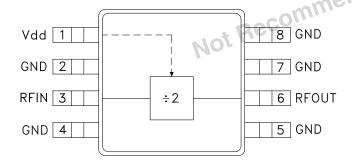
10

HMC251MS8


GaAs MMIC SMT DIVIDE-BY-2, 3.0 - 6.5 GHz

Typical Applications

The HMC251MS8 is ideal for:

- Wireless Local Loop
- UNII & HiperLAN
- ISM
- VSAT

Functional Diagram

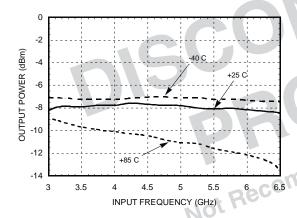
Features

Divide-By-Two

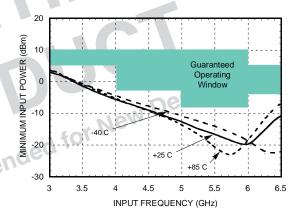
Low Phase Noise: -130 dBc/Hz @ 10KHz Single Positive Bias Voltage: +5V @ 27 mA Miniature Small Outline Package: MSOP8

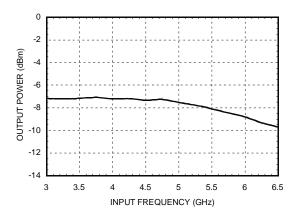
General Description

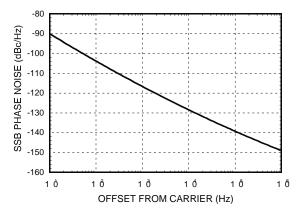
The HMC251MS8 is a low noise divide-by-2 GaAs MMIC prescaler in an 8 lead surface mount MSOP plastic package. This device operates from 3.0 to 6.5 GHz (input frequency) with a single +5V DC supply while drawing only 27 mA of current. The low residual phase noise of this prescaler helps the user maintain good system noise performance.


Electrical Specifications, $T_A = +25^{\circ} \text{ C}$, Vdd = +5V, 50 Ohm System

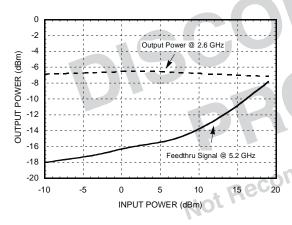
Parameter	Condition	Min	Typical	Max	Units
Input Frequency Range			3.0 - 6.5		GHz
Output Frequency Range			1.5 - 3.25		GHz
Operating Input Power Range	Fin = 3.0 - 4.0 GHz Fin = 4.0 - 5.0 GHz Fin = 5.0 - 6.0 GHz Fin = 6.0 - 6.5 GHz	6 -2 -8 -3		10 10 10 7	dBm dBm dBm dBm
Output Power for Minimum Input Power Level (Note 1)	Fin = 3.0 - 4.0 GHz Fin = 4.0 - 5.0 GHz Fin = 5.0 - 6.0 GHz Fin = 6.0 - 6.5 GHz	-12 -14 -16 -17	-8.0 -7.7 -8.2 -8.5	-3 -3 -3 -3	dBm dBm dBm dBm
Single-Side-Band Phase Noise	Fin = 5.0 - 6.0 GHz Offset from carrier = 10KHz		-130		dBc/Hz
Supply Current (Idd)	Vdd = -5.0 Vdc		27	33	mA

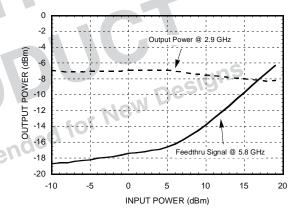

Note 1. Output Power Measured at half the Input Frequency.

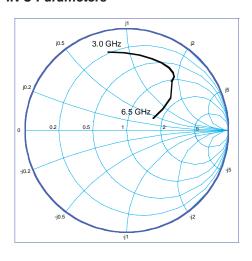

Output Power vs. Frequency @ Minimum Input Power Level


Minimum Input Power vs. Input Frequency

Output Power for Input Power= +10 dBm*


Single-Side-Band Phase Noise vs. Offset from Carrier, fin= 5 to 6 GHz


^{*}Note: Output Power Measured @ fin/2

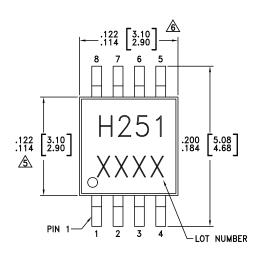

Output Power vs. Input Power, Input Frequency= 5.2 GHz

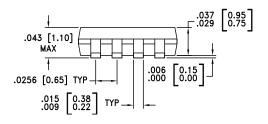

Output Power vs.
Input Power, Input Frequency= 5.8 GHz

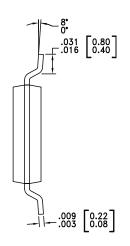
RF IN S-Parameters *

RF OUT S-Parameters *

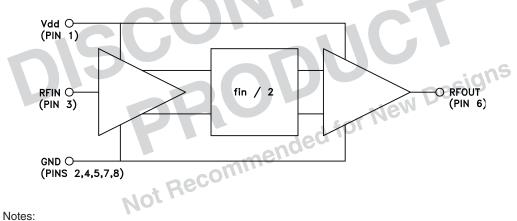
^{*}S-Parameter Data is Available @ www.hittite.com




Absolute Maximum Ratings


Vdd	+8 Vdc		
Maximum Input Power (Vdd = +5.0 Vdc)	20 dBm		
Storage Temperature	-65 to +150 °C		
Operating Temperature	-40 to +85 °C		
Storage Temperature -65 to +150 °C Operating Temperature -40 to +85 °C ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS			

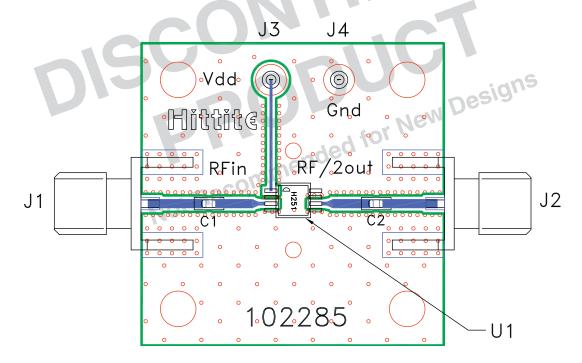
Outline Drawing


- 1. PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- LEADFRAME MATERIAL: COPPER ALLOY
- LEADFRAME PLATING: Sn/Pb SOLDER
- DIMENSIONS ARE IN INCHES [MILLIMETERS].

DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE. 6 DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.

- ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.
- 8. CLASSIFIED AS MOISTURE SENSITIVITY LEVEL (MSL) 1.

Application Circuit



Operating Notes:

- 1. With no input signal, or input signals below the minimum input power level, the prescaler will self-oscillate.
- 2. DC blocks on the RF ports are not required but are recommended if DC voltages exceeding 8 volts are present.

Eval Board Layout (Top View)

List Of Materials

Item	Description	
J1, J2	PC Mount SMA Connector	
J3, J4	DC Pin	
C1, C2	330 pF capacitor, 0603 Pkg.	
U1	HMC251MS8 Prescaler	
PCB*	102285 Eval Board	
* Circuit Board Material: 4350		

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at RF IN and RF OUT should have 50 ohm impedance and the package ground leads should be connected directly to the ground plane similar to that shown. The evaluation circuit board shown is available from Hittite upon request.