

SANYO Semiconductors DATA SHEET

LA7161BM/BV — VHF Band RF Modulator (US3, 4ch, JPN1, 2ch, TWN13ch compatible)

Overview

The LA7161BM/BV is a VHF band RF module. It supports US3, 4ch, JPN1, 2ch, TWN13ch.

Functions

- RF VCO (AGC).
- RF Mixer.
- RF Buffer.
- Video clamp.
- White clip.
- Audio FM.
- 4V regulator.
- Reference OSC.

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		7.0	V
Allowable power dissipation	Pd max	Ta ≤ 75°C	350*	mW
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +150	°C

* Mounted to the glass epoxy resin made board (114.3mm×76.1mm×1.6mm)

Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended operating voltage	VCC		5.0	V
Operating voltage range	V _{CC} op		4.5 to 5.5	V

- Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before using any SANYO Semiconductor products described or contained herein in such applications.
- SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

SANYO Semiconductor Co., Ltd. TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Electrical Characteristics/Operating Characteristics at $Ta = 25^{\circ}C$, $V_{CC} = 5.0V$, Measured with US3ch unless otherwise specified

Deremeter	Symbol	Conditions		Ratings		
Parameter			min	typ	max	Unit
Current drain 1	I _{CC} 1	No signal, pin 6 high	26	37	48	mA
Current drain 2	I _{CC} 2	No signal, pin 6 low	17	25	33	mA
Regulator voltage	Vreg	No signal	3.7	3.9	4.1	V
Antenna driver voltage	Vanton	Pin 6 high, 220 Ω load	3.2	3.5	3.8	V
RF type						
Video carrier output US	Pus	No signal (Note 1)	85	87	89	dBµ
Video carrier output JP	Pjp	No signal (Note 1)	84.5	86.5	88.5	dBµ
Video carrier output TW	Ptwn	No signal (Note 1)	84	86	88	dBļ
Audio carrier output ratio	P/S	S: fp+4.5MHz	14.5	16	17.5	dB
Audio 2 nd harmonic distortion	P/S2	S2: fp+2×4.5MHz	50	65		dB
Audio 3 rd harmonic distortion	P/S3	S3: fp+3×4.5MHz	45	55		dB
Chroma beat	P/CB	Vin = 3.58MHz , 0.6Vp-p CB: fp+920kHz	65	72		dB
Video harmonic distortion	P/V2	Vin = 1MHz , 1Vp-p V2: fp+2MHz	45	65		dB
Video type						
Video modulation	Мр	Vin = Stair step, 1Vp-p	75	80	85	%
White clip level (Max video modulation)	WCL	Vin = Stair step, 1.5Vp-p	88	93	98	%
Differential gain	DG	Vin = 10-Stair step, 1Vp-p	-5		5	%
Differential phase	DP	Vin = 10-Stair step, 1Vp-p	-5		5	Deg
Audio type	•		•			
Audio modulation	Ms	Ain = 1kHz, 1Vp-p (Note 2)	90	100	110	%
Maximum audio modulation	Msmx	THD<3%	400			%
Audio distortion	THD	Ain = 1 kHz, 1Vp-p		0.4	2	%
Audio S/N	AS/N	Ain = 1 kHz, 1Vp-p Vin = Color bar, 1Vp-p	45	52		dB

Note 1: 9.5dB added to the RFOUT value measured with a analyzer of the input impedance of 50Ω .

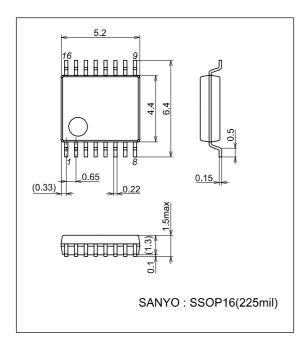
Note 2: $100\% = \pm 25$ kHz modulation.

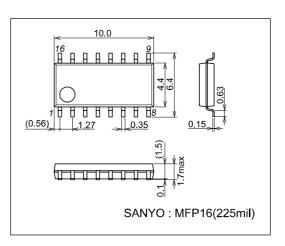
Cautions for use

• Set the variable L (between pins 9 and 10) of RFVCO so that the RF output frequency becomes 67.25MHz when 2.7 V is applied to V12 (pin 12) in the US4ch mode for the US specifications, 97.25MHz when 2.6V is applied to V12 (pin 12) in the JPN2ch mode for the JPN specifications, and 211.25MHz when 2.5V is applied to V12 (pin 12) in the TWN13ch mode for the TWN specifications.

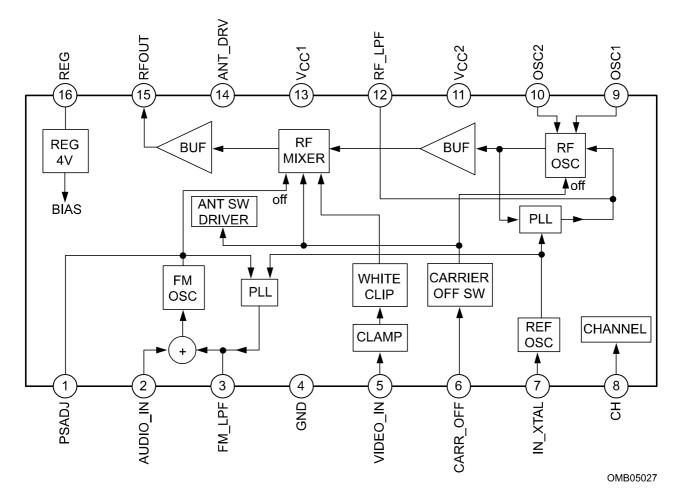
Set the C (pins 9-10) value of RF VCO, so that the V12 (pin 12) voltage difference Δ V12 CH between US 4CH and US3CH in the US specification and the V12 (pin 12) voltage difference Δ V12CH between JPN2CH and JPN1CH in the JPN specification becomes Δ V12CH $\leq\pm$ 0.25V. (This is necessary because the oscillation frequency during free run (without PLL control) of PF VCO differs due to the floating capacity of pattern.)

• Handle pins 9 and 10 with care to prevent electrostatic breakdown because their high frequency characteristics are extremely important.


Package Dimensions


unit: mm 3178B

[LA7161BV]


unit: mm 3035B

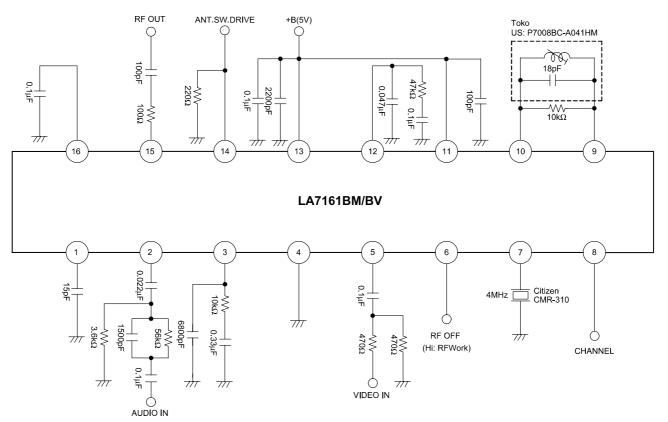
Block Diagram

Pin Equivalent Circuit

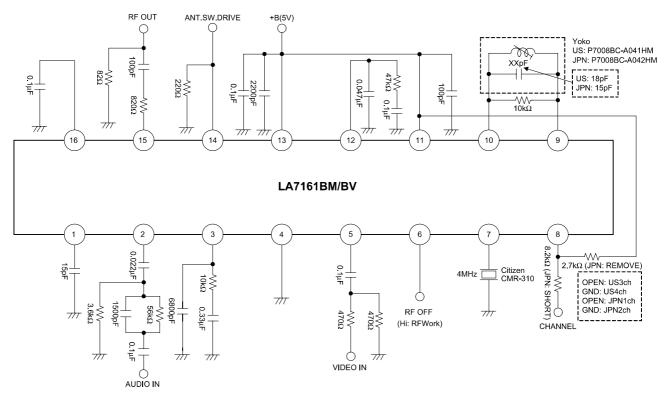
Pin No.	Symbol	Voltage	Equivalent circuit	Remarks
1	P/S ADJ	2.7		Capacitor and additionally a resistor may be inserted between the circuit and GND to attenuate the audio inter-carrier level.
2	AUDIO IN	0	(2) 100kΩ 100kΩ 100kΩ	FM audio input
3	FM LPF	2.2		Control pin of output FM oscillator for the PLL phase detector charge pump.
4	GND	0		
5	VIDEO IN	2.6		Video input Clamped with sink chip
6	CARR OFF	-	100kΩ 25kΩ 6 20kΩ 7/7 7/7	Hi:14PIN Hi RF Operating Lo:14PIN Lo RF Stop

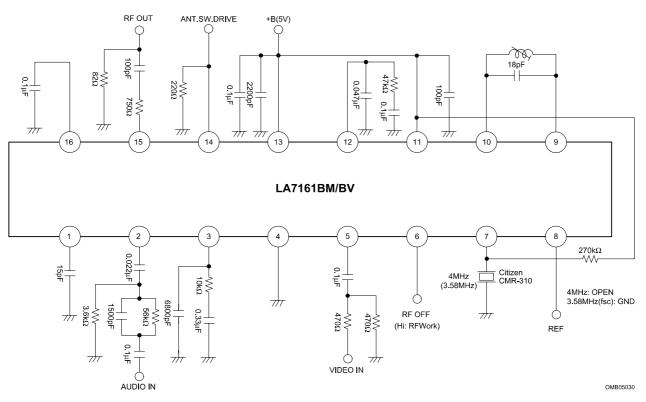
Continued on next page.

LA7161BM/BV


Continued fr	Continued from preceding page.					
Pin No.	Symbol	Voltage	Equivalent circuit	Remarks		
7	IN XTAL	3.5	5pF 1000 5000	4MHz ossilator inserted between the circuit and GND. External input of the 4MHz signal possible. Insertion of about 270k Ω resister between the circuit and GND ensures compatibility with 3.58MHz of VTR chroma. TWN CH selector pinInsert a 270k resistor in a circuit to V _{CC} .		
8	СН	1.7	33kΩ 8 5kΩ 17kΩ 7/7 7/7	CH selector pin JP1:1.2V to 2.3V 0.8 or less 4.2 or more US4:2.7V to 3.8V *TWN CH OPEN: REF OSC 4MHz GND: REF OSC 3.58MHz		
9	OSC1 OSC2	3.7	10 9	RF osillator pin		
10	V _{CC} 2	5.0	· · · · · ·	RF VCO typ V _{CC}		
11	RF LPF	2.6	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	Control pin of output RF oscillator for the PLL phase detector charge pump.		
10		5.0				
12	V _{CC} 1	5.0				

Continued on next page.


LA7161BM/BV


Continued f	Continued from preceding page.					
Pin No.	Symbol	Voltage	Equivalent circuit	Remarks		
13	ANT DRV	3.5		Antena driver pin 15mA drive		
14	RF OUT	3.0	15 1.5kΩ	RF mixed signal output		
15	REG	3.9	16 56.6kΩ 25kΩ 16	Regulator output		

Test Circuit (USch)

Sample Application Circuit 1 (US, JPN ch)

Sample Application Circuit 2 (TWN ch)

- Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of August, 2004. Specifications and information herein are subject to change without notice.