction writes the 8 bits of data AC0 to AC7 to DCRAM. This data is a character code, and is converted to a 5×7 or 5×8 dot matrix display data using CGROM or CGRAM.

IM1, IM2: Sets the method of writing data to DCRAM

IM1	IM2	DCRAM data write method
0	0	Normal DCRAM data write (Specifies the DCRAM address and writes the DCRAM data.)
1	0	Normal increment mode DCRAM data write (Increments the DCRAM address by +1 each time data is written to DCRAM.)
0	1	Super increment mode DCRAM data write (Writes 2 to 13 characters of DCRAM data in single operation.)



• DCRAM data write method when IM1 = 0, IM2 = 0



[•] DCRAM data write method when IM1 = 1, IM2 = 0

(Instructions other than the "DCRAM data write" instruction cannot be executed.)

• DCRAM data write method when IM1 = 0, IM2 = 1

ti=13.5 μ s×($\frac{n}{8}$ -1) (n=8m+16, m is an integer between 2 and 13 that is the number of characters written as DCRAM data.) For example

> When n= 32 bits (m=2): ti= 40.5μ s (fosc=300kHz, f_{CK}=300kHz) When n= 80 bits (m=8) : ti=121.5µs (fosc=300kHz, f_{CK}=300kHz) When n=120 bits (m=13): ti=189.0µs (fosc=300kHz, f_{CK}=300kHz)

Note that the instruction execution time of 27µs and ti values in µs apply when fosc=300kHz and f_{CK}=300kHz, and that these execution times will differ when the CR oscillator frequency fosc and external clock frequency fCK differ.

Data	form	at at	(1)(2)	24 bit	s)																		
	Code																						
D96	D97	D98	D99	D100	D101	D102	D103	D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
AC0	AC1	AC2	AC3	AC4	AC5	AC6	AC7	DA0	DA1	DA2	DA3	DA4	DA5	Х	Х	0	0	Х	Х	0	1	0	1
																					X٠	don't	care

X: don't care

Data format at (2) (24 bits)

	Code																						
D96	D97	D98	D99	D100	D101	D102	D103	D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
AC0	AC1	AC2	AC3	AC4	AC5	AC6	AC7	DA0	DA1	DA2	DA3	DA4	DA5	Х	Х	1	0	Х	Х	0	1	0	1

X: don't care

Data format at (3) (8 bits)

			Co	de			
D112	D113	D114	D115	D116	D117	D118	D119
AC0	AC1	AC2	AC3	AC4	AC5	AC6	AC7

Data format at (4) (16 bits)

	Code														
D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
AC0	AC1	AC2	AC3	AC4	AC5	AC6	AC7	0	0	Х	Х	0	1	0	1

Data format at (5) (n bit)

								Code								
Dz	Dz+1	Dz+2	Dz+3	Dz+4	Dz+5	Dz+6	Dz+7	•••••	D88	D89	D90	D91	D92	D93	D94	D95
AC01	AC1 ₁	AC2 ₁	AC3 ₁	AC4 ₁	AC5 ₁	AC61	AC7 ₁	•••••	AC0 _{m-1}	AC1 _{m-1}	AC2 _{m-1}	AC3 _{m-1}	AC4 _{m-1}	AC5 _{m-1}	AC6 _{m-1}	AC7 _{m-1}

											Co	de											
D96	D97	D98	D99	D100	D101	D102	D103	D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
$AC0_{m}$	AC1 _m	AC2 _m	AC3 _m	AC4 _m	AC5 _m	AC6 _m	AC7 _m	DA0 ₁	DA1 ₁	DA2 ₁	DA31	DA41	DA51	Х	Х	0	1	Х	Х	0	1	0	1

X: don't care

Here, n=8m+16, z=104-8m (m is an integer between 2 and 13 that is the number of characters written as DCRAM data.)

Correspondence between the DCRAM address and the DCRAM data

DCRAM address	DCRAM data
DA0 ₁ to DA5 ₁	AC0 ₁ to AC7 ₁
(DA0 ₁ to DA5 ₁)+1	AC0 ₂ to AC7 ₂
(DA0 ₁ to DA5 ₁)+2	AC0 ₃ to AC7 ₃
(DA01 to DA51)+(m-3)	AC0 _{m-2} to AC7 _{m-2}
(DA0 ₁ to DA5 ₁)+(m-2)	AC0 _{m-1} to AC7 _{m-1}
(DA0 ₁ to DA5 ₁)+(m-1)	AC0 _m to AC7 _m

	Code														
D88	D89	D90	D91	D92	D93	D94	D95	D96	D97	D98	D99	D100	D101	D102	D103
AC01	$AC1_1$	AC2 ₁	AC3 ₁	AC41	AC51	AC61	AC71	AC0 ₂	$AC1_2$	AC2 ₂	AC3 ₂	AC4 ₂	AC5 ₂	AC6 ₂	AC7 ₂
Code															
							Co	ode							
D104	D105	D106	D107	D108	D109	D110	-	ode D112	D113	D114	D115	D116	D117	D118	D119
		D106 DA2 ₁	-			-	-		D113 1	D114 X	D115 X	D116 0	D117 1	D118 0	D119 1

Correspondence between the DCRAM address and the DCRAM data

DCRAM address	DCRAM data
DA0 ₁ to DA5 ₁	AC0 ₁ to AC7 ₁
(DA0 1 to DA5 1)+1	AC0 ₂ to AC7 ₂

Example 2: When n=80 bits (m=8: 8 characters DCRAM data write operation)

							Co	de							
D40	D41	D42	D43	D44	D45	D46	D47	D48	D49	D50	D51	D52	D53	D54	D55
AC0 ₁	$AC1_1$	AC2 ₁	AC3 ₁	AC41	AC51	AC61	AC71	$AC0_2$	$AC1_2$	AC2 ₂	AC3 ₂	$AC4_2$	$AC5_2$	AC6 ₂	AC7 ₂

	Code														
D56	D57	D58	D59	D60	D61	D62	D63	D64	D65	D66	D67	D68	D69	D70	D71
AC0 ₃	AC1 ₃	AC2 ₃	AC3 ₃	AC4 ₃	AC5 ₃	AC6 ₃	AC7 ₃	AC0 ₄	AC1 ₄	AC2 ₄	AC3 ₄	AC4 ₄	AC5 ₄	AC6 ₄	AC7 ₄

							Co	de							
D72	D73	D74	D75	D76	D77	D78	D79	D80	D81	D82	D83	D84	D85	D86	D87
ACC	5 AC15	AC2 ₅	AC35	$AC4_5$	$AC5_5$	$AC6_5$	$AC7_5$	$AC0_6$	$AC1_6$	$AC2_6$	$AC3_6$	$AC4_6$	$AC5_6$	$AC6_6$	$AC7_6$

	Code														
D88	D89	D90	D91	D92	D93	D94	D95	D96	D97	D98	D99	D100	D101	D102	D103
AC07	AC17	AC27	AC37	AC47	AC57	AC67	AC77	AC0 ₈	$AC1_8$	$AC2_8$	AC3 ₈	$AC4_8$	$AC5_8$	$AC6_8$	AC7 ₈

	Code														
D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
DA0 ₁	$DA1_1$	DA2 ₁	DA3 ₁	DA4 ₁	DA51	Х	Х	0	1	Х	Х	0	1	0	1

X: don't care

Correspondence between the DCRAM address and the DCRAM data

DCRAM address	DCRAM data
DA0 ₁ to DA5 ₁	AC0 ₁ to AC7 ₁
(DA0 ₁ to DA5 ₁)+1	AC0 ₂ to AC7 ₂
(DA01 to DA51)+2	AC0 ₃ to AC7 ₃
(DA0 ₁ to DA5 ₁)+3	AC0 ₄ to AC7 ₄
(DA0 ₁ to DA5 ₁)+4	AC0 ₅ to AC7 ₅
(DA01 to DA51)+5	AC0 ₆ to AC7 ₆
(DA0 ₁ to DA5 ₁)+6	AC07 to AC77
(DA0 ₁ to DA5 ₁)+7	AC0 ₈ to AC7 ₈

Example 3: When n=120 bits (m=13: 13 characters DCRAM data write operation)															
							Co	de							
D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
AC01	AC1 ₁	AC2 ₁	AC31	AC4 ₁	AC51	AC6 ₁	AC71	AC0 ₂	AC1 ₂	AC2 ₂	AC3 ₂	AC4 ₂	AC5 ₂	AC6 ₂	AC72
							Co	de							
D16	D17	D18	D19	D20	D21	D22	D23	D24	D25	D26	D27	D28	D29	D30	D31
AC0 ₃	AC1 ₃	AC2 ₃	AC3 ₃	AC4 ₃	AC5 ₃	AC6 ₃	AC7 ₃	$AC0_4$	$AC1_4$	AC2 ₄	AC3 ₄	$AC4_4$	AC5 ₄	AC6 ₄	AC74
Code															
D32	D33	D34	D35	D36	D37	D38	D39	D40	D41	D42	D43	D44	D45	D46	D47
AC05	AC15	AC2 ₅	AC3 ₅	AC45	AC55	AC65	AC75	AC0 ₆	AC1 ₆	AC2 ₆	AC3 ₆	AC4 ₆	AC5 ₆	AC6 ₆	AC7
Code															
D48	D49	D50	D51	D52	D53	D54	D55	D56	D57	D58	D59	D60	D61	D62	D63
AC0 ₇	AC1 ₇	AC2 ₇	AC3 ₇	AC4 ₇	AC5 ₇	AC67	AC7 ₇	AC0 ₈	AC1 ₈	AC2 ₈	AC3 ₈	AC4 ₈	AC5 ₈	AC6 ₈	AC7 ₈
							Cc	do							
D64	D65	Dee	Dez	D68	D69	D70	D71	D72	D73	D74	D75	D76	D77	D70	D79
		D66	D67											D78	
AC0 ₉	AC19	AC2 ₉	AC3 ₉	AC4 ₉	AC5 ₉	AC6 ₉	AC79	AC0 ₁₀	AC 1 ₁₀	AC2 ₁₀	AC3 ₁₀	AC4 ₁₀	AC5 ₁₀	AC0 ₁₀	AU7 1
							Co	de							
D80	D81	D82	D83	D84	D85	D86	D87	D88	D89	D90	D91	D92	D93	D94	D95
AC011	AC1 ₁₁	AC2 ₁₁	AC311	AC411	AC511	AC611	AC711	AC0 ₁₂	AC1 ₁₂	AC2 ₁₂	AC3 ₁₂	AC4 ₁₂	AC5 ₁₂	AC6 ₁₂	AC71
							Co	de							
D96	D97	D98	D99	D100	D101	D102	D103		D105	D106	D107	D108	D109	D110	D111
AC012	AC1 ₁₃	AC2 ₁₃	AC3 ₁₃	AC4 ₁₃	AC513	AC613	AC713	DA0 ₁	DA1 ₁	DA2 ₁	DA3 ₁	DA4 ₁	DA51	Х	Х

Code													
D112	D113	D114	D115	D116	D117	D118	D119						
0	1	х	Х	0	1	0	1						
V. 1													

X: don't care

Correspondence between the DCRAM address and the DCRAM data

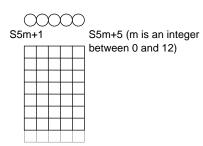
DCRAM address	DCRAM data
DA0 ₁ to DA5 ₁	AC0 ₁ to AC7 ₁
(DA0 ₁ to DA5 ₁)+1	AC0 ₂ to AC7 ₂
(DA0 ₁ to DA5 ₁)+2	AC0 ₃ to AC7 ₃
(DA0 ₁ to DA5 ₁)+3	AC0 ₄ to AC7 ₄
(DA0 ₁ to DA5 ₁)+4	AC0 ₅ to AC7 ₅
(DA0 ₁ to DA5 ₁)+5	AC0 ₆ to AC7 ₆
(DA0 ₁ to DA5 ₁)+6	AC07 to AC77

DCRAM address	DCRAM data
(DA0 ₁ to DA5 ₁)+7	AC0 ₈ to AC7 ₈
(DA0 ₁ to DA5 ₁)+8	AC0 ₉ to AC7 ₉
(DA0 ₁ to DA5 ₁)+9	AC0 ₁₀ to AC7 ₁₀
(DA0 ₁ to DA5 ₁)+10	AC011 to AC711
(DA0 ₁ to DA5 ₁)+11	AC012 to AC712
(DA0 ₁ to DA5 ₁)+12	AC0 ₁₃ to AC7 ₁₃

• ADRAM data write ... < Specifies the ADRAM address and stores data at that address>

(Write da	ata to	ADRAM	A)
-----------	--------	-------	----

	Code																						
D96	D97	D98	D99	D100	D101	D102	D103	D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
AD1	AD2	AD3	AD4	AD5	Х	Х	Х	RA0	RA1	RA2	RA3	Х	Х	Х	Х	IM1	IM2	Х	Х	0	1	1	0

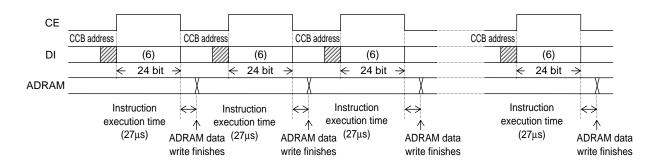

X: don't care

RA0 to RA3: ADRAM address

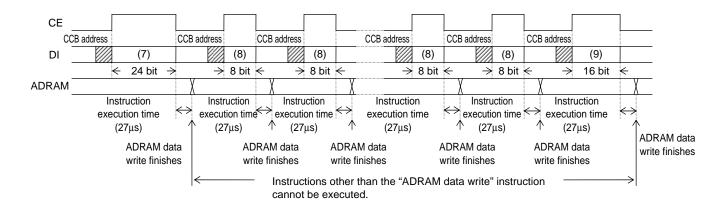
RA0	RA1	RA2	RA3	
LSB			MSB	
Ŷ			Ŷ	
Least sig	gnificant	bit	Most sig	nificant bit

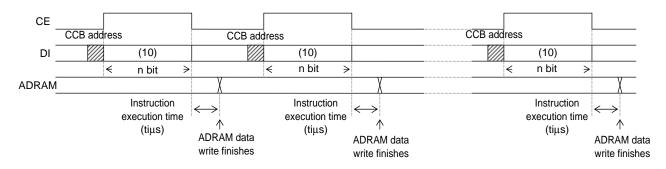
AD1 to AD5: ADATA display data

In addition to the 5×7 or 5×8 dot matrix display data (MDATA), this IC supports direct display of the five accessory display segments provided in each digit as ADATA. This display function does not use CGROM or CGRAM. The figure below shows the correspondence between the data and the display. When ADn = 1(where n is an integer between 1 and 5) the segment corresponding to that data will be turned on.


ADATA	Corresponding output pin
AD1	S5m+1 (m is an integer between 0 and 12)
AD2	S5m+2
AD3	S5m+3
AD4	S5m+4
AD5	S5m+5

IM1, IM2: Sets the method of writing data to ADRAM


IM1	IM2	ADRAM data write method
0	0	Normal ADRAM data write (Specifies the ADRAM address and writes the ADRAM data.)
1	0	Nomal increment mode ADRAM data write (Increments the ADRAM address by +1 each time data is written to ADRAM.)
0	1	Super increment mode ADRAM data write (Writes 2 to 13 digits of ADRAM data in single operation.)


• ADRAM data write method when IM1 = 0, IM2 = 0

• ADRAM data write method when IM1 = 1, IM2 = 0(Instructions other than the "ADRAM data write" instruction cannot be executed.)

• ADRAM data write method when IM1 = 0, IM2 = 1

ti=13.5 μ s×($\frac{n}{8}$ -1) (n=8m+16, m is an integer between 2 and 13 that is the number of characters written as ADRAM data.) For example

> When n= 32 bits (m=2): ti= 40.5μ s (fosc=300kHz, f_{CK}=300kHz) When n= 80 bits (m=8): ti=121.5 μ s (fosc=300kHz, f_{CK}=300kHz) When n=120 bits (m=13): ti=189.0 μ s (fosc=300kHz, f_{CK}=300kHz)

Note that the instruction execution time of 27μ s and ti values in μ s apply when fosc=300kHz and f_{CK}=300kHz, and that these execution times will differ when the CR oscillator frequency fosc and external clock frequency fCK differ.

Data	form	at at	(6) (2	24 bit	ts)																		
											Co	de											
D96	D97	D98	D99	D100	D101	D102	D103	D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
AD1	AD2	AD3	AD4	AD5	х	Х	Х	RA0	RA1	RA2	RA3	х	х	Х	Х	0	0	Х	Х	0	1	1	0
																					X:	don't	care

Data format at (7) (24 bits)

											Cod	le											
D96	D97	D98	D99	D100	D101	D102	D103	D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
AD1	AD2	AD3	AD4	AD5	Х	Х	Х	RA0	RA1	RA2	RA3	Х	Х	Х	Х	1	0	Х	Х	0	1	1	0

X: don't care

Data format at (8) (8 bits)

			Co	de			
D112	D113	D114	D115	D116	D117	D118	D119
AD1	AD2	AD3	AD4	AD5	Х	Х	Х

Data format at (9) (16 bits)

							Co	de							
D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
AD1	AD2	AD3	AD4	AD5	Х	Х	Х	0	0	х	Х	0	1	1	0
													X: (don't	care

Data format at (10) (n bit)

								Code								
Dz	Dz+1	Dz+2	Dz+3	Dz+4	Dz+5	Dz+6	Dz+7	•••••	D88	D89	D90	D91	D92	D93	D94	D95
AD1 ₁	AD2 ₁	AD31	AD41	AD51	х	Х	х	•••••	AD1 _{m-1}	AD2 _{m-1}	AD3 _{m-1}	AD4 _{m-1}	AD5 _{m-1}	Х	Х	Х

											Co	de											
D96	D97	D98	D99	D100	D101	D102	D103	D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
AD1 _m	AD2 _m	AD3 _m	$AD4_{m}$	$AD5_{m}$	Х	Х	Х	RA0 ₁	$RA1_1$	RA2 ₁	RA3 ₁	Х	Х	Х	Х	0	1	Х	Х	0	1	1	0

X: don't care

Here, n=8m+16, z=104-8m

(m is an integer between 2 and 13 that is the number of characters written as ADRAM data.)

Correspondence between the ADRAM address and theADRAM data

ADRAM address	ADRAM data
RA0 ₁ to RA3 ₁	AD1 ₁ to AD5 ₁
(RA0 ₁ to RA3 ₁)+1	AD1 ₂ to AD5 ₂
(RA0 ₁ to RA3 ₁)+2	AD1 ₃ to AD5 ₃
(RA0 ₁ to RA3 ₁)+(m-3)	AD1 _{m-2} to AD5 _{m-2}
(RA01 to RA31)+(m-2)	AD1 _{m-1} to AD5 _{m-1}
(RA0 ₁ to RA3 ₁)+(m-1)	AD1 _m to AD5 _m

Example 1. When it 52 bits (in 2. 2 characters ADIAN data write operation)	Example 1: When n=32 bits (m=2: 2 characters ADRAM dat	a write operation)
--	-----------------------------	-----------------------------	--------------------

							Co	ode							
D88															
$AD1_1$	AD2 ₁	AD3 ₁	AD4 ₁	AD51	Х	Х	Х	$AD1_2$	AD2 ₂	AD3 ₃	AD4 ₄	AD5 ₅	х	х	х
	Code														
							Сс	ode							
D104	D105	D106	D107	D108	D109	D110	-		D113	D114	D115	D116	D117	D118	D119
	Code D104 D105 D106 D107 D108 D109 D110 D111 D112 D113 D114 D115 D116 D117 D118 D119 RA0_1 RA1_1 RA2_1 RA3_1 X X X 0 1 X X 0 1 1 0														

Correspondence between the ADRAM address and the ADRAM data

ADRAM address	ADRAM data
RA0 ₁ to RA3 ₁	AD1 ₁ to AD5 ₁
(RA0 ₁ to RA3 ₁)+1	AD1 2 to AD52

Example 2: When n=80 bits (m=8: 8 characters ADRAM data write operation)

							Co	de							
D40	D41	D42	D43	D44	D45	D46	D47	D48	D49	D50	D51	D52	D53	D54	D55
$AD1_1$	AD2 ₁	AD3 ₁	AD41	AD5 ₁	х	х	Х	AD1 ₂	AD2 ₂	AD3 ₂	AD4 ₂	AD5 ₂	х	х	х

							Co	de							
D56	D57	D58	D59	D60	D61	D62	D63	D64	D65	D66	D67	D68	D69	D70	D71
$AD1_3$	AD2 ₃	AD3 ₃	AD4 ₃	$AD5_3$	Х	Х	х	$AD1_4$	AD2 ₄	AD3 ₄	AD4 ₄	$AD5_4$	Х	х	Х

							Co	de							
D72	D73	D74	D75	D76	D77	D78	D79	D80	D81	D82	D83	D84	D85	D86	D87
AD1 ₅	AD2 ₅	AD3 ₅	AD4 ₅	AD5 ₅	Х	Х	Х	AD1 ₆	AD2 ₆	AD3 ₆	AD4 ₆	AD5 ₆	Х	Х	Х

							Co	ode							
D88	D89	D90	D91	D92	D93	D94	D95	D96	D97	D98	D99	D100	D101	D102	D103
AD17	AD27	AD37	AD47	AD57	Х	Х	х	AD1 ₈	AD2 ₈	AD3 ₈	AD4 ₈	AD5 ₈	Х	Х	Х

	Code														
D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
RA0 ₁	RA1₁	RA2 ₁	RA3 ₁	Х	Х	Х	Х	0	1	Х	Х	0	1	1	0
													37	1 1	

X: don't care

Correspondence between the ADRAM address and the ADRAM data

ADRAM address	ADRAM data
RA0 ₁ to RA3 ₁	AD1 ₁ to AD5 ₁
(RA0 ₁ to RA3 ₁)+1	AD1 ₂ to AD5 ₂
(RA01 to RA31)+2	AD1 ₃ to AD5 ₃
(RA0 ₁ to RA3 ₁)+3	AD1 ₄ to AD5 ₄
(RA0 ₁ to RA3 ₁)+4	AD1 ₅ to AD5 ₅
(RA01 to RA31)+5	AD1 ₆ to AD5 ₆
(RA0 ₁ to RA3 ₁)+6	AD17 to AD57
(RA0 ₁ to RA3 ₁)+7	AD1 ₈ to AD5 ₈

Exam	Example 3: When n=120 bits (m=13: 13 characters ADRAM data write operation) Code														
							Co	de							
D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
$AD1_1$	AD2 ₁	AD3 ₁	AD4 ₁	AD5 ₁	Х	Х	Х	AD1 ₂	AD2 ₂	AD3 ₂	AD4 ₂	AD5 ₂	Х	Х	х
							Co	de							
D16	D17	D18	D19	D20	D21	D22	D23	D24	D25	D26	D27	D28	D29	D30	D31
$AD1_3$	AD2 ₃	AD3 ₃	AD4 ₃	AD5 ₃	Х	Х	Х	$AD1_4$	AD2 ₄	AD3 ₄	AD4 ₄	AD5 ₄	Х	Х	Х
							Со	de							
D32	D33	D34	D35	D36	D37	D38	D39	D40	D41	D42	D43	D44	D45	D46	D47
AD1 ₅		AD35	AD4 ₅	AD5 ₅	X	X	X	AD1 ₆	AD2 ₆	AD3 ₆	AD4 ₆	AD5 ₆	X	X	X
71015	71025	11205	710 15	1005	~	~	χ	1010	1020	1000	7.0 10	1000	~	~	~
							Co	de							
D48	D49	D50	D51	D52	D53	D54	D55	D56	D57	D58	D59	D60	D61	D62	D63
AD17	AD27	AD37	AD47	AD57	Х	Х	Х	AD1 ₈	AD2 ₈	AD3 ₈	AD4 ₈	$AD5_8$	Х	Х	Х
							Co	de							
D64	D65	D66	D67	D68	D69	D70	D71	D72	D73	D74	D75	D76	D77	D78	D79
AD1 ₉	AD2 ₉	AD3 ₉	AD4 ₉	AD5 ₉	X	X	Х			AD3 ₁₀			Х	X	X
							Co	de							
D80	D81	D82	D83	D84	D85	D86	D87	D88	D89	D90	D91	D92	D93	D94	D95
AD111	AD211	AD311	AD411	AD511	Х	Х	Х	AD1 ₁₂	AD2 ₁₂	AD3 ₁₂	AD412	AD512	Х	Х	Х
							Co	de							
D96	D97	D98	D99	D100	D101	D102	D103	D104	D105	D106	D107	D108	D109	D110	D111
AD1 ₁₃	AD2 ₁₃	AD3 ₁₃	AD4 ₁₃	AD5 ₁₃	х	Х	Х	RA0 ₁	$RA1_1$	$RA2_1$	RA3 ₁	х	Х	Х	Х

			Co	ode			
D112	D113	D114	D115	D116	D117	D118	D119
0	1	х	Х	0	1	1	0
					v	· dam!	taara

X: don't care

Correspondence between the ADRAM address and the ADRAM data

ADRAM address	ADRAM data
RA0 ₁ to RA3 ₁	AD1 ₁ to AD5 ₁
(RA0 ₁ to RA3 ₁)+1	AD1 ₂ to AD5 ₂
(RA0 ₁ to RA3 ₁)+2	AD1 ₃ to AD5 ₃
(RA0 ₁ to RA3 ₁)+3	AD1 ₄ to AD5 ₄
(RA0 ₁ to RA3 ₁)+4	AD15 to AD55
(RA0 ₁ to RA3 ₁)+5	AD1 ₆ to AD5 ₆
(RA0 ₁ to RA3 ₁)+6	AD17 to AD57

uı		
	ADRAM address	ADRAM data
	(RA0 ₁ to RA3 ₁)+7	AD1 ₈ to AD5 ₈
	(RA0 ₁ to RA3 ₁)+8	AD1 ₉ to AD5 ₉
	(RA0 ₁ to RA35 ₁)+9	AD110 to AD510
	(RA0 ₁ to RA3 ₁)+10	AD1 ₁₁ to AD5 ₁₁
	(RA0 ₁ to RA3 ₁)+11	AD1 ₁₂ to AD5 ₁₂
	(RA0 ₁ to RA3 ₁)+12	AD1 ₁₃ to AD5 ₁₃

• CGRAM data write ... <Specifies the CGRAM address and stores data at that address> (Write data to CGRAM)

							Co	de							
D56	D57	D58	D59	D60	D61	D62	D63	D64	D65	D66	D67	D68	D69	D70	D71
CD1	CD2	CD3	CD4	CD5	CD6	CD7	CD8	CD9	CD10	CD11	CD12	CD13	CD14	CD15	CD16

							Co	de							
D72	D73	D74	D75	D76	D77	D78	D79	D80	D81	D82	D83	D84	D85	D86	D87
CD17	CD18	CD19	CD20	CD21	CD22	CD23	CD24	CD25	CD26	CD27	CD28	CD29	CD30	CD31	CD32

							Co	ode							
D88	D89	D90	D91	D92	D93	D94	D95	D96	D97	D98	D99	D100	D101	D102	D103
CD33	CD34	CD35	CD36	CD37	CD38	CD39	CD40	Х	Х	Х	Х	х	Х	х	Х

	Code														
D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
CA0	CA1	CA2	CA3	CA4	CA5	CA6	CA7	Х	Х	Х	Х	0	1	1	1
	V: don't care														

X: don't care

CA0 to CA7: CGRAM address

CA0	CA1	CA2	CA3	CA4	CA5	CA6	CA7	
LSB							MSB	
\uparrow							\uparrow	
Least sig	gnificant	bit				Most	significa	nt bit

CD1 to CD40: CGRAM data (5×7 or 5×8 dot matrix display data)

The bit CDn (where n is an integer between 1 and 40) corresponds to the 5×7 or 5×8 dot matrix display data. The figure below shows that correspondence. When CDn is 1 the dots which correspond to that data will be turned on.

CD1	CD2	CD3	CD4	CD5
CD6	CD7	CD8	CD9	CD10
CD11	CD12	CD13	CD14	CD15
CD16	CD17	CD18	CD19	CD20
CD21	CD22	CD23	CD24	CD25
CD26	CD27	CD28	CD29	CD30
CD31	CD32	CD33	CD34	CD35
CD36	CD37	CD38	CD39	CD40

Note: *18. CD1 to CD35: 5×7 dot matrix display data CD1 to CD40: 5×8 dot matrix display data • Set display contrast... <Sets the display contrast> (Set display contrast)

D104 D105 D106 D107 D108 D109 D110 D111 D112 D113 D114 D115 D116 D117 D118 D119 CT0 CT1 CT2 CT3 X X X CTC X X 1 0 0 0								Coc	le							
CT0 CT1 CT2 CT3 X X X X CTC X X X 1 0 0 0	D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
	CT0	CT1	CT2	CT3	Х	Х	Х	Х	CTC	х	Х	Х	1	0	0	0

X: don't care

CT0 to CT3: Sets the display contrast (11 steps)

CT0	CT1	CT2	CT3	LCD drive 4/4 bias voltage supply V _{LCD} 0 level
0	0	0	0	0.94V _{LCD} =V _{LCD} -(0.03V _{LCD} ×2)
1	0	0	0	0.91V _{LCD} =V _{LCD} -(0.03V _{LCD} ×3)
0	1	0	0	0.88V _{LCD} =V _{LCD} -(0.03V _{LCD} ×4)
1	1	0	0	0.85V _{LCD} =V _{LCD} -(0.03V _{LCD} ×5)
0	0	1	0	0.82V _{LCD} =V _{LCD} -(0.03V _{LCD} ×6)
1	0	1	0	0.79V _{LCD} =V _{LCD} -(0.03V _{LCD} ×7)
0	1	1	0	0.76V _{LCD} =V _{LCD} -(0.03V _{LCD} ×8)
1	1	1	0	0.73V _{LCD} =V _{LCD} -(0.03V _{LCD} ×9)
0	0	0	1	0.70V _{LCD} =V _{LCD} -(0.03V _{LCD} ×10)
1	0	0	1	0.67V _{LCD} =V _{LCD} -(0.03V _{LCD} ×11)
0	1	0	1	$0.64V_{LCD}=V_{LCD}-(0.03V_{LCD}\times 12)$

CTC: Sets the display contrast adjustment circuit state

СТС	Display contrast adjustment circuit state
0	The display contrast adjustment circuit is disabled, and the V _{LCD} 0 pin level is forced to the V _{LCD} level.
1	The display contrast adjustment circuit operates, and the display contrast is adjusted.

Note that although the display contrast can be adjusted by operating the built-in display contrast adjustment circuit, it is also possible to apply fine adjustments to the contrast by connecting an external variable resistor to the V_{LCD}4 pin and modifying the V_{LCD}4 pin voltage. However, the following conditions must be met: V_{LCD}0-V_{LCD}4 \geq 4.5V, and 1.5V \geq V_{LCD}4 \geq 0V.

• Set key scan output port/general-purpose output port state

... <Sets the key scan output port and general-purpose output port states>

	(Key scan output port and General-purpose output port control)																						
											Co	de											
D72	D73	D74	D75	D76	D77	D78	D79	D80	D81	D82	D83	D84	D85	D86	D87	D88	D89	D90	D91	D92	D93	D94	D95
W10	W11	W12	W13	W14	W15	W20	W21	W22	W23	W24	W25	W30	W31	W32	W33	W34	W35	PC10	PC11	PC20	PC21	PC30	PC31

											Co	de											
D96	D97	D98	D99	D100	D101	D102	D103	D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
PC32	PF0	PF1	PF2	PF3	KC1	KC2	KC3	KC4	KC5	KC6	KC7	KP1	KP2	KP3	Х	Х	Х	Х	Х	1	0	0	1

X: don't care

KP1 to KP3: Set the output pins KS1/P1, KS2/P2, and KS7/P3 as either key scan output ports or general-purpose output ports.

				Output pin			General-	
KP1	KP2	KP3	KS1/P1	KS2/P2	KS7/P3	Max. Key Input Number	purpose Output Port	
	_						Number	
0	0	0	KS1	KS2	KS7	35	0	
1	0	0	P1	KS2	KS7	30	1	
0	1	0	KS1	P2	KS7	30	1	
0	0	1	KS1	KS2	P3	30	1	
1	1	0	P1	P2	KS7	25	2	
0	1	1	KS1	P2	P3	25	2	*19) KS
1	0	1	P1	KS2	P3	25	2	Pn
1	1	1	P1	P2	P3	20	3	

Sn(n=1,2,7): Key scan output port n(n=1 to 3): General-purpose output port

KC1 to KC7: Sets the key scan output pin KS1 to KS7 state

Output pin	KS1	KS2	KS3	KS4	KS5	KS6	KS7
Key scan output state setting data	KC1	KC2	KC3	KC4	KC5	KC6	KC7

If, for example, the output pins KS1/P1, KS2/P2, and KS7/P3 are set as key scan output ports, the output pins KS1 to KS3 will go high (VDD) and KS4 to KS7 go low (VSS) in the key scan standby state when KC1 to KC3 are set to 1 and KC4 to KC7 are set to 0. Note that key scan output signals are not output from output pins that are set to the low level.

PC10, PC11: Sets the general-purpose output port P1 state

PC10	PC11	Output pin (P1) state
0	0	"L"(V _{SS})
1	0	"H"(V _{DD})
0	1	PWM signal output

PC30 to PC32: Sets the general-purpose output port P3 state

PC30	PC31	PC32	Output pin (P3) state
0	0	0	"L"(V _{SS})
1	0	0	"H"(V _{DD})
0	1	0	PWM signal output
1	1	0	Clock signal output (fosc/2, f _{CK} /2)
0	0	1	Clock signal output (fosc/8, f _{CK} /8)

PC20, PC21: Sets the general-purpose output port P2 state

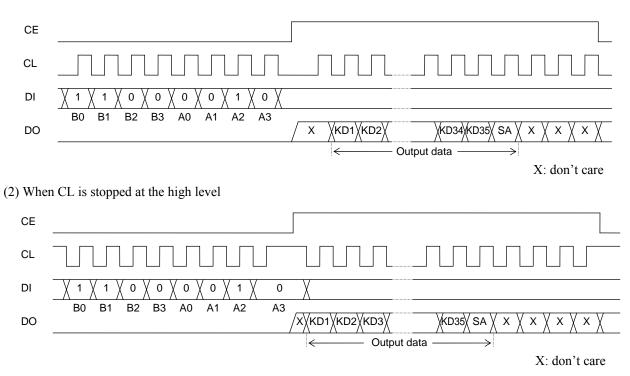
1010,10		Beneral parpose supar port 2 suite
PC20	PC21	Output pin (P2) state
0	0	"L"(V _{SS})
1	0	"H"(V _{DD})
0	1	PWM signal output

(when ge	inerai-pui	pose outor	it ports r i	to F5 are set to select the F will signal generation function.)
PF0	PF1	PF2	PF3	PWM Output Waveform Frame Frequency fp[Hz]
0	0	0	0	fosc/1536, f _{CK} /1536
1	0	0	0	fosc/1408, f _{CK} /1408
0	1	0	0	fosc/1280, f _{CK} /1280
1	1	0	0	fosc/1152, f _{CK} /1152
0	0	1	0	fosc/1024, f _{CK} /1024
1	0	1	0	fosc/896, f _{CK} /896
0	1	1	0	fosc/768, f _{CK} /768
1	1	1	0	fosc/640, f _{CK} /640
0	0	0	1	fosc/512, f _{CK} /512
1	0	0	1	fosc/384, f _{CK} /384
0	1	0	1	fosc/256, f _{CK} /256

PF0 to PF3: Set the frame frequency of the PWM output waveforms. (when general-purpose outout ports P1 to P3 are set to select the PWM signal generation function.)

W10 to W15, W20 to W25, W30 to W35: Set the pulse width of the PWM output waveforms.

(1 1		D1 / D1		DUUM 1 1	generation function.)	
when general_nu	irnase autaut narts	PITOPI	s are set to select the	PW/W/Const	generation function i	
when general-pu		1101.		2 I WIVI SIGIIAI	generation runetion.	


Wn0	Wn1	Wn2	Wn3	Wn4	Wn5	PWM Signal Pn Pulse Width	Wn0	Wn1	Wn2	Wn3	Wn4	Wn5	PWM Signal Pn Pulse Width
0	0	0	0	0	0	(1/64) ×Tp	0	0	0	0	0	1	(33/64) ×Tp
1	0	0	0	0	0	(2/64) ×Tp	1	0	0	0	0	1	(34/64) ×Tp
0	1	0	0	0	0	(3/64) ×Tp	0	1	0	0	0	1	(35/64) ×Tp
1	1	0	0	0	0	(4/64) ×Tp	1	1	0	0	0	1	(36/64) ×Tp
0	0	1	0	0	0	(5/64) ×Tp	0	0	1	0	0	1	(37/64) ×Tp
1	0	1	0	0	0	(6/64) ×Tp	1	0	1	0	0	1	(38/64) ×Tp
0	1	1	0	0	0	(7/64) ×Tp	0	1	1	0	0	1	(39/64) ×Tp
1	1	1	0	0	0	(8/64) ×Tp	1	1	1	0	0	1	(40/64) ×Tp
0	0	0	1	0	0	(9/64) ×Tp	0	0	0	1	0	1	(41/64) ×Tp
1	0	0	1	0	0	(10/64) ×Tp	1	0	0	1	0	1	(42/64) ×Tp
0	1	0	1	0	0	(11/64) ×Tp	0	1	0	1	0	1	(43/64) ×Tp
1	1	0	1	0	0	(12/64) ×Tp	1	1	0	1	0	1	(44/64) ×Tp
0	0	1	1	0	0	(13/64) ×Tp	0	0	1	1	0	1	(45/64) ×Tp
1	0	1	1	0	0	(14/64) ×Tp	1	0	1	1	0	1	(46/64) ×Tp
0	1	1	1	0	0	(15/64) ×Tp	0	1	1	1	0	1	(47/64) ×Tp
1	1	1	1	0	0	(16/64) ×Tp	1	1	1	1	0	1	(48/64) ×Tp
0	0	0	0	1	0	(17/64) ×Tp	0	0	0	0	1	1	(49/64) ×Tp
1	0	0	0	1	0	(18/64) ×Tp	1	0	0	0	1	1	(50/64) ×Tp
0	1	0	0	1	0	(19/64) ×Tp	0	1	0	0	1	1	(51/64) ×Tp
1	1	0	0	1	0	(20/64) ×Tp	1	1	0	0	1	1	(52/64) ×Tp
0	0	1	0	1	0	(21/64) ×Tp	0	0	1	0	1	1	(53/64) ×Tp
1	0	1	0	1	0	(22/64) ×Tp	1	0	1	0	1	1	(54/64) ×Tp
0	1	1	0	1	0	(23/64) ×Tp	0	1	1	0	1	1	(55/64) ×Tp
1	1	1	0	1	0	(24/64) ×Tp	1	1	1	0	1	1	(56/64) ×Tp
0	0	0	1	1	0	(25/64) ×Tp	0	0	0	1	1	1	(57/64) ×Tp
1	0	0	1	1	0	(26/64) ×Tp	1	0	0	1	1	1	(58/64) ×Tp
0	1	0	1	1	0	(27/64) ×Tp	0	1	0	1	1	1	(59/64) ×Tp
1	1	0	1	1	0	(28/64) ×Tp	1	1	0	1	1	1	(60/64) ×Tp
0	0	1	1	1	0	(29/64) ×Tp	0	0	1	1	1	1	(61/64) ×Tp
1	0	1	1	1	0	(30/64) ×Tp	1	0	1	1	1	1	(62/64) ×Tp
0	1	1	1	1	0	(31/64) ×Tp	0	1	1	1	1	1	(63/64) ×Tp
1	1	1	1	1	0	(32/64) ×Tp	1	1	1	1	1	1	(64/64) ×Tp

Note: *20. Wn0 to Wn5 (n=1 to 3): PWM data for the PWM output waveforms at general-purpose output ports Pn (n=1 to 3).

 $Tp = \frac{1}{fp}$

Serial Data Output

(1) When CL is stopped at the low level

• B0 to B3, A0 to A3: CCB address 43H

• KD1 to KD35: Key data

• SA: Sleep acknowledge data

Note: *21. When key data read operation is executed with DO set high (no key data read request present), the key data (KD1 to KD35) and sleep acknowledge data (SA) are invalid.

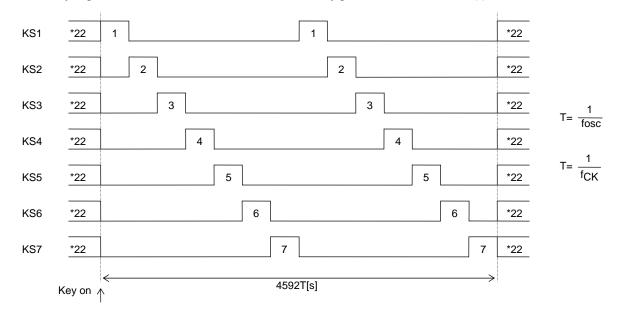
Output Data

(1) KD1 to KD35: Key data

When a key matrix of up to 35 keys is formed from the KS1 to KS7 output pins and the KI1 to KI5 input pins and one of those keys is pressed, the key output data corresponding to that key will be set to 1. The table shows the relationship between those pins and the key data bits.

	KI1	KI2	KI3	KI4	KI5					
KS1/P1	KD1	KD2	KD3	KD4	KD5					
KS2/P1	KD6	KD7	KD8	KD9	KD10					
KS3	KD11	KD12	KD13	KD14	KD15					
KS4	KD16	KD17	KD18	KD19	KD20					
KS5	KD21	KD22	KD23	KD24	KD25					
KS6	KD26	KD27	KD28	KD29	KD30					
KS7/P3	KD31	KD32	KD33	KD34	KD35					

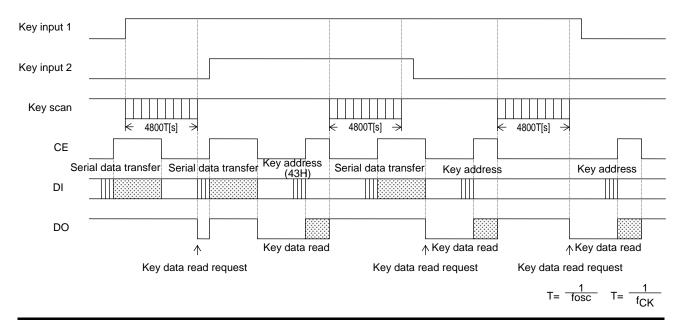
KD1 to KD10 are all set to 0 when the output pins KS1/P1 and KS2/P2 are set as general-purpose output ports with the "set key scan output port/general-purpose output port state" instruction and a key matrix of maximum 25 keys is formed from the output pins KS3 to KS6 and KS7/P3 and the input pins KI1 to KI5.


(2) SA: Sleep acknowledge data

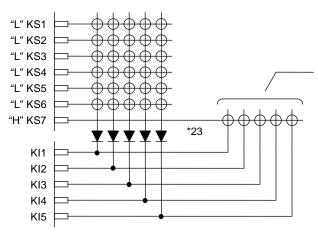
This output data bit is set to the state when the key was pressed. Also, while DO will be low in this case, if serial data is input and the mode is set (to normal or sleep mode) during this period, that mode will be set. SA will be 1 in Sleep mode and 0 in normal mode.

Key Scan Operation Functions

(1) Key scan timing

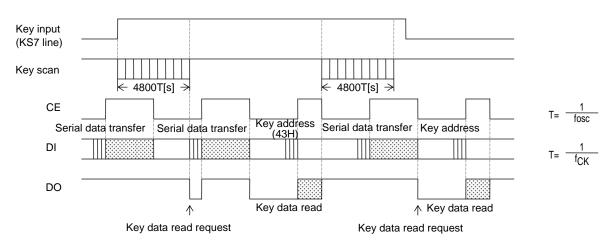

The key scan period is 2296T(s). To reliably determine the on/off state of the keys, the LC75812PT scans the keys twice and determines that a key has been pressed when the key data agrees. It outputs a key data read request (a low level on DO) 4800T(s) after starting a key scan. If the key data dose not agree and a key was pressed at that point, it scans the keys again. Thus the LC75812PT cannot detect a key press shorter than 4800T(s).

Note: *22. Not that the high/low states of these pins are determined by the "set key scan output port/general-purpose output port state" instruction, and that key scan output signals are not output from pins that are set to low.


(2) In normal mode

- The pins KS1 to KS7 are set to high or low with the "set key scan output port/general-purpose output port state" instruction.
- If a key on one of the lines corresponding to a KS1 to KS7 pin which is set high is pressed, a key scan is started and the keys are scanned until all keys are released. Multiple key presses are recognized by determining whether multiple key data bits are set.
- If a key is pressed for longer than 4800T(s) (Where T=1/fosc, T=1/f_{CK}) the LC75812PT outputs a key data read request (a low level on DO) to the controller. The controller acknowledges this request and reads the key data. However, if CE is high during a serial data transfer, DO will be set high.
- After the controller reads the key data, the key data read request is cleared (DO is set high) and the LC75812PT performs another key scan. Also note that DO, being an open-drain output, requires a pull-up resistor (between $1k\Omega$ and $10k\Omega$).

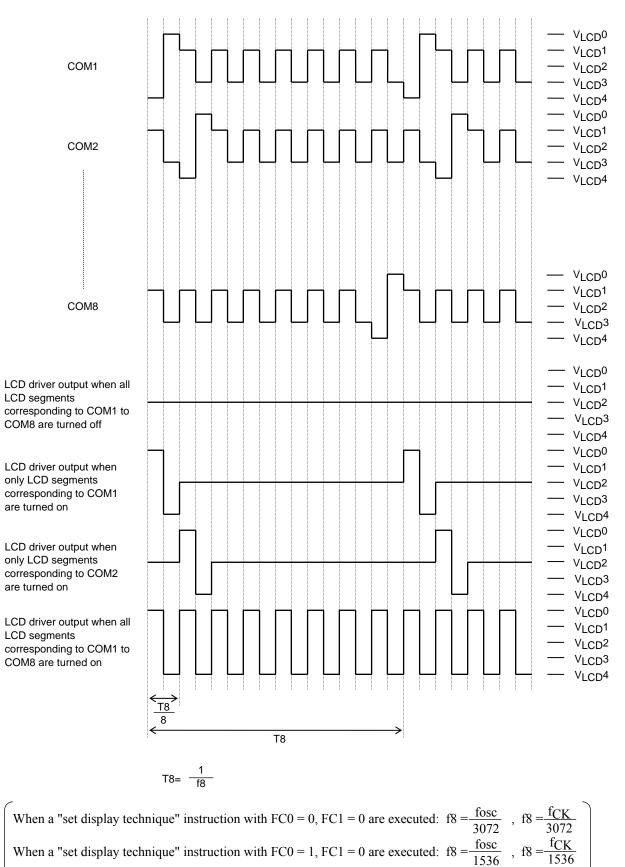
(3) In sleep mode


- The pins KS1 to KS7 are set to high or low with the "set key scan output port/general-purpose output port state" instruction.
- If a key on one of the lines corresponding to a KS1 to KS7 pin which is set high is pressed in the RC oscillator operating mode, the oscillator on the OSC pin is started (the IC starts receiving the external clock in external clock operating mode) and a key scan is performed. Keys are scanned until all keys released. Multiple key presses are recognized by determining whether multiple key data bits are set.
- If a key is pressed for longer than 4800T(s) (Where T=1/fosc, T=1/f_{CK}) the LC75812PT outputs a key data read request (a low level on DO) to the controller. The controller acknowledges this request and reads the key data. However, if CE is high during a serial data transfer, DO will be set high.
- After the controller reads the key data, the key data read request is cleared (DO is set high) and the LC75812PT performs another key scan. However, this dose not clear sleep mode. Also note that DO, being an open-drain output, requires a pull-up resistor (between $1k\Omega$ and $10k\Omega$).
- Sleep mode key scan example
- Example: When a "display on/off control (SP=1)" instruction and a "set key scan output port/general-purpose output port state (KP1 to KP3=0, KC1 to KC6= 0, KC7=1)" instruction are executed. (i.e. sleep mode with only KS7 high.)

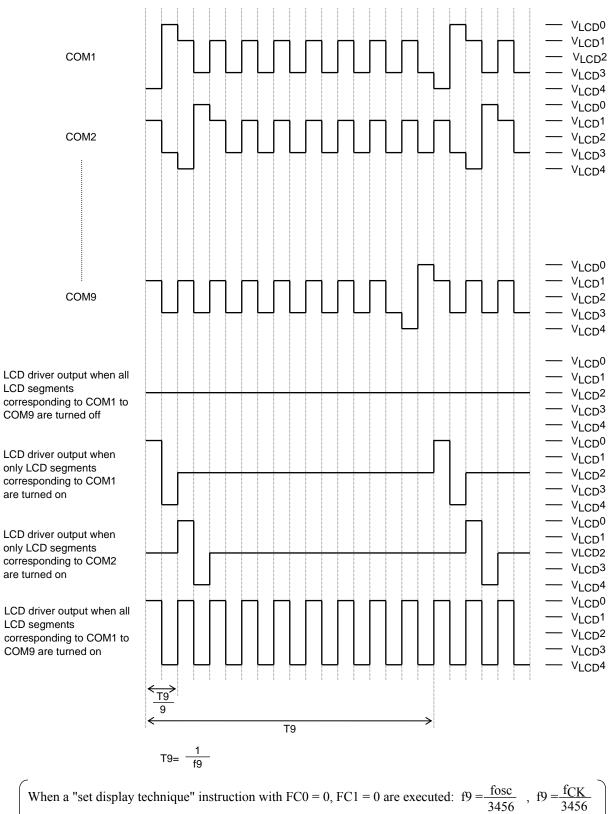
When any one of these keys is pressed in RC oscillator operating mode, the oscillator on the OSC pin is started (the IC starts receiving the external clock in external clock operating mode) and the keys are scanned.

Note: *23. These diodes are required to reliably recognize multiple key presses on the KS7 line when sleep mode state with only KS7 high, as in the above example.

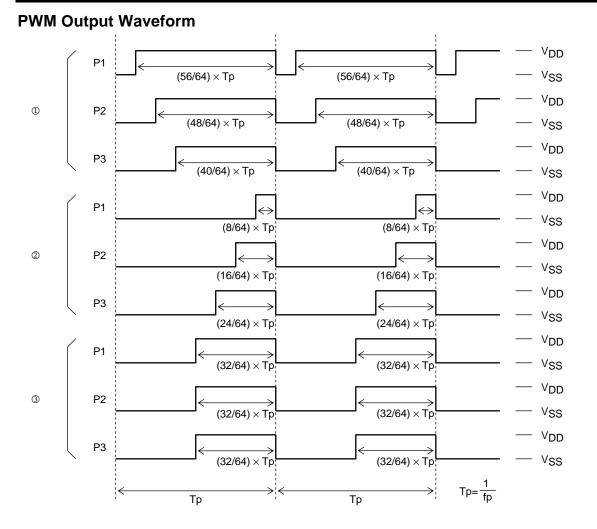
That is, these diodes prevent incorrect operations due to sneak currents in the KS7 key scan output signal when keys on the KS1 to KS6 lines are pressed at the same time.



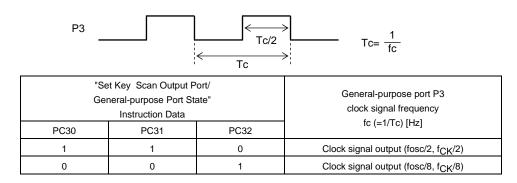
Multiple Key Presses


Although the LC75812PT is capable of key scanning without inserting diodes for dual key presses, triple key presses on the KI1 to KI5 input pin lines, or multiple key presses on the KS1 to KS7 output pin lines, multiple presses other than these cases may result in keys that were not pressed recognized as having been pressed.

Therefore, a diode must be inserted in series with each key. Applications that do not recognize multiple key presses of three or more keys should check the key data for three or more 1 bits and ignore such data.


1/8 Duty, 1/4 Bias Drive Technique

1/9 Duty, 1/4 Bias Drive Technique


When a "set display technique" instruction with FC0 = 0, FC1 = 0 are executed: $f9 = \frac{105C}{3456}$, $f9 = \frac{10K}{3456}$ When a "set display technique" instruction with FC0 = 1, FC1 = 0 are executed: $f9 = \frac{fosc}{1728}$, $f9 = \frac{fCK}{1728}$ When a "set display technique" instruction with FC0 = 0, FC1 = 1 are executed: $f9 = \frac{fosc}{864}$, $f9 = \frac{fCK}{864}$

			"(Set key	scan o	utput po	ort/gene	ral-purp	ose ou	tput por	t state"	Instruc	tion Dat	а				PWM Output
W10	W11	W12	W13	W14	W15	W20	W21	W22	W23	W24	W25	W30	W31	W32	W33	W34	W35	Waveform of General-purpose Output Ports P1 to P3
1	1	1	0	1	1	1	1	1	1	0	1	1	1	1	0	0	1	D
1	1	1	0	0	0	1	1	1	1	0	0	1	1	1	0	1	0	2
1	1	1	1	1	0	1	1	1	1	1	0	1	1	1	1	1	0	3

"Set key scan o	utput port/general-purp	oose output port state	" Instruction Data	PWM Output Waveform
PF0	PF1	PF2	PF3	Frame Frequency fp[Hz]
0	0	0	0	fosc/1536, fCK/1536
1	0	0	0	fosc/1408, fCK/1408
0	1	0	0	fosc/1280, fCK/1280
1	1	0	0	fosc/1152, fCK/1152
0	0	1	0	fosc/1024, fCK/1024
1	0	1	0	fosc/896, fCK/896
0	1	1	0	fosc/768, fCK/768
1	1	1	0	fosc/640, fCK/640
0	0	0	1	fosc/512, fCK/512
1	0	0	1	fosc/384, fCK/384
0	1	0	1	fosc/256, fCK/256

Clock Signal Output Waveform

Voltage Detection Type Reset Circuit (VDET)

This circuit generates an output signal and resets the system when logic block power is first applied and when the voltage drops, i.e., when the logic block power supply voltage is less than or equal to the power down detection voltage V_{DET} , which is 2.2V, typical. To assure that this function operates reliably, a capacitor must be added to the logic block power supply line so that the logic block power supply voltage V_{DD} rise time when the logic block power is first applied and the logic block power supply voltage V_{DD} fall time when the voltage drops are both at least 1ms. (See Figure 5.)

Power Supply Sequence

The following sequences must be observed when power is turned on and off. (See Figure 5.)

• Power on: Logic block power supply(V_{DD}) on \rightarrow LCD driver block power supply (V_{LCD}) on

• Power off: LCD driver block power supply(V_{LCD}) off \rightarrow Logic block power supply (V_{DD}) off

When 5V signal is applied to the CE, CL, DI, and $\overline{\text{INH}}$ pins which are to be connected to the controller and if the logic block power supply (V_{DD}) is off, set the input voltage at the CE, CL, DI, and $\overline{\text{INH}}$ pins to 0V and apply the 5V signal to these pins after turning on the logic block power supply (V_{DD}).

System Reset

1. Reset function

The LC75812PT performs a system reset with the V_{DET} . When a system reset is applied, the display is turned off, key scanning is disabled, the key data is reset, and the general-purpose output ports are set to and held at the low level (VSS).

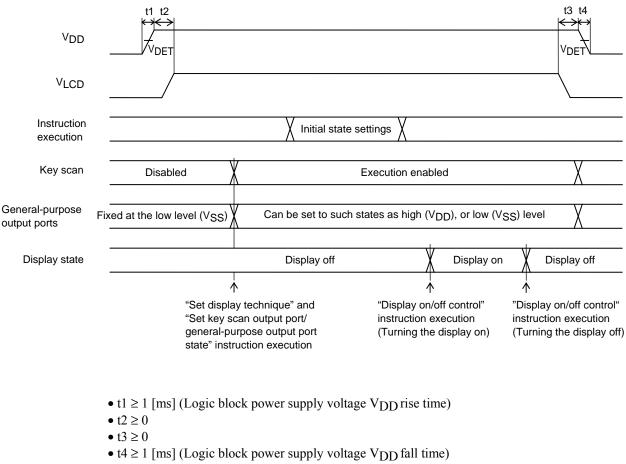
These states that are created as a result of the system reset can be cleared by executing the instruction described below. (See Figure 5.)

• Clearing the display off state

Display operation can be enabled by executing a "display on/off control" instruction. However, since the contents of the DCRAM, ADRAM, and CGRAM are undefined, applications must set the contents of these memories before turning on display with the "display on/off control" instruction. That is, applications must execute the following instructions.

- Set display technique (The "set display technique" instruction must be executed first.)
- DCRAM data write
- ADRAM data write (If the ADRAM is used.)
- CGRAM data write (If the CGRAM is used.)
- Set AC address
- Set display contrast (If the display contrast adjustment circuit is used.)

After executing the above instructions, applications must turn on the display with a "display on/off control" instruction.


Note that when applications turn off in the normal mode, applications must turn off the display with a "display on/off control" instruction or the \overline{INH} pin.

• Clearing the key scan disable and key data reset states By executing the following instructions not only create a state in which key scanning can be performed, but also clear the key data reset.

- Set display technique (The "set display technique" instruction must be executed first.)
- Set key scan output port/general-purpose output port state

• Clearing the general-purpose output ports locked at the low level (VSS) state By executing the following instructions clear the general-purpose output ports locked at the low level (VSS) state and set the states of the general-purpose output ports.

- Set display technique (The "set display technique" instruction must be executed first.)
- Set key scan output port/general-purpose output port state

Initial state settings

Set display technique (The "set display technique" instruction must be executed first.) DCRAM data write

ADRAM data write (If the ADRAM is used.)

CGRAM data write (If the CGRAM is used.)

Set AC address

Set display contrast (If the display contrast adjustment circuit is used.)

[Figure 5]

2. Block states during a system reset

(1) CLOCK GENERATOR, TIMING GENERATOR

When a reset is applied, these circuits are forcibly initialized internally. Then, when the "set display technique" instruction is executed, oscillation of the OSC pin starts in RC oscillator operating mode (the IC starts receiving the external clock in external clock operating mode), execution of the instruction is enabled.

(2) INSTRUCTION REGISTER, INSTRUCTION DECODER

When a reset is applied, these circuits are forcibly initialized internally. Then, when instruction execution starts, the IC operates according to those instructions.

- (3) ADDRESS REGISTER, ADDRESS COUNTER When a reset is applied, these circuits are forcibly initialized internally. Then, the DCRAM and the ADRAM addresses are set when "Set AC address" instruction is executed.
- (4) DCRAM, ADRAM, CGRAM Since the contents of the DCRAM, ADRAM, and CGRAM become undefined during a reset, applications must execute "DCRAM data write", "ADRAM data write (If the ADRAM is used.)", and "CGRAM data write (If the CGRAM is used.)" instructions before executing a "display on/off control" instruction.
- (5) CGROM
 - Character patterns are stored in this ROM.
- (6) LATCH

Although the value of the data in the latch is undefined during a reset, the ADRAM, CGROM, and CGRAM data is stored by executing a "display on/off control" instruction.

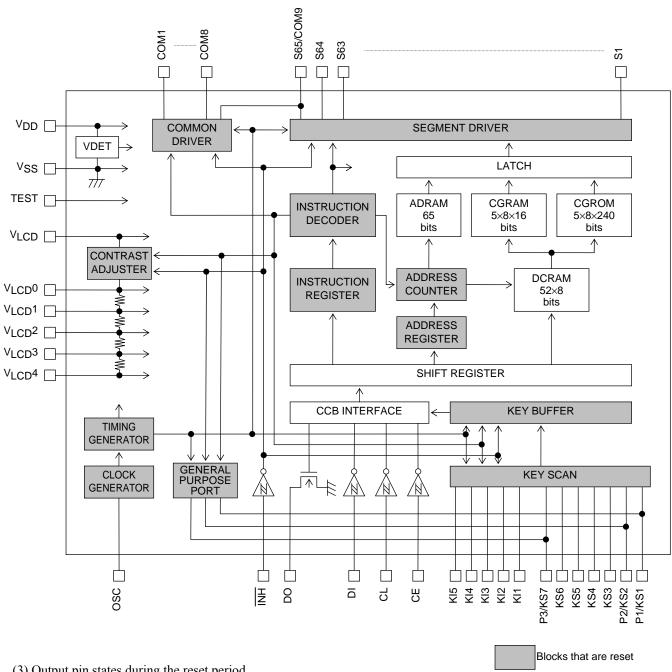
(7) COMMON DRIVER, SEGMENT DRIVER

These circuits are forced to the display off state when a reset is applied.

(8) CONTRAST ADJUSTER

Display contrast adjustment circuit operation is disabled when a reset is applied. After that, the display contrast can be set by executing a "set display contrast" instruction.

(9) KEY SCAN, KEY BUFFER


When a reset is applied, these circuits are forcibly initialized internally, and key scan operation is disabled. Also, the key data is all set to 0. After that, key scanning can be performed by executing a "set key scan output port/general-purpose output port state" instruction.

(10) GENERAL PURPOSE PORT

When a reset is applied, the general-purpose output port state is locked at the low level (VSS).

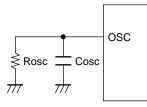
(11) CCB INTERFACE, SHIFT REGISTER

These circuits go to the serial data input wait state.

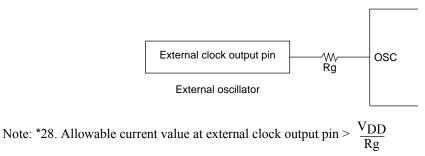
(3) Output pin states during the reset period

Output pin	State during reset					
S1 to S64	L (V _{LCD} 4)					
S65/COM9	L (V _{LCD} 4)	*24				
COM1 to COM8	L (V _{LCD} 4)					
KS1/P1, KS2/P2	L (V _{SS})	*25				
KS3 to KS6	L (V _{SS})					
KS7/P3	L (V _{SS})	*25				
OSC	Z (high-impedance)	*26				
DO	Н	*27				

*24 This output pin is forcibly set to the segment output function and held low (VLCD4). If the "set display technique" instruction is executed, however, either segment output or common output is selected according to the instruction.

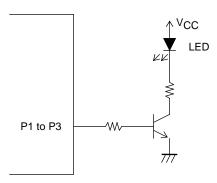

*25 This output pin is forcibly set to general-purpose output port and held low (V_{SS}). If the "set display technique" and the "set key scan output port/general-purpose output port state" instructions are executed, however, either key scan output port or general-purpose output port is selected according to the instructions.

*26 This I/O pin is forcibly set to the high-impedance state.


*27 Since this output pin is an open-drain output, a pull-up resistor (between $1k\Omega$ and $10k\Omega$) is required. This pin is held at the high level even if a key data read operation is performed before executing the "set display technique" or "set key scan output port/general-purpose output port state" instruction.

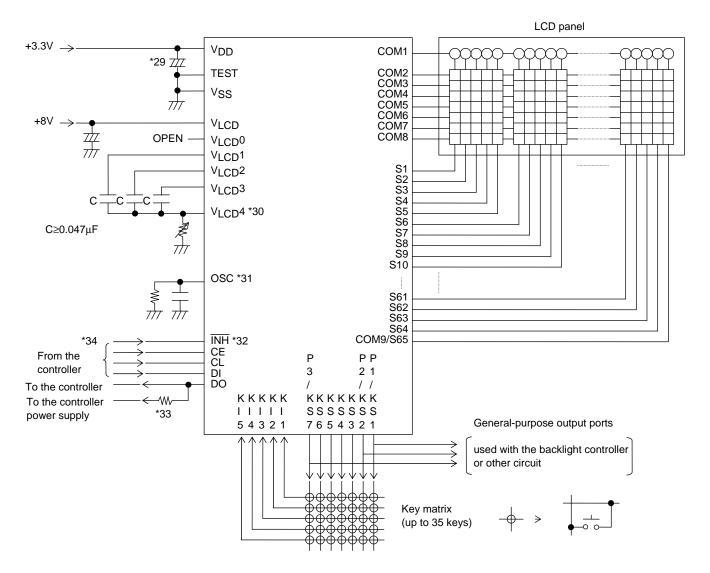
OSC Pin Peripheral Circuit

(1) RC oscillator operating mode (when the "set display technique (OC=0)" instruction is executed) When RC oscillator operating mode is selected, an external resistor Rosc and an external capacitor Cosc must be connected between the OSC pin and GND.

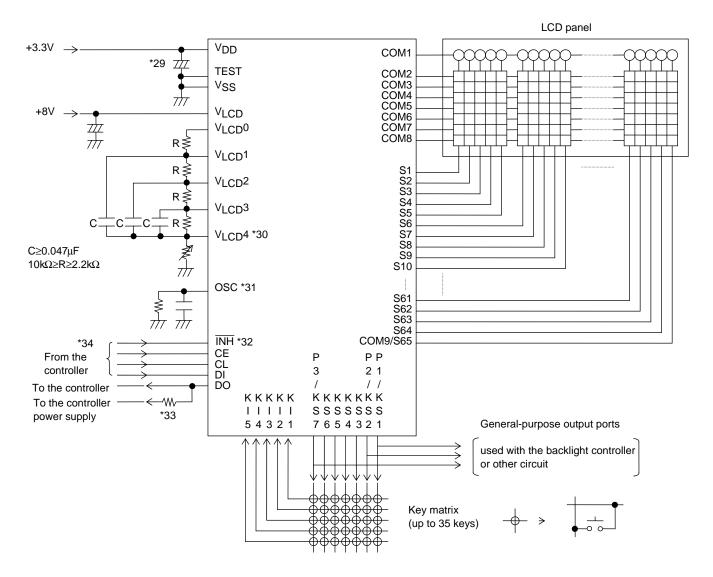


(2) External clock operating mode (when the "set display technique (OC=1)" instruction is executed) When selecting the external clock operating mode, connect a current protection resistor Rg (2.2 to $22k\Omega$) between the OSC pin and external clock output pin (external oscillator). Determine the value of the resistance according to the maximum allowable current value at the external clock output pin. Also make sure that the waveform of the external clock is not heavily distorted.

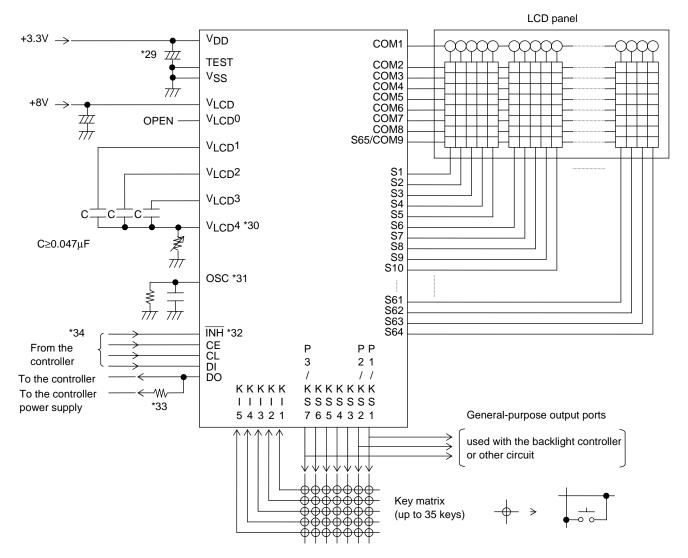
Pins P1 to P3 peripheral circuit


It is recommended that the following circuit be used when adjusting the brightness of the LED backlight in PWM mode using the general-purpose output ports P1 to P3 (when PWM signal output function is selected with the general-purpose output ports P1 to P3 under the "set key scan output port/general-purpose output port state" instruction):

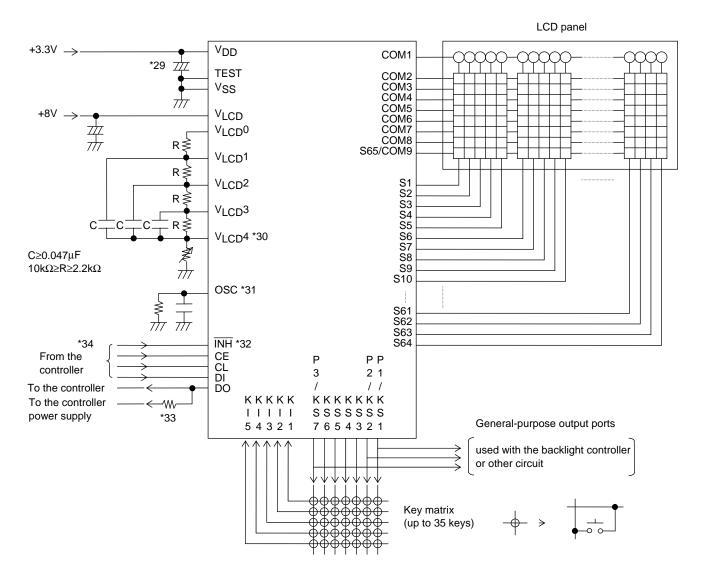
Note when applying a 5V signal to the CE, CL, DI, and INH pins


When applying a 5V signal to the CE, CL, DI, and $\overline{\text{INH}}$ pins which are to be connected to the controller, set the input voltage to the CE, CL, DI, and $\overline{\text{INH}}$ pins to 0V if the logic block power supply (V_{DD}) is off, and apply the 5V signal to those pins after turning on the logic block power supply (V_{DD}).

1/8 duty, 1/4 bias drive technique (for use with normal panels)


- Note *29. Add a capacitor to the logic block power supply line so that the logic block power supply voltage V_{DD} rise time when power is applied and the logic block power supply voltage V_{DD} fall time when power drops are both at least 1 ms, as the LC75812PT is reset by the V_{DET}.
 - *30. If a variable resistor is not used for display contrast fine adjustment, the V_{LCD}4 pin must be connected to ground.
 - *31. In RC oscillator operating mode, an external resistor, Rosc, and an external capacitor, Cosc, must be connected between the OSC pin and ground. When selecting the external clock operating mode, connect a current protection resistor Rg (2.2 to $22k\Omega$) between the OSC pin and the external clock output pin (external oscillator). (See the "OSC Pin Peripheral Circuit" section.)
 - *32. If the function of $\overline{\text{INH}}$ pin is not used, the $\overline{\text{INH}}$ pin must be connected to the logic block power supply VDD.
 - *33. The DO pin, being an open-drain output, requires a pull-up resistor. Select a resistance (between $1k\Omega$ and $10k\Omega$) appropriate for the capacitance of the external wiring so that signal waveforms are not degraded.
 - *34 When applying a 5V signal to the CE, CL, DI, and INH pins, set the input voltage to 0V if the logic block power supply (V_{DD}) is off and apply the 5V signal to those pins after turning on the logic block power supply (V_{DD}).

1/8 duty, 1/4 bias drive technique (for use with large panels)


- Note *29. Add a capacitor to the logic block power supply line so that the logic block power supply voltage V_{DD} rise time when power is applied and the logic block power supply voltage V_{DD} fall time when power drops are both at least 1 ms, as the LC75812PT is reset by the V_{DET}.
 - *30. If a variable resistor is not used for display contrast fine adjustment, the V_{LCD}4 pin must be connected to ground.
 - *31. In RC oscillator operating mode, an external resistor, Rosc, and an external capacitor, Cosc, must be connected between the OSC pin and ground. When selecting the external clock operating mode, connect a current protection resistor Rg (2.2 to 22kΩ) between the OSC pin and the external clock output pin (external oscillator). (See the "OSC Pin Peripheral Circuit" section.)
 - *32. If the function of $\overline{\text{INH}}$ pin is not used, the $\overline{\text{INH}}$ pin must be connected to the logic block power supply VDD.
 - *33. The DO pin, being an open-drain output, requires a pull-up resistor. Select a resistance (between $1k\Omega$ and $10k\Omega$) appropriate for the capacitance of the external wiring so that signal waveforms are not degraded.
 - *34 When applying a 5V signal to the CE, CL, DI, and INH pins, set the input voltage to 0V if the logic block power supply (V_{DD}) is off and apply the 5V signal to those pins after turning on the logic block power supply (V_{DD}).

1/9 duty, 1/4 bias drive technique (for use with normal panels)

- Note *29. Add a capacitor to the logic block power supply line so that the logic block power supply voltage V_{DD} rise time when power is applied and the logic block power supply voltage V_{DD} fall time when power drops are both at least 1 ms, as the LC75812PT is reset by the V_{DET}.
 - *30. If a variable resistor is not used for display contrast fine adjustment, the V_{LCD}4 pin must be connected to ground.
 - *31. In RC oscillator operating mode, an external resistor, Rosc, and an external capacitor, Cosc, must be connected between the OSC pin and ground. When selecting the external clock operating mode, connect a current protection resistor Rg (2.2 to 22kΩ) between the OSC pin and the external clock output pin (external oscillator). (See the "OSC Pin Peripheral Circuit" section.)
 - *32. If the function of $\overline{\text{INH}}$ pin is not used, the $\overline{\text{INH}}$ pin must be connected to the logic block power supply VDD.
 - *33. The DO pin, being an open-drain output, requires a pull-up resistor. Select a resistance (between $1k\Omega$ and $10k\Omega$) appropriate for the capacitance of the external wiring so that signal waveforms are not degraded.
 - *34 When applying a 5V signal to the CE, CL, DI, and INH pins, set the input voltage to 0V if the logic block power supply (V_{DD}) is off and apply the 5V signal to those pins after turning on the logic block power supply (V_{DD}).

1/9 duty, 1/4 bias drive technique (for use with large panels)

- Note *29. Add a capacitor to the logic block power supply line so that the logic block power supply voltage V_{DD} rise time when power is applied and the logic block power supply voltage V_{DD} fall time when power drops are both at least 1 ms, as the LC75812PT is reset by the V_{DET}.
 - *30. If a variable resistor is not used for display contrast fine adjustment, the V_{LCD}4 pin must be connected to ground.
 - *31. In RC oscillator operating mode, an external resistor, Rosc, and an external capacitor, Cosc, must be connected between the OSC pin and ground. When selecting the external clock operating mode, connect a current protection resistor Rg (2.2 to 22kΩ) between the OSC pin and the external clock output pin (external oscillator). (See the "OSC Pin Peripheral Circuit" section.)
 - *32. If the function of $\overline{\text{INH}}$ pin is not used, the $\overline{\text{INH}}$ pin must be connected to the logic block power supply VDD.
 - *33. The DO pin, being an open-drain output, requires a pull-up resistor. Select a resistance (between $1k\Omega$ and $10k\Omega$) appropriate for the capacitance of the external wiring so that signal waveforms are not degraded.
 - *34 When applying a 5V signal to the CE, CL, DI, and INH pins, set the input voltage to 0V if the logic block power supply (V_{DD}) is off and apply the 5V signal to those pins after turning on the logic block power supply (V_{DD}).

Sample Correspondence between Instructions and the Display (When the LC75812PT-8565 is used)

	LSB	Inst	ruction (he	exadecimal)		MSB		
No.	D96 to	D100 to	D104 to	D108 to	D112 to	D116 to	Display	Operation
	D99	D103	D107	D111	D115	D119		
1		(Init		application with the VD				Initializes the IC.
								The display is in the off state.
2			Set display	y technique	0	8		Sets to 1/8 duty 1/4 bias display drive technique
	Г		ta write (no	ormal increr	-	-		Writes the display data " " to DCRAM
3	0	2	0	0	1	A		address 00H
			-	ormal increr	-			Writes the display data "S" to DCRAM
4			ta white (fit	official increa	3	5		address 01H
	Г		ta write (no	ormal increr	-			
5	L		ta white (fit		1	-) 		Writes the display data "A" to DCRAM address 02H
	Г	CRAM dat	ta write (no	ormal increr				
6					E	4		Writes the display data "N" to DCRAM address 03H
	Г	CRAM dat	ta write (no	ormal increr	_			Writes the display data "Y" to DCRAM
7					9	5		address 04H
	Г	CRAM dat	ta write (no	ormal increr	-			Writes the display data "O" to DCRAM
8					F	4		address 05H
	Γ	CRAM dat	ta write (no	ormal increr				Writes the display data " " to DCRAM
9					0	2		address 06H
	Г	CRAM dat	ta write (no	ormal increr	•			Writes the display data "L" to DCRAM
10					С	4		address 07H
	[CRAM dat	ta write (no	ormal increr	nent mode			Writes the display data "S" to DCRAM
11					3	5		address 08H
	[CRAM dat	ta write (no	ormal increr	nent mode			Writes the display data "I" to DCRAM
12					9	4		address 09H
	[DCRAM dat	ta write (no	ormal increr	nent mode			Writes the display data " " to DCRAM
13					0	2		address 0AH
	[CRAM dat	ta write (no	ormal increr	nent mode			Writes the display data "L" to DCRAM
14					С	4		address 0BH
	[OCRAM dat	ta write (no	ormal increr	nent mode	e)		Writes the display data "C" to DCRAM
15					3	4		address 0CH
	[OCRAM dat	ta write (no	ormal increr	nent mode	e)		Writes the display data "7" to DCRAM
16					7	3		address 0DH
_	Γ	OCRAM dat	ta write (no	ormal increr	nent mode			Writes the display data "5" to DCRAM
17					5	3		address 0EH
15	[OCRAM dat	ta write (no	ormal increr	nent mode	e)		Writes the display data "8" to DCRAM
18					8	3		address 0FH
	[CRAM dat	ta write (no	ormal increr	nent mode	:)		Writes the display data "1" to DCRAM
19					1	3		address 10H
	C	CRAM dat	ta write (no	ormal increr	nent mode	e)		Writes the display data "2" to DCRAM
20					2	3		address 11H
<u>.</u>	[CRAM dat	ta write (no	ormal increr	nent mode	e)		Writes the display data " " to DCRAM
21	_		0	2	0	A		address 12H

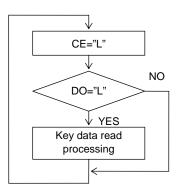
Continued on next page.

Continu	ued from p	preceding p	bage.					1				
	LSB	In	struction (h	exadecima	al)	MSB						
No.	D96 to	D100 to	D104 to	D108 to	D112 to	D116 to	Display	Operation				
	D99	D103	D107	D111	D115	D119						
22				address				Loads the DCRAM address 00H and the				
			0	0	0	2		ADRAM address 0H into AC				
23			Display or	off contro		1	SANYO LSI LC	Turns on the LCD for all digits (13 digits) in				
20	F	F	F	1	1	4		MDATA				
24			Displa	ay shift	1		SANYO LSI LC7	Shifts the display (MDATA only) to the left				
27					1	С						
25			Displa	ay shift			ANYO LSI LC75	Shifts the display (MDATA only) to the left				
23					1	С						
26			Displa	ay shift			NYO LSI LC758	Shifts the display (MDATA only) to the left				
20					1	С						
27			Displa	ay shift			YO LSI LC7581	Shifts the display (MDATA only) to the left				
21					1	С						
			Displa	ay shift			O LSI LC75812 Shifts the display (MDATA only)					
28					1	С		Shifts the display (MDATA only) to the left				
			Displa	ay shift			LSI LC75812					
29						С		Shifts the display (MDATA only) to the left				
			Display or	off contro				Set to sleep mode, turns off the LCD for all				
30	0	0	0	0	8	4		digits				
		•	Display or	off contro		•	LSI LC75812	Turns on the LCD for all digits (13 digits) in				
31	F	F	F	1	1	4		MDATA				
			Set AC	address	•	•	SANYO LSI LC	Loads the DCRAM address 00H and the				
32		0 0			0	2	SANTO LOI LU	ADRAM address 0H into AC				

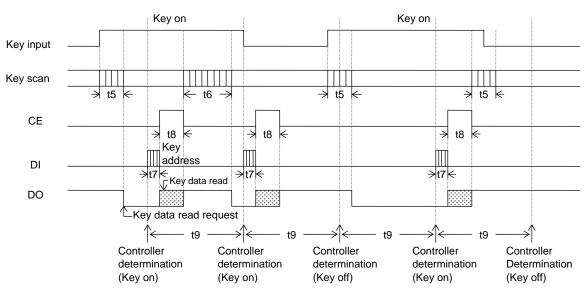
*35) The sample correspondence between the instructions and the display assumes the use of 13 digits×1 row 5×7 dot matrix LCD. Neither CGRAM nor ADRAM are used.

LC75812PT

*36) Given below are the data formats of the "DCRAM data write" instructions (No. 3 to No. 21) for the sample correspondence between the instructions and the display executed in the super increment mode. In the super increment mode processing example shown below, 19 characters of DCRAM data is divided and written into DCRAM in two operations.


	Instruction (HEX)														
Nie	LSB														
No.	D0 to	D4 to	D8 to	D12 to	D16 to	D20 to	D24 to	D28 to	D32 to	D36 to	D40 to	D44 to			
	D3	D7	D11	D15	D19	D23	D27	D31	D35	D39	D43	D47			
0 45 45		DCRAM data write (Super increment mode)													
3 to 15	0	2	3	5	1	4	E	4	9	5	F	4			
101.01					DCRAM d	ata write (S	uper increm	ent mode)							
16 to 21															

		Instruction (HEX)													
Nia	LSB M														
No.	D48 to	D52 to	D56 to	D60 to	D64 to	D68 to	D72 to	D76 to	D80 to	D84 to	D88 to	D92 to			
	D51	D55	D59	D63	D67	D71	D75	D79	D83	D87	D91	D95			
0 45 45		DCRAM data write (Super increment mode)													
3 to 15	0	2	С	4	3	5	9	4	0	2	С	4			
401.04					DCRAM c	lata write (S	uper increm	ent mode)							
16 to 21			7	3	5	3	8	3	1	3	2	3			


			Instructio	on (HEX)							
No	LSB				Or cretier						
No.	D96 to	D100 to	D104 to	D108 to	D112 to	D116 to	Operation				
	D99	D103	D107	D111	D115	D119					
			DCRAM	data write	Display data " " "S" "A" "N" "Y" "O" " " "L" "S" "I" " " "L" "C"						
3 to 15			(Super incre	ement mode)			are written sequentially to DCRAM addresses 00H to				
	3	4	0	0	2	А	OCH.				
			DCRAM	data write	Display data "7" "5" "8" "1" "2" " are written sequentially						
16 to 21			(Super incre	ement mode)							
	0	2	D	0	2	А	to DCRAM addresses 0DH to 12H.				

Notes on the controller key data read techniques

- 1. Timer based key data acquisition
 - Flowchart

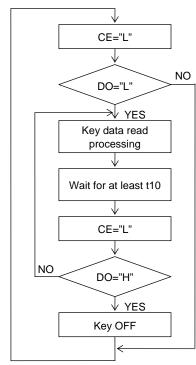
• Timing chart

t5: Key scan execution time when the key data agreed for two key scans. (4800T(s))

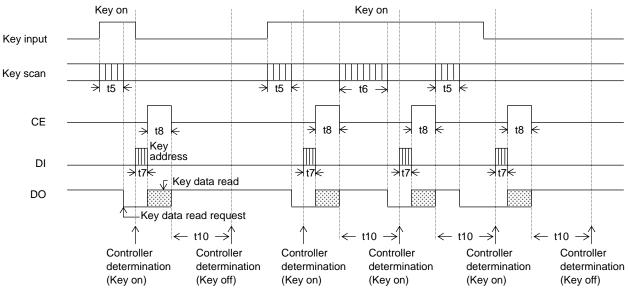
- t6: Key scan execution time when the key data did not agree for two key scans and the key scan was executed again. (9600T(s)) $T = \frac{1}{fosc}$
- t7: Key address (43H) transfer time
- t8: Key data read time

Explanation

In this technique, the controller uses a timer to determine key on/off states and read the key data. The controller must check the DO state when CE is low every t9 period without fail. If DO is low, the controller recognizes that a key has been pressed and executes the key data read operation.


The period t9 in this technique must satisfy the following condition.

t9>t6+t7+t8


When key data read operation is executed with DO set high (no key data read request present), the key data (KD1 to KD35) and sleep acknowledge data (SA) are invalid.

T=fCK

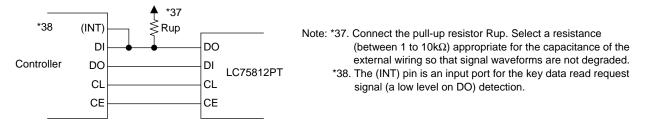
- 2. Interrupt based key data acquisition
 - Flowchart

• Timing chart

- t5: Key scan execution time when the key data agreed for two key scans. (4800T(s))
- t6: Key scan execution time when the key data did not agree for two key scans and the key scan was executed again. (9600T(s))
- t7: Key address (43H) transfer time
- t8: Key data read time

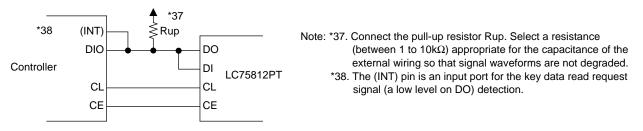
 $T = \frac{1}{fosc}$ $T = \frac{1}{fCK}$

• Explanation

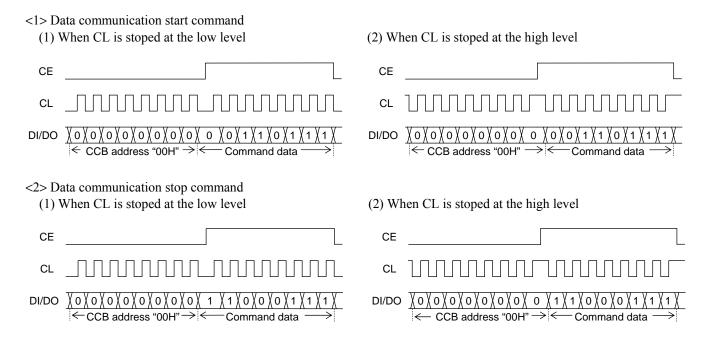

In this technique, the controller uses interrupts to determine key on/off states and read the key data. The controller must check the DO state when CE is low. If DO is low, the controller recognizes that a key has been pressed and executes the key data read operation. After that the next key on/off determination is performed after the time t10 has elapsed by checking the DO state when CE is low and reading the key data. The period t10 in this technique must satisfy the following condition.

t10 > t6

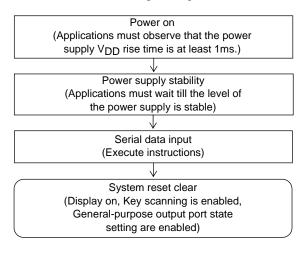
When key data read operation is executed with DO set high (no key data read request present), the key data (KD1 to KD35) and sleep acknowledge data (SA) are invalid.


About Data Communication Method with The Controller

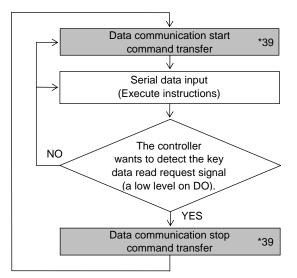
 About data communication method of 4 line type CCB format The 4 line type CCB format is the data communication method of before. The LC75812PT must connect to the controller as followings.


2. About data communication method of 3 line type CCB format

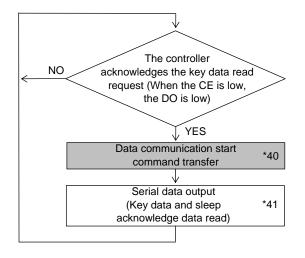
The 3 line type CCB format is the data communication method that made a common use of the data input DI in the data output DO. The LC75812PT must connect to the controller as followings.


In this case, Applications must transfer the data communication start command before the serial data input (CCB address "42H", display data and control data transfer) or serial data output (CCB address "43H" transfer, key data read) to avoid the collision of the data input signal DI and the data output signal DO.

Then applications must transfer the data communication stop command when the controller wants to detect the key data read request signal (a low level on DO) during a movement stop of the serial data input and the serial data output.


Data Communication Flowchart of 4 Line Type or 3 Line Type CCB Format

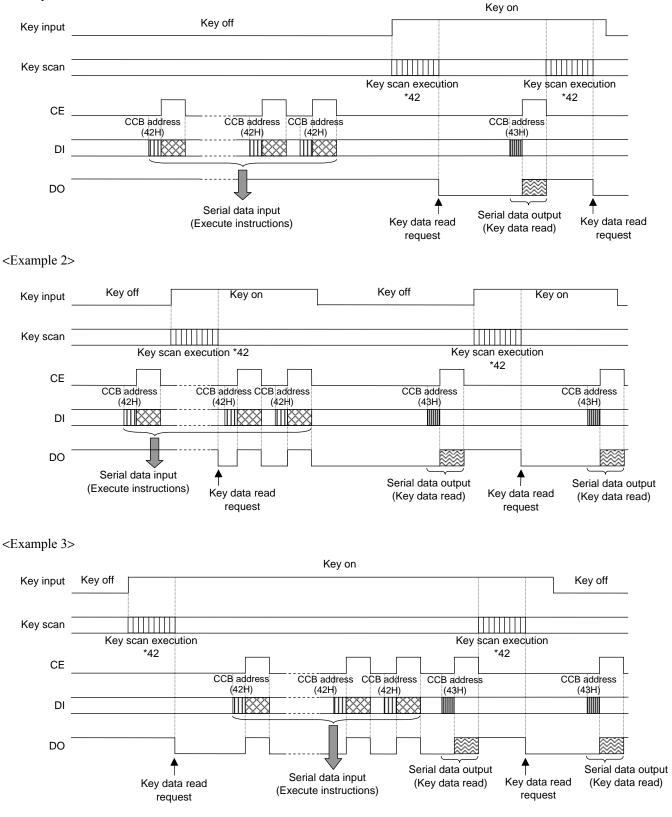
1. Flowchart of the initial setting when power is turned on.


Note: The flowchart for power-on time initialization is the same for the 4- and 3-wire CCB formats. See "Power Supply Sequence" and "System Reset."

2. Flowchart of the serial data input

Note: *39. In the case of the 4 line type CCB format, the transfers of data communication start command and data communication stop command are unnecessary, and, in the case of the 3 line type CCB format, these transfers are necessary.

3. Flowchart of the serial data output

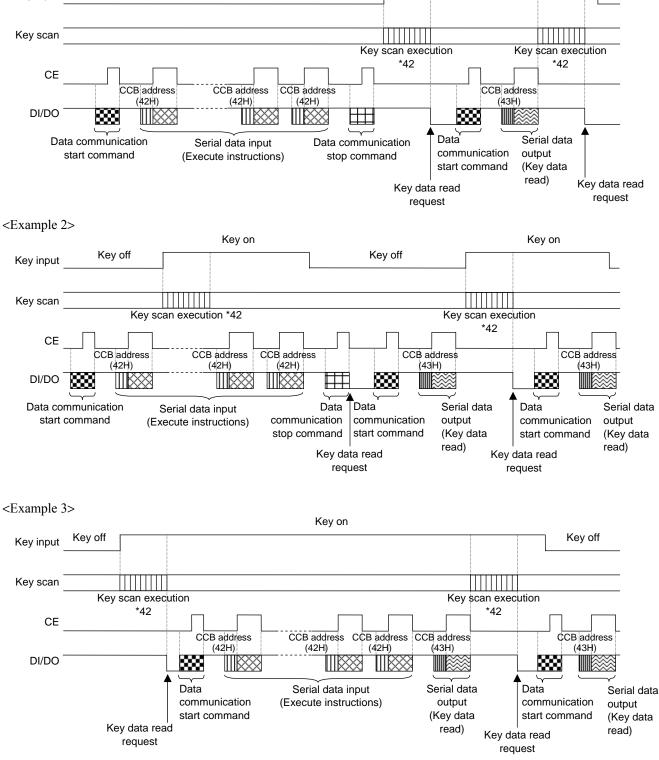


- Note: *40. In the case of the 4 line type CCB format, the transfer of data communication start command is unnecessary, and, in the case of the 3 line type CCB format, the transfer is necessary.
 - *41. Because the serial data output has the role of the data communication stop command, it is not necessary to transfer the data communication stop command some other time.

Timing Chart of 4 Line Type and 3 Line Type CCB Format

1. Timing chart of 4 line type CCB format

<Example 1>



Note: *42. When the key data agrees for two key scans, the key scan execution time is 4800T[s]. And, when the key data does not agree for two key scans and the key scan is executed $T = \frac{1}{fosc}$ $T = \frac{1}{fCK}$ again, the key scan execution time is 9600T[s].

Key on

2. Timing chart of 3 line type CCB format

<Example 1> Key off Key input Key scan CE CCB address (42H) DI/DO

Note: *42. When the key data agrees for two key scans, the key scan execution time is 4800T[s]. And, when the key data does not agree for two key scans and the key scan is executed again, the key scan execution time is 9600T[s].

 $T = \frac{1}{fosc}$ $T = \frac{1}{fCK}$

-																
111	Â	Ä	чД	Ξ	Ĵ	Ï	Ô	Ö	Û	Ü	ũ	õ	a∘a	0	уц	£
0																
111	Á	À	Ê,	Ъ	, T	Ţ	Ó	Q	Ú	Ú	Ã	Õ	Å	a	ц,	e <
0 1																
11(1//	Ą	\times	ĥ	A	rl	Π	1	Ú	ノ	2	п	Ц	<u>ک</u>	*	•
0.0																
11	Ŕ	Ł	ý	Τ	~	ţ	1]	K	*	$\overline{\}$	<	л	7	ζ	ĸ	Ø
11																
1 0		7	ŕ	Ţ	H	4	τ <i></i> ζ	+	Ą	5	Π	4	ŝ	К	4	~
1 0																
1 0	/	0		_	,	•	À	Ł	\mathbf{r}	Ą	Н	*	4	Ц	π	ŝ
0 1																
1 0	â	ä	ê	ë	î	ï	ô	ö	û	ü	ñ	ć	Ś	, cu	i	ij
0.0																
1 0	á	à	é	è	í	ì	ó	ò	ú	ù	Ñ	Ç	Ş	Ğ	İ	IJ
11																
0 1	d	d	ч	s	t	n	>	M	x	y	N			~		
1 0																
0 1	/	а	q	ပ	p	е	f	а	Ч			k	-	В	ц П	0
01																
0 1	Р	ð	R	S	L	Ŋ	>	M	x	Y	Z]	¥		,	I
00																
0]	Ô	A	В	U	D	Е	<u>ل</u> ے	G	Н	-	ſ	X		X	Z	0
011																
0	0		7	~	4	5	9	~	∞	6		•••	V		<u>^</u>	~·
010																
0				#	↔	%	× ×				*	+	^ 			
001																
0	(α)	β	+1	• •	я	·?	Φ	φ	Æ	8	Ð	æ	1	Ļ		\rightarrow
MSB 0 0 0 0	CG RAM(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
Lower Upper 4BIT	0 0 0 0 LSB	0001	0 0 1 0	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1 1 1 0	1111

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of March, 2010. Specifications and information herein are subject to change without notice.